

Análisis de estabilidad de taludes

Programa: Estabilidad de Talude

Archivo: Demo_manual_08.gp2

En este capítulo, vamos a mostrarle cómo verificar la estabilidad de taludes con superficies de deslizamiento circular y poligonal (utilizando su optimización), y las diferencias entre los métodos de análisis de estabilidad de taludes.

Asignación

Realizar un análisis de estabilidad de taludes de pendiente diseñada con un muro de gravedad.

Esta es una situación permanente de diseño. El factor de seguridad requerido es SF = 1,50. No hay agua en el talud.

Esquema de asignación

Solución

Para resolver este problema, vamos a utilizar el programa GEO5 "Estabilidad de taludes". En este capítulo, vamos a explicar paso a paso como resolver este problema:

- Análisis nro. 1: optimización de la superficie de deslizamiento circular (Bishop)
- Análisis nro. 2: Verificación de la estabilidad de taludes para todos los métodos

GEO5

- Análisis nro. 3: Optimización de la superficie de deslizamiento poligonal (Spencer)
- Resultado de análisis (conclusión)

Entrada de geometría y otros parámetros

En el cuadro "Configuración" haga clic en "Seleccionar" y elija opción de nro. 1 - "Estándar -factor de seguridad".

🥝 Lista de c	onfiguraciones			×
Número	Nombre	Valido para		
1	Estándar - Factor de seguridad	Todo	^	
2	Estándar - Estados límite	Todo		
3	Estándar - EN 1997 - DA1	Todo		
4	Estándar - EN 1997 - DA2	Todo	1	
5	Estándar - EN 1997 - DA3	Todo	1-	
6	Estándar - LRFD 2003	Todo	1	
7	Estándar - sin reducción de parámetros	Todo	1	
8	República Checa - antiguos estándares CSN (73 1001, 73 1002, 73 0037)	Todo		
14	Alemania - EN 1997	Todo		
15	Austria - EN 1997	Todo	1	
22	Italia - EN 1997 , DA1	Todo	1	
23	Italia - EN 1997 - DA2	Todo	1	
24	Finlandia - EN 1997	Todo		🗹 ОК
25	Reino Unido - EN 1997	Todo		Cancelar
27	Dertugal EN 1007	Todo	\mathbf{M}	

Cuadro "Lista de configuración"

En primer lugar, en el cuadro de "Interfaz" ingresar el rango de coordenadas.

La "Profundidad del punto de interfaz más profundo" es sólo para la visualización del ejemplo que no tiene ninguna influencia en el análisis.

Coordenadas globales		
- Dimensiones		
Rango mínimo de X :	0,00	[m]
Rango máximo de X :	40,00	[m]
Profundidad de modelo por debajo del punto más profundo de interfaz :	5,00	[m]
	ок 🗵 🤇	Cancelar

Luego modelamos las capas de interfaz, respecto del terreno utilizando estas coordenadas:

	Interfa	ace 1	Interfa	ace 2	Interfa	ice 3	Interfa	ice 4
	x [m]	z [m]						
1	0,00	-4,75	16,80	-4,54	19,17	-2,48	0,00	-8,07
2	10,81	-3,64	18,87	-4,57	27,61	-1,75	19,06	-7,50
3	16,80	-4,54	19,17	-2,48	32,66	-0,74	31,40	-5,77
4	18,59	0,63	19,62	0,71	40,00	0,36	40,00	-5,05
5	19,62	0,71						
6	19,71	0,71						
7	26,00	2,80						
8	34,30	3,20						
9	40,00	4,12						

Añadiendo puntos de interfaz

Luego, defina los parámetros del suelo, y asígnelos al perfil.

Tabla	de	parámetros	de	suelos
rabia	40	parametro	40	000100

Suelo (Clasificación de suelo)	Unidad de peso $\gamma \left[kN/m^{3} ight]$	Ángulo de fricción interna $arphi_{e\!f} \left[^{ m o} ight]$	Cohesión del Suelo c _{ef} [kPa]
MG – limo gravoso, Consistencia firme	19,0	29,0	8,0
S-F – Arena de trazos finos, suelo denso	17,5	31,5	0,0
MS – Limo arenoso, consistencia rígida, $S_r > 0,8$	18,0	26,5	16,0

Nota: En este análisis, estamos verificando la estabilidad de los taludes a largo plazo. Por lo tanto estamos resolviendo esta tarea con los parámetros efectivos de la fuerza de deslizamiento de los suelos (φ_{ef} , c_{ef}). Foliación de los suelos – parámetros diferentes o empeorados de suelo en una dirección - no se consideran en las tierras asignadas.

