

geotechnical software suite

Inženjerski priručnici

Dio 1

Inženjerski priručnici za GEO5 programe

1. Analiza postavka i postavke administratora	3
2. Dimenzioniranje konzolnih potpornih konstrukcija - Projektiranje Konzolnog zida	9
3. Provjera gravitacijskoga zida	19
4. Dimenzioniranje ne sidrenih potpornih konstrukcija	27
5. Dimenzioniranje sidrenih potpornih konstrukcija	33
6. Provjera potpornih zida s jednim redom sidra	36
7. Provjera više sidrenog zida	44
8. Analiza stabilnosti kosina	53
9. Stabilnost kosine s potpornimi zidovi	60
10. Dimenzioniranje geometrije proširenog temelja	67
11. Slijeganje proširenog temelja	72
12. Analiza konsolidacije ispod nasipa	76

Uvod

Inženjerski priručnici su novi nastavni materijal za GEO5 softver. Razvijeni su zbog često postavljenih pitanja korisnika.

Cilj svakog poglavlja je, objasniti kako riješiti konkretne inženjerskih problema korištenjem GEO5 softvera.

Svako poglavlje je podijeljeno na nekoliko dijelova:

Uvod – teoretično predstavljanje problema

Zadatak – tu je opisan problem, sa svim ulaznim podatcima, potrebnih za rješavanje problema u odabranom programu.

Rješenje – u ovom poglavlju, problem se rješava korak po korak

Zaključak – u ovom dijelu dobije problem zaključak i konačnu provjeru konstrukcije. Tu dobijemo informaciju dali je izrada konstrukcije zadovoljavajuća ili ne, i ako su potrebne bilo kakve promjene.

U svakom poglavlju postoje i bilješke, koje objasne problem u cjelini, i linkovi na druge materijale.

Temeljni obrazovni materijali GEO5 softverskog paket (od FINE s.r.o.) su:

- Dodatna pomoć – objašnjava funkcije programa u detalje

- Video vodič – prikazuje osnovni rad sa softverom i njegovu učinkovitu uporabu

- Inženjerski priručnik – objasni kako su riješeni konkretni inženjerski problemi

- **Provjereni priručnik** – provjerava dali su rezultati zadovoljavajući uz uspoređenjem rezultata iz programa s ručnim proračunom ili drugimi programi.

Prvo poglavlje objašnjava kako postaviti standarde i izabrati metoda analize, koje su ista za sve GEO5 programe. U daljnjim poglavljima odabran je jedan standard, prema kojem je konstrukcija provjerena.

1. Analiza postavka i postavke administratora

Ovo poglavlje objašnjava pravilnu uporabu Postavka administratora, koje služe za izbor standarda, parcijalne faktore i provjere metodologije. Ovo poglavlje objašnjava pravilnu uporabu Postavke administratora koji služi za izbor standarda, parcijalne faktore i provjere metodologije. To je osnovni korak potreban za sve GEO5 programe.

Uvod

GEO5 softver koristi se u 90 zemalja širom svijeta. Inženjerski zadatci su svugdje isti – dokazati da je konstrukcija sigurno i dobro projektirana. Osnovne karakteristike konstrukcija (npr. geometrija zida, teren, lokalizacija sidra, itd.) po cijelom svijetu su iste; razlikuje se samo način dokazivanja i teorija analiza, da je gradnja konstrukcije sigurna.

Velike količine novih teorija i uglavnom parcijalnih faktora analiza, dovede do unosa velikih količina podataka i do kompliciranih programa. Postavka Administrator je izrađena u GEO5 za inačicu 15 zbog toga, da se ovaj proces pojednostavi. U Postavki Administratora definirate sve ulazne parametre, uključujući standarde, metode i koeficijente za vašu državu. Ideja je, da svaki korisnik razumije Postavke definirane u programu (ili će definirati novu postavku analize) te ih onda koristi u svom radu. Tako da Postavke administratora i postavke analiza koristi samo povremeno.

Zadatak:

Potrebno je napraviti analizu gravitacijskoga zida po donji slici, za prevrtanje i klizište, prema standarda i procedura:

1) CSN 73 0037 2) EN 1997 – PP1 3) EN 1997 – PP2 4) EN 1997 – PP3 5) Faktor sigurnosti FS=1.6

Shema gravitacijskoga zida za analizu

Rješenje

Prvo je potrebno unijeti podatke o konstrukciji i geoloških uvjeta u okvirima: "Geometrija", "Dodijeliti" i "Tla". Preskočite ostale okvire, jer oni nisu važni za ovaj primjer.

"Geometrija" – unos dimenzija gravitacijskoga zida

Tablica sa parametrima tla

Tlo (Klasifikacija tla)	Jedinica težine $\gamma [\kappa N/\mu^3]$	Kut unutrašnjeg trenja φ _{εφ} [°]	Kohezija c _{ef} [kPa]	Kut trenja Konstrukcija – tlo $\delta = [^{\circ}]$
MŠ – muljav				
šljunak, tvrde	19,0	30,0	0	15,0
konzistencije				

U okviru "Dodijeliti", prvo tlo će se automatski dodjeljuje sloju ili slojevima. Kada je potrebno se može mijenjati.

Kada unosimo osnovne ulazne podatke konstrukcije, možemo odabrati standarde, a zatim konačno pokrenuti analizu gravitacijskoga zida.

U okviru "Postavke" klikni tipku "Odaberite postavke" i odaberite broj 8 – "Češka Republika – Stari standardi CSN (73 1001, 73 1002, 73 0037)".

	-		
Broj	Ime	Vrijedi za	
1	Standard - faktori sigurnosti	Sve	*
2	Standard - granična stanja	Sve	
3	Standard - EN 1997 - PP1	Sve	
4	Standard - EN 1997 - PP2	Sve	
5	Standard - EN 1997 - PP3	Sve	
6	Standard - LRFD	Sve	=
7	Standard - bez smanjenja parametara	Sve	
8	Češka - stari standardi CSN (73 1001, 73 1002, 73 0037)	Sve	
16	Njemačka - EN 1997	Sve	
17	Austrija - EN 1997	Sve	
24	Italija - EN 1997, PP1	Sve	
25	Italija - EN 1997 - PP2	Sve	
26	Finska - EN 1997	Sve	🗹 ОК
27	Engleska - EN 1997	Sve	
20	Pertualita EN 1007	Sug.	

Dijalog prozor "Popis postavka"

Napomena: Izgled ovog prozora ovisi o standardima koji su trenutno aktivni u Postavkama upravitelja – više informacija u pomoć programa (pritisnite F1). Ako postavke, koje želite koristiti nema na popisu u prozoru "Popis postavka", možete ih aktivirati u Postavke upravitelja.

Sada, otvoriti "Kontrola", i nakon analize primjera dobijete iskorištenost izgradnje (u okviru "Kontrola") - 53,1% odn.66,5%.

"Kontrola" – rezultati analize upotrebom standarda CSN 73 0037

Sada se vratite u okvir "Postavke" i odaberite broj 3 – "Standard – EN 1997 – PP1".

Popis post	tavka		×
Broj	Ime	Vrijedi za	
1	Standard - faktori sigurnosti	Sve	_ ^
2	Standard - granična stanja	Sve	
3	Standard - EN 1997 - PP1	5ve	
4	Standard - EN 1997 - PP2	Sve	
5	Standard - EN 1997 - PP3	Sve	
6	Standard - LRFD	Sve	=
7	Standard - bez smanjenja parametara	Sve	
8	Češka - stari standardi CSN (73 1001, 73 1002, 73 0037)	Sve	
16	Njemačka - EN 1997	Sve	
17	Austrija - EN 1997	Sve	
24	Italija - EN 1997, PP1	Sve	
25	Italija - EN 1997 - PP2	Sve	
26	Finska - EN 1997	Sve	🗹 ОК
27	Engleska - EN 1997	Sve	Odustani
20	Dertucalita EN 1007	540	

Dijalog prozor "Popis postavka"

Opet otvorite "Kontrola" i dobijete rezultat (55,6% i 74,7%) za EN 1997, PP1.

"Kontrola" – rezultat analize za EN 1997, PP1

Ponovite proceduru za postavke za broj 4 – "Standard – EN 1997 – PP2" i broj 5 – "Standard – EN 1997 – PP3".

Analize iskorištenja konstrukcije su (77,8% i 69,7%) za EN 1997, PP2 ili (53,5% i 74,7%) za EN 1997, PP3.

Varijanta 5 (analiza upotrebom faktora sigurnosti) nije toliko jednostavna. U okviru "Postavke" kliknite na "Uredi". To će vam pokazati trenutne postavke analize. Promijenite kontrolu metode na "Faktor sigurnosti (ASD)" i unosite faktor sigurnosti za prevrtanje i otpor klizanja na 1.6.

terijali i standardi Analize zid	8		Promijeni postavi
račun aktivnog tlaka :	Coulomb		analize za progra
račun pasivnog tlaka zemlje :	Caquot-Kerisel		Stabinost
naliza za potres :	Mononobe-Okabe		kosine
blk kina Zemije :	Izračun kao izvrtanje		Prošrenje temelja
ontrola metodologije :	Faktori sigurnosti (ASD)		
Faktor sigurnosti za nosivost :	zanje: SF ₂ = <u>1,60</u> [- SF _b = <u>1,50</u> [-	1	
			© ok

Dijalog prozor "Uredi trenutne postavke gravitacijski zid"

Pritisnite OK i pokrenite analizu. (69,0% i 77,1%)

"Kontrola" – rezultati analize za FS = 1.6

Ako želite ove postavke češće koristiti, ih možete spremiti s klikom na "Dodaj upravitelju". Možete ih preimenovati i sljedeći put koristiti kao standardnu postavku.

					_
Faktor sigurnosti 1.6				Vrijedi za : Masivn	izd 💌
igali i standardi Analize zida					
čun aktivnog tlaka : C	Coulomb				
čun pasivnog tlaka zemlje : C	Caquot-Kerisel				
iza za potres : M	fononobe-Okabe				
klina Zemlje : Iz	zračun kao izvrtanje				
rola metodologije : F	aktori sigumosti (ASI)			
Smanjeni parametri kontakta os	snova - tio				
n dizajn situacija Prolazan d	dizajn situacije Sluč	ajni dizajn situacije Se	sizmiðsi dízajn sítuacij		_
aktori sigurnosti					
tor sigurnosti prevrtanja :		9Fo = 1,60	H		
tor sigurnosti otporan na klizar:	nje :	SFs = 1,60	[-]		
or sigurnosti za nosivost :		Fb = 1,50	H		

Dijalog prozor "Dodaj trenutne postavke Upravitelju"

I tako izgleda *Dijalog prozor* "Popis postavka":

Broj	Ime	Vrijedi za	
7	Standard - bez smanjenja parametara	Sve	·
8	Češka - stari standardi CSN (73 1001, 73 1002, 73 0037)	Sve	
16	Njemačka - EN 1997	Sve	
17	Austrija - EN 1997	Sve	
24	Italija - EN 1997, PP1	Sve	
25	Italija - EN 1997 - PP2	Sve	
26	Finska - EN 1997	Sve	
27	Engleska - EN 1997	Sve	
29	Portugalija - EN 1997	Sve	
30	Australija	Sve	
33	SAD - Faktor sigurnosti	Sve	
34	SAD - LRFD	Sve	
U 1	Češka - stari standardi CSN (73 1001, 73 1002, 73 0037) (2)	Sve	🖌 ОК

Kontrola

Iskorištenost u postotku koristeći svaki standard je:

			Prevrtanje		Klizenje
1)	CSN 73 0037		53,1		66,5
2)	EN 1997 – PP1	55,6		74,7	
3)	EN 1997 – PP2		77,8		69,7
4)	EN 1997 – PP3		53 <i>,</i> 3		74,7
5)	Faktor sigurnosti SF=1.6		69,0		77,1

Analiza je zadovoljavajuća pomoću odabrane analize standarda.

Napomena: Ova jednostavna metoda može se koristiti za usporedbu potporne konstrukcije ili analize stabilnosti. Pri analizi temeljenja, opterećenje (osnovni ulazni podaci) mora biti izračunano u skladu s važećim standardima. To je razlog zašto nema smisla, da usporedite projektiranje temeljenja po raznim standardima s istim vrijednostima opterećenja (nominalne vrijednosti).

2. Dimenzioniranje konzolnih potpornih konstrukcija - Projektiranje Konzolnog zida

U ovom poglavlju opisano je projektiranje konzolnog zida i cjelokupna analiza.

Zadatak

Imamo konzolni zid visine 4,0 m i analiziramo ga putem standarda EN 1997-1 (EC 7-1, Projekti pristup 1). Teren iza konstrukcije je horizontalan. Tablica podzemne vode je 2,0 metara. Iza zida djeluje trakasto preopterećenje dužine 5,0 metara i magnitudo 10 kN/m². Temeljno tlo sastoji iz MS – Pješčani mulj, tvrde konzistencije, < 0,8 *r S*, dozvoljena nosivost je 175kPa. Tlo iza konstrukcije se sastoji S-F – pijesak slijedom finih djelca, srednje gusta tla. Konzolni zid će biti izrađen od armiranog betona klase C 20/25.

Shema Konzolnog zida - Zadatak

Rješenje:

Za rješenje ovog problema, koristiti ćemo GEO5 program, program Konzolni zid. U ovom tekstu ćemo objasniti rješavanje ovog primjera korak po korak.

U okviru "Postavke" kliknite na "Odaberite postavke" i odaberite postavke analize Br. 3 - "Standard – EN 1997 – PP1".

🚛 Popis post	avka			x
Broj	Ime	Vrijedi za		
1	Standard - faktori sigurnosti	Sve	^	
2	Standard - granična stanja	Sve		
3	Standard - EN 1997 - PP1	Sve		
4	Standard - EN 1997 - PP2	Sve		
5	Standard - EN 1997 - PP3	Sve		
6	Standard - LRFD	Sve	=	
7	Standard - bez smanjenja parametara	Sve		
8	Češka - stari standardi CSN (73 1001, 73 1002, 73 0037)	Sve		
16	Njemačka - EN 1997	Sve		
17	Austrija - EN 1997	Sve		
24	Italija - EN 1997 , PP1	Sve		
25	Italija - EN 1997 - PP2	Sve		
26	Finska - EN 1997	Sve	CK 🗹	
27	Engleska - EN 1997	Sve		
20	Portugalija - EN 1007	540		dhi

Dijalog prozor "Popis postavka"

U okviru "Geometrija" odaberite oblik zida i upišite njegove dimenzije.

U okviru "Materijal" upišite materijal zida.

ton	Uzdužna armatura
katalog Vlas	tit Katalog Vlastit
C 20/25 $f_{ck} = 20,00 \text{ MPa}$ $f_{ct} = 2,20 \text{ MPa}$	B500 f _{yk} = 500,00 MPa

"Materijal" – Unos karakteristika materijala konstrukcije

Zatim, definirajte parametre tla s klikanje na "Dodaj" u okviru "Tla". Zid se obično analizira s tlakom u mirovanju. Za analizu tlaka u mirovanju odaberite "Bez kohezije".

Dodaj novo tlo						×
Identifikacija Ime :	pijesak slijedom finih dje	lca, gust, S-	F			Nacrtati Šablona and boja
Osnovni podatak			17.50	n	?	Radna površina
Stanje-napona :		γ = efektivan	17,50	[kav/m²]		
Kut unutarnog tren	ja :	$\phi_{ef} =$	28,00	[°]		
Kohezije tla :		c _{ef} =	0,00	[kPa]		Slike
Kut trenja konstrt Tlak u mirovanju	10 :	δ =	18,50	[9]	?	
Tlo :		bez kohezij	e			
uzdignut pritisak					2	Klasifikacija Klasificirati
Računski oblik podiz	anja :	standard		•		Izbriši
Saturirana jedinica	tezine :	γsat =	18,00	[kN/m³]		💽 Dodaj
						Odustani

Dijalog prozor "Dodaj novo tlo"

Napomena: veličina aktivnog pritiska ovisi i od trenja između konstrukcije i tla. Kut trenja ovisi od materijala gradnje i kuta unutarnjeg trenja tla – unos u interval $\delta \approx (^{l}/_{3}/^{2}/_{3}) \cdot \varphi_{ef}$

,

Tlo (klasifikacija)	Profil [m]	Jedinica težine $\gamma[\kappa N/\mu^3]$	Kut unutarnjeg trenja φ _{ef} [°]	Kohezija c _{ef} [kPa]	Kut trenja konstrukcija- tlo δ= [°]
S-F – pijesak slijedom finih djelca, srednje gust	0,0-4,0	17,5	28,0	0	18,5
MS – pješčani mulj, tvrde konsistence, S _r < 0,8	od 4,0	18,0	26,5	30,0	17,5

U okviru "Teren" odaberite horizontalni oblik terena.

"Teren"

Tablica podzemne vode je na dubini 2,0 metara. U okviru "Voda" odaberite tip vode blizu konstrukcije i njezinih parametara.

	IL IL IL		
Grafikon parameta	Parametri tablice podzemne vode (TPV)		
h ₁	TPV iza konstrukcije :	h1 =	2,00 [m]
	TPV pred konstrukcijo :	h ₂ =	[m]
	Uzdignuća na dnu temelja zbog prom.TPV :		nije uzet u obzir 🔹 👻
	🔲 Zatezna pukotina		
	Dubina pukotine otporne na istezanje ;	ht =	[m]

"Voda"

U slijedećem koraku definirajte "Preopterećenje". Tu odaberete trajnu trakastu preopterećenje, koja na teren djeluje ko slijepo opterećenje.

Novo preoptereće	nje	×
Ime preoptereće	nja	
Ime :	Preopterećenje Br. 1	
Značajke preopte	erećeni	
Tip :	Traka 👻	
Tip akcije :	stalne	
Lokacija :	na terenu 🔹	
Početni položaj :	x = 0,00 [m] U	pis sheme
Dužina :	l = 5,00 [m]	
Magnituda preop	terećenja	
Magnituda :	q = 10,00 [klN/m ²]	
		💽 Dodaj 🛛 Odustani

Dijalog prozor "Novo preopterećenje"

U okviru "FF otpornost" odaberite oblik terena ispred zida i nakon toga definirajte parametre otpornosti na čelu.

'							
	Grafikon parameta Parametri otpornosti na čelu						
		Tip otpornosti : nije u	zet u obzir		•		
		Tlo : pijesak slijedom finih djelca, gust, S-F 🔻					
		Kut trenja (konstrukcija-tla)	: ō =	17,50	[°]		
		Debljina :	h =	1,00	[m]		
	······································	Preopterećenje terena	f =	0,00	[kN/m ²]		
ornost							
Т оф							

"FF otpornost"

.....

Napomena: U ovom slučaju, ne smatramo otpora na prednjoj strani, tako da ću biti rezultati konzervativni. Otpor ovisi o kvaliteti tla i dozvoljenih pomaka konstrukcije. Možemo uzeti u obzir tlak u mirovanju za izvorno tlo, ili dobro zbijenog. Moguće je uzeti u obzir i pasivni pritisak ako su dozvoljeni pomaci konstrukcije. (za više informacija, gledajte POMOČ – F1)

U okviru "Postavke faze" odaberite tip dizajna situacije. U ovom slučaju treba biti odabran stalan. Također trebate odabrati pritisak koji djeluje na zid. U našem primjeru, odaberite zid koji se može ukloniti, aktivan pritisak.

'	Dizajn situacije :	stalne 🗸	
	Napon koji djeluje na zid		
	Zid se może ukloniti (aktivni pritisak)		
	O Zid se može uklonit (mirujuči pritisak)		
	🔘 Aktivni tlak djeluje na zidu i stabljiki		
Postavke faze			

"Postavke faze"

Otvorite okvir "Kontrola", gdje možete vidjeti analizu za moment prevrtanja i klizanja konzolnog zida.

_	+z					V					
F	Kontrola	: 🖲 Dodaj 🔲 Ukloniti [1]								8	U detajl
		A	В	С	D	E	G		Kontrola		
	Br.	Sila	Fx	Fz	Upotrebr	na točka	Manji		MOMENT PREVRTANJA :	SATISFACTORY	(52,8%)
	sila		[kN/m]	[kN/m]	x [m]	z [m]	opterećer		KLIZ:	NOT OK.	(124,6%)
	1	Širina - zid	0,00	61,00	0,87	-1,38		~			
	2	Širina - zemni rub	0,00	23,55	1,31	-1,54					
	3	Aktivni tlak	-42,28	60,25	1,80	-1,46		1			
	4	Vodni pritisak	-20,00	0,00	0,80	-0,67					
	5	uzdignut pritisak	0,00	0,00	0,80	-4,00					
	6	Preopterećenje Br. 1	-8,07	8,76	1,61	-2,08		1			
Ιĕ								-			
2]										

"Kontrola"

Napomena: Gumb "u detalj" na desni strani prozora otvori dijalog prozor sa detaljnimi podaci o rezultatima analize.

Rezultat analize:

Provjera kliza nije zadovoljavajuća, iskorištenost konstrukcije je:

 ,	, , , ,		
I	Prevrtanje: 52,8 %	M _{vzd} = 208,33>M _{kl} = 109,97 [kNm/m]	ZADOVOLJAVAJUĆE
-	Klis: 124,6 %	H _{vzd} = 65,78 <h<sub>pos = 81,94 [kN/m]</h<sub>	NIJE OK

Sada imamo nekoliko mogućnosti kako poboljšati projekt. Na primjer:

- Možemo koristiti bolje tlo iza zida
- Sidriti osnovu
- Povećati trenje z izbočenjem temelja
- Sidrenje tijela stupa

Promijene mogu biti i ekonomsko i tehnološko komplicirane, tako da odaberete najlakšu alternativu. Najučinkovitiji način je da promijenite oblik zida i uvedete skok zida

Promjena dizajna: promjena geometrije zida

Vratite se u okvir "Geometrija" i promijenite oblik konzolnog zida. Za povećanje otpora protiv klizanja uvedemo skok osnove.

"Geometrija" (Promijene dimenzije konzolnog zida)

Napomena: Skok osnove obično se analizira kao ukliješten temelj. Ako utjecaj baznog skoka smatra se ko otpor na čelu, ga program analizira ga s ravnim temeljom. Ali FF otpornost konstrukcije analizirana je na dubini donjega dijela osnovnog temelja. (Više informacija u POMOĆ – F1) Analiza novo projektiranje konstrukcije za moment prevrtanja i klizanja.

"Kontrola"

Sada su i moment prevrtanja i kliz zadovoljavajući.

U okviru "Nosivost", izvršite analizu dizajna nosivosti temeljnoga tla 175kPa.

Napomena: U ovom primjeru analiziramo nosivost temeljnih tla na dodani vrijednosti, koju možemo dobiti iz geoloških istraživanja odnosno iz standarda. Ove vrijednosti su obično vrlo konzervativne, tako da je bolje analizirati nosivost temeljnog tla u programu Proširenje temelja, koji uzima u obzir i druge utjecaje poput nagiba opterećenja, dubine istraživanja itd.

Sada u okviru "Dimenzioniranje" odaberite provjera držaka zid. Projektirajte osnovnu armaturu: broj šipka 6, \emptyset 12 mm, koja u trenutku nosivosti zadovoljava sve principe projektiranja.

Otvorite okvir "Stabilnost" i analizirajte sveukupno stabilnost zida. U ovom slučaju ćemo koristiti metodu "*Bishop*", koja rezultira konzervativnim rezultatima.

Izvršite analizu s optimizacijom kružne klizne površine, a zatim napustite program klikom na "OK". Rezultati ili slike bit će prikazani u izvješću o analizi u programu Konzolni zid.

I	Analiza	a: 🖲 🗏 🗍	[1]						🕥 Detajl rezulta	tov
	Klizna	površina: kr	užni	-	🖲 Nadomjestiti 📃 L	Jkloniti				
	Kružna klizna površina				Analiza					
	Centar :		_		💽 Promijeni	Metoda :	Bishop		Kontrola stabilnosti kosine (Bishop)	^
	x =	-1,65	[m]			Tip analize :	Optimizacija		Zbroj pasivnih sila : $F_p = 220,15 \text{ kN/m}$	
	z =	1,27	[m]	Kuti :		Ograničavanje	nije upisano		Moment pomicanja : M _a = 1110,07 kNm/m Otograpski moment : M = 1426 54 kNm/m	Ξ
g	Polumjer			α ₁ =	-48,78 [°]	Predviđamo	o sidra ko bezmjerna		Korištenje : 77,8 %	
Analiz	R =	6,48	[m]	α2 =	78,70 [°]	🚺 🖻 Analizira	i		Stabilnost kosine PRIHVATLJIVO	*

Program "Stabilnost kosina"

Zaključak/ Rezultati analize - nosivost:

-	Prevrtanje: 49,5%	M _{vzd} =218,52>M _{kl} =108,16 [kNm/m]	ZADOVOLJAVAJUĆE
I	Klis: 64,9%	H _{vzd} =99,27>H _{pos} =64,47 [kN/m]	ZADOVOLJAVAJUĆE
-	Nosivost: 86,3	R_d=151,06 >σ=175,00 [kPa]	ZADOVOLJAVAJUĆE
-	Provjera držaka zida: 81,5%	M _{Rd} =104,13>M _{Ed} =84,88 [kN⋅m]	ZADOVOLJAVAJUĆE
-	Sveukupna stabilnost: 40,8	Metoda- Bishop (optimizacija)	ZADOVOLJAVAJUĆE

Ovaj konzolni zid je ZADOVOLJAVAJUĆ.

3. Provjera gravitacijskoga zida

U ovom poglavlju izvedemo analizu postojećeg gravitacijskoga zida za projektiranje stalnih i slučajnih situacija. Također su opisane i faze konstrukcije.

Zadatak

Za analiziranje gravitacijskoga zida za stabilnost, prevrtanje i kliz smo koristili EN 1997-1 (EC 7-1, PP2) standard.

Cestovni promet djeluje na zidu s veličinom od 10 kPa. Provjerite mogućnost izrade prepreke na vrhu zida. Slučajno opterećenje prometa smatra se ko 50 kN / m, a djeluje vodoravno na 1,0 m. Dimenzije i oblik zida vidne su u donji slici. Nagib terena iza konstrukcije je $\beta = 10^{\circ}$. Temeljno tlo sastoji se od prašnog pijeska. Kut trenja između tla i zida je $\delta = 18^{\circ}$.

Određivanje nosivosti i dimenzioniranje zida nije dio ovog zadatka. U ovi analizi smatramo efektivne parametre tla.

Shema gravitacijskog zida – zadatak

Rješenje:

Za rješenje ovog problema, koristiti ćemo GEO5 program, program Gravitacijski zid. U ovom tekstu ćemo objasniti rješavanje ovog primjera u dve konstrukcijske faze.

- 1. konstrukcijska faza analiziranje postojećeg zida za cestovni promet
- 2. konstrukcijska faza analiziranje utjecaja vozila na barijeru na vrhu zida

U okviru "Postavke" kliknite na "Odaberite postavke" i odaberite Br. 4 - "Standard – EN 1997 – PP2".

Popis post	tavka		
Broj	Ime	Vrijedi za	
1	Standard - faktori sigurnosti	Sve	*
2	Standard - granična stanja	Sve	
3	Standard - EN 1997 - PP1	Sve	
4	Standard - EN 1997 - PP2	Sve	
5	Standard - EN 1997 - PP3	Sve	
6	Standard - LRFD	Sve	=
7	Standard - bez smanjenja parametara	Sve	
8	Češka - stari standardi CSN (73 1001, 73 1002, 73 0037)	Sve	
16	Njemačka - EN 1997	Sve	
17	Austrija - EN 1997	Sve	
24	Italija - EN 1997 , PP1	Sve	
25	Italija - EN 1997 - PP2	Sve	
26	Finska - EN 1997	Sve	C OK
27	Engleska - EN 1997	Sve	
20	Portugalia EN 1007	Sug.	

Dijalog prozor "Popis postavka"

U okviru "Geometrija" odaberite oblik zida i upišite njegove parametre.

"Geometrija"

U sljedećem koraku, upišite materijal zida i geološki profil. Jedinica težine zida je γ = 24 kN/m³. Zid je iz betona C 12/15 i čelika B500. Zatim definirajte parametre tla i dodijelite ih na profilu.

Tablica parametara tla								
Tlo (klasifikacija)	Jedinica težine $\gamma[\kappa N/\mu^3]$	Kut unutarnjeg trenja φ _{ef} [°]	Kohezija c _{ef} [kPa