

Verificación de muro de gravedad

Programa:	Muro de gravedad
Archivo:	Demo_manual_04.gp1

En este capítulo se lleva acabo el análisis para un muro de gravedad existente para situaciones de diseño permanente y accidental. Se explican además las etapas de construcción

Asignación

Utilizando el estándar EN 1997-1 (CE 7-1, DA2), analizamos la estabilidad, vuelco y deslizamiento de un muro de gravedad existente.

El tráfico de carretera actúa en el muro con una magnitud de 10 kPa. Consultar la posibilidad de instalar la barrera en la parte superior del muro. Una carga accidental de choque automovilístico es considerado como 50 kN / m y actúa horizontalmente a 1,0 m. Las dimensiones y la forma del muro de hormigón se pueden ver en la siguiente imagen. La inclinación del terreno detrás de la construcción es $\beta = 10^{\circ}$, el suelo de cimentación se compone de arena limosa. El ángulo de fricción entre el suelo y el muro es de $\delta = 18^{\circ}$

La determinación de la capacidad portante y la verificación del muro no son parte de esta tarea. En este análisis consideramos los parámetros efectivos del suelo.

Esquema del muro de gravedad- asignación

Solución

Para analizar esta tarea, utilice el programa GEO5 - Muro de gravedad. En este texto, vamos a describir los pasos del análisis de este ejemplo en dos etapas de construcción.

- 1era. Etapa de construcción Análisis del muro existente para el tráfico de carretera
- 2da. Etapa de construcción Análisis de impacto del vehículo en la barrera en la parte superior del muro.

Entrada básica: Etapa 1

En el cuadro de "Configuración", haga clic en "Seleccionar" y elegir Nro. 4 - "Estándar - ES

1997 - DA2".

🕑 Lista de co	nfiguraciones			×
Número	Nombre	Valido para		
1	Estándar - Factor de seguridad	Todo	^	
2	Estándar - Estados límite	Todo		
3	Estándar - EN 1997 - DA1	Todo	≡	
4	Estándar - EN 1997 - DA2	Todo		
5	Estándar - EN 1997 - DA3	Todo]—	
6	Estándar - LRFD 2003	Todo]	
7	Estándar - sin reducción de parámetros	Todo]	
8	República Checa - antiguos estándares CSN (73 1001, 73 1002, 73 0037)	Todo]	
14	Alemania - EN 1997	Todo	1	
15	Austria - EN 1997	Todo	1	
22	Italia - EN 1997 , DA1	Todo	1	
23	Italia - EN 1997 - DA2	Todo	1	
24	Finlandia - EN 1997	Todo]	ГОК
25	Reino Unido - EN 1997	Todo		Cancelar
27	Bortugal EN 1007	Todo	\mathbf{Y}	

Cuadro "Lista de configuración"

Luego, en el cuadro "Geometría" seleccione la forma del muro de gravedad y defina los parámetros.

Cuadro "Geometría"

En el siguiente paso, ingresamos el material del muro y el perfil geológico. La unidad de peso del muro es $\gamma = 24 \ kN \ m3$. El muro es de hormigón C 12/15 y de acero B500. A continuación, se definen los parámetros de suelo y lo asignamos a los perfiles.

Suelo (Clasificación de suelo)	Unidad de peso $\gamma \left[kN/m^{3} ight]$	Ángulo de fricción interna $arphi_{e\!f} \left[^{ m o} ight]$	Cohesión del suelo $c_{_{e\!f}} \; [kPa]$	Ángulo de fricción estructura - suelo $\delta = [^\circ]$
MS – Limo arenoso, consistencia dura	18,0	26,5	12,0	18,0

Tabla de parámetros de suelo

Cuadro "Añadir nuevo suelo"

Nota: La magnitud de la presión activa depende también de la fricción entre la estructura y el suelo en el ángulo " $\delta \delta \approx \left(\frac{1}{3} \div \frac{2}{3}\right) \cdot \varphi_{ef}$ ". En este caso, cuando se analiza la presión de la tierra, se tiene en cuenta la influencia de la fricción entre la estructura y el suelo con valor $\frac{2}{3} \cdot \varphi_{ef}$ ($\delta = 18^\circ$),. (Más información en AYUDA - F1).

En el cuadro "Terreno", seleccione la forma del terreno detrás del muro. Defina sus parámetros, en términos de longitud de terraplén y ángulo de inclinación, como se muestra a continuación.

1							
		- Datos del terrapien					
	V	Longitud :	d =	3,00	[m]		
	5	🔿 Altura :	$\forall =$	0,53	[m]		
		🔘 Pendiente :	1:s =	5,67	[-]		
		⊙ Ángulo de la pendiente :	$\beta =$	10,00	[°]		
Terreno							

Cuadro "Terreno"

En el siguiente cuadro, defina la "Sobrecarga". Ingrese el tipo de sobrecarga del tráfico de carretera como de "Franja", con ubicación "sobre el terreno", y como tipo de acción seleccione "Variable".

Editar sobrec	arga		×
Nombre : Surc	harge	No. 1 - Road traffic	
Tipo :		Franja	
Tipo de acción :		variable 💌	
Ubicación :		sobre el terreno 💌	
Origen :	× =	3,00 [m]	
Longitud :	I =	10,00 [m]	
		3	
— Magnitud de la	a sobre	ecarga	
Magnitud :	q =	10,00 [kN/m ²]	
			ar

Cuadro "Nueva sobrecarga"

No trabajaremoscon el cuadro "Resistencia del suelo" ya que la forma del terreno frente al muro es horizontal.

Nota: En este caso, no se considera la resistencia en la cara frontal, por lo que los resultados serán conservadores. La resistencia en la cara frontal depende de la calidad del suelo y del desplazamiento permisible de la estructura. Consideramos la presión en reposo para el suelo original o suelo bien compactado. Es posible considerar la presión pasiva sólo si se permite el desplazamiento de la estructura. (Más información en AYUDA - F1).

En el cuadro "Configuración de etapa" seleccionar el tipo de situación de diseño. En la primera etapa de construcción, considere la situación de diseño "*permanente*".

Situación de diseño :	permanente	•

Cuadro "Configuración de etapa"

Ahora abra el cuadro "Verificación de equilibrio", donde se analiza el muro de gravedad contra vuelco y deslizamiento.

Cuadro "Verificación – etapa 1"

Nota: El botón "En detalle" en la sección derecha de la pantalla abre cuadro de diálogo con información detallada sobre los resultados del análisis.

Nombre	Ebor	Pto, Apl.	Evert	Pto, Apl.	Coef.	Coef.	Coef.
	[kN/m]	z [m]	[kN/m]	×[m]	vuelco	deslizam.	tensión
Peso - Muro	0,00	-2,80	247,20	1,67	1,000	1,000	1,350
Presión activa	84,17	-1,73	27,35	2,50	1,350	1,350	1,000
Surcharge No. 1 - Road traffic	16,36	-2,72	6,05	2,50	1,500	1,500	1,500
Verificación de la estabilidad de v Momento estabilizador M _{res} = 376,91 Momento de vuelco M _{ovr} = 263,73 Muro para vuelco ES ACEPTABLE Verificación del deslizamiento	uelco kNm/m kNm/m						
Verificación de la estabilidad de v Momento estabilizador Mres = 376,91 Momento de vuelco Movr = 263,73 Muro para vuelco ES ACEPTABLE Verificación del deslizamiento Fuerza horizontal resistente Hres = 15 Fuerza horizontal activa Hact = 13 Muro para declizamiento FS OCEPTABLE	uelco kNm/m kNm/m i2,53 kN/m i8,17 kN/m						
Verificación de la estabilidad de v Momento estabilizador $M_{res} = 376,91$ Momento de vuelco $M_{ovr} = 263,73$ Muro para vuelco ES ACEPTABLE Verificación del deslizamiento Fuerza horizontal resistente $H_{res} = 15$ Fuerza horizontal activa $H_{act} = 13$ Muro para deslizamiento ES ACEPTABLE	uelco kNm/m kNm/m 32,53 kN/m 38,17 kN/m E TABLE						

Cuadro "Verificación de Equilibrio (en detalle)"

Nota: Para los análisis basados en la norma EN-1997, el programa determina si la fuerza actúa favorable o desfavorablemente. Luego cada fuerza se multiplica por el coeficiente parcial correspondiente que se muestra en el informe.

A continuación, seleccione el botón "Verificación de Est. de taludes" y se abre el módulo correspondiente para analizar la estabilidad global del muro. En nuestro caso, vamos a utilizar el método de "Bishop", que da lugar a resultados conservadores. Luego vamos a la sección de análisis y analizamos con **optimización la superficie de deslizamiento circular** y validamos haciendo clic en "Analizar". Los resultados e imágenes se mostrarán en el informe del análisis del programa "Muro de gravedad".

GEO5

Programa "Estabilidad de taludes" Etapa 1

Resultados del análisis: Etapa 1

Al analizar la capacidad portante, estamos buscando valores para vuelco y deslizamiento del muro en el fondo de la zapata. Entonces necesitamos conocer su estabilidad global. En nuestro caso, la utilización del muro es:

- Vuelco:	70,0% $M_{res} = 376,91 > M_{ovr} = 263,73$ [kNm/m]	ACEPTABLE.
- Deslizamiento:	90,6% $H_{res} = 152,53 > H_{act} = 138,17$ [kN / m]	ACEPTABLE.
- Estabilidad global:	87,5% Método - Bishop (optimización)	ACEPTABLE.

Entrada básica: Etapa 2

Ahora, añadimos la 2da. etapa de construcción utilizando la barra de herramientas en la parte superior izquierda de la pantalla

Barra de herramienta "Etapa de construcción"

En esta etapa, utilizando el cuadro "Nueva fuerza" definir la carga de impacto del vehículo en la barrera. La carga es accidental.

Cuadro "Fuerzas aplicadas" – Añadir nueva fuerza

Editar fuerza			
Nom.: Force No. 1 - Car cras	h		
Tipo de acción :	Accidental	•	[0,0] +X
Pto. aplicación : x =	-0,35	[m]	
Pto. aplicación : z =	-1,00	[m]	+z
- Cambiar el valor			
Magnitud de la fuerza : $F_{\chi} =$	-50,00	[kN/m]	
Magnitud de la fuerza : $F_z =$	0,00	[kN/m]	
Magnitud de momento : M =	0,00	[kNm/m]	
OK + 🔊 🖸)K + 💌 🚺	🖌 ОК	🛛 🗙 Cancelar

Cuadro "Editar Fuerza" – Etapa de construcción 2 (Situación de diseño accidental)

Luego abra el cuadro "Etapa de construcción" y cambie a situación de diseño "accidental". El Programa utilizará factores parciales para la situación accidental.

Situación de diseño :	accidental	◄

Cuadro "Etapa de construcción"

Los datos de los otros cuadros que ingresamos en la etapa 1 no han cambiado, por lo que no es necesario volver a configurar estos cuadros. Seleccione el cuadro de "Verificación de equilibrio" para llevar a cabo la verificación contra vuelco y deslizamiento nuevamente.

Cuadro "Verificación – etapa 2"

Resultados del análisis: Etapa 2

A partir de los resultados, vemos que el muro existente no es satisfactorio para el impacto de un vehículo en a la barrera. En este caso, la utilización de la pared contra:

- Vuelco: 116,3 %
$$M_{res} = 488,62 < M_{ovr} = 568,13$$
 [kNm / m] INACEPTABLE

- Deslizamiento: 102,9 %
$$H_{res} = 138,39 < H_{act} = 142,35$$
 [kN / m] INACEPTABLE

Conclusión

El muro de gravedad existente en caso de capacidad portante satisface sólo la primera etapa de construcción, donde actúa el tráfico de carretera. Para la segunda etapa de construcción, que se representa como el impacto a la barrera en la parte superior del muro por un vehículo, el muro no es satisfactorio.

Una solución para aumentar la capacidad portante contra vuelco y el deslizamiento es introducir anclajes de suelo. Alternativamente, es posible colocar una barrera en el borde de la carretera, de esta manera el muro no está cargado por la fuerza del vehículo al estrellarse.