Modelar el muro de gravedad como un cuerpo rígido con un peso unitario de $\gamma=23,0~kN/m^3$.

La superficie de deslizamiento no pasa a través de este objeto, porque es una zona con una gran rigidez. (Más información en AYUDA - F1)

En el siguiente paso, definir la sobrecarga, la cual consideramos permanente y del tipo franja ubicada en la superficie del terreno.

Nombre : Surcharg	je No. 1						
- Datos generales							
Tipo :	Franja						
Tipo de acción :	Permanente						
Ubicación :	sobre el terreno						
Origen :	x = 26,00	[m] qγ+α					
Longitud :	l = 8,30	[m]					
Pendiente :	<i>α</i> = 0,00	[°] [0,0]					
		MXXXXXX/////					
Magnitud :	a = 10.00	[kN/m ²]					
		🖌 OK 🛛 🔀 Cancelar					

Cuadro "Nueva sobrecarga"

Nota: Una sobrecarga se ingresa a 1 m del ancho de la pendiente. La única excepción es la sobrecarga concentrada, donde el programa calcula el efecto de la carga por el perfil analizado. Para obtener más información, consulte la ayuda (F1).

No tenga en cuenta el cuadro "Terraplén", "Corte tierra", "Anclajes", "Refuerzos" y "Agua". El cuadro "Sismo" no tiene ninguna influencia en este análisis, debido a que la pendiente no se encuentra en la zona de actividad sísmica.

A continuación, en el cuadro "Configuración de etapa", seleccione la situación de diseño. En este caso, consideramos que la situación de diseño es "Permanente".

Cuadro "Configuración de etapa"

Análisis 1 - Superficie de deslizamiento circular

Ahora abra el cuadro "Análisis", donde el usuario ingresa la superficie de deslizamiento original utilizando las coordenadas del centro (x, y) y su radio o utiliza el mouse directamente en el escritorio - Haga clic en la interfaz para introducir tres puntos por los que la superficie de deslizamiento pasa.

Nota: En suelos cohesivos las superficies de deslizamiento de rotación se presentan con mayor frecuencia. Estos se modelan mediante superficies de deslizamiento circulares. Esta superficie se utiliza para encontrar áreas críticas de una pendiente analizada. Para suelos no cohesivos, el análisis de una superficie de deslizamiento poligonal debe realizarse también con la verificación de la estabilidad de taludes (ver HELP - F1).

Ahora, seleccione "Bishop " como método de análisis y, a continuación, establecer el tipo de análisis como "Optimización". Luego, realice la verificación real, presionando el botón "Analizar".

Cuadro "Análisis" Bishop –Optimización de superficie de deslizamiento circular

GEO5

Nota: La optimización consiste en encontrar la superficie de deslizamiento circular con la estabilidad-la más pequeña - superficie de deslizamiento crítica. La optimización de las superficies de deslizamiento circulares en el programa Estabilidad de taludes evalúa toda la pendiente, y es muy fiable. Para diferentes superficies de deslizamiento iniciales, obtendremos el mismo resultado para una superficie de deslizamiento crítica.

El nivel de estabilidad definido por la superficie de deslizamiento crítica cuando se utiliza el método de evaluación "Bishop" es ACEPTABLE

$$SF = 1{,}82 > SF_s = 1{,}50 \text{ aceptable}$$

Análisis 2 – Comparación con diferentes métodos

Ahora seleccione otro análisis en la barra de herramientas en la esquina superior derecha de su cuadro de Análisis de GEO5.

Barra de herramientas "Análisis"

En el cuadro análisis, cambiar el tipo de análisis a "Estándar" y como método seleccionar

"Todos los métodos". A continuación, haga clic en "Analizar".

Cuadro "Análisis" – Todos los métodos – tipos de análisis estándar

Nota: Utilizando este procedimiento, la superficie de deslizamiento creada para todos los métodos se corresponde con la superficie de deslizamiento crítica de la etapa de análisis previa utilizando el método Bishop. Para obtener mejores resultados el usuario debe elegir el método y luego realizar una optimización de las superficies de deslizamiento.

Los valores del nivel de estabilidad de taludes son:

_	Bishop:	$SF = 1,82 > SF_s = 1,50$	SATISFACTORIO
_	Fellenius / Petterson:	$SF = 1,61 > SF_s = 1,50$	SATISFACTORIO
_	Spencer:	$SF = 1,79 > SF_s = 1,50$	SATISFACTORIO
_	Janbu:	$SF = 1,80 > SF_s = 1,50$	SATISFACTORIO
_	Morgenstern-Price:	$SF = 1,80 > SF_s = 1,50$	SATISFACTORIO

GEO5

Nota: la selección del método de análisis depende de la experiencia del usuario. Los métodos más conocidos son el método de cortes, de los cuales el más utilizado es el método Bishop. El método Bishop devuelve resultados conservadores.

Para pendientes reforzadas o ancladas son preferibles otros métodos más rigurosos (Janbu, Spencer y Morgenstern-Price). Estos métodos más rigurosos reúnen todas las condiciones de equilibrio, y describen mejor el comportamiento real de la pendiente.

No es necesario (o correcto) analizar una pendiente con todos los métodos de análisis. Por ejemplo, el método sueco Fellenius - Petterson produce resultados muy conservadores, por lo que los factores de seguridad podrían ser excesivamente bajos en el resultado. Debido a que este método es reconocido y en algunos países requeridos para el análisis de estabilidad de taludes, forman parte del software GEO5.

Análisis 3 - Superficie de deslizamiento poligonal

En el último paso del análisis ingresar la superficie de deslizamiento poligonal. Como método de análisis, seleccione "Spencer", como el tipo de análisis, seleccione "optimización", introduzca una superficie de deslizamiento poligonal y realizar el análisis.

Cuadro "Análisis" – Spencer - Optimización de superficie de deslizamiento poligonal

Convertir en polígono	
Número de segmentos :	3
🖌 ок	🛛 Cancelar

Cuadro de diálogo "Convertir en polígono"

Como método de análisis seleccionar "Spencer", como Tipo de análisis "Optimización", ingrese superficie de deslizamiento poligonal y realice el análisis.

Cuadro "Análisis" – Spencer – Optimización de la superficie de deslizamiento poligonal

El valor del nivel de la superficie de deslizamiento para una superficie de deslizamiento poligonal es:

 $SF = 1,53 > SF_s = 1,50$ SATISFACTORIO

Nota: La optimización de una superficie de deslizamiento poligonal es gradual y depende de la ubicación de la superficie de deslizamiento inicial. Esto significa que es recomendable hacer varios análisis con diferentes superficies de deslizamiento iniciales y con diferente número de secciones. La optimización de superficies de deslizamiento poligonales puede ser también afectada por mínimos locales de factor de seguridad. Esto significa que no es necesario encontrar la superficie crítica real. A veces es más eficiente para el usuario ingresar la superficie de deslizamiento poligonal inicial a partir de una forma y ubicación similar a una superficie de deslizamiento circular optimizada.

Mínimos locales – Superficie de deslizamiento circular y poligonal

Nota: Comentarios de usuarios: La superficie de deslizamiento después de la optimización "desaparece".

Para suelos no cohesivos, donde $c_{ef} = 0 \ kPa$ la superficie de deslizamiento crítica es la misma que la línea más inclinada de la superficie de la pendiente. Por lo que en este caso, el usuario debe cambiar los parámetros del suelo o introducir restricciones en donde la superficie de deslizamiento no pueda pasar.

Conclusión

La estabilidad del talud luego de la optimización es:

-	Bishop (circular - optimización):	$SF = 1,82 > SF_s = 1,50$	SATISFACTORIO
_	Spencer (poligonal - optimización):	$SF = 1,53 > SF_s = 1,50$	SATISFACTORIO

La pendiente diseñada con un muro de gravedad satisface los requisitos de estabilidad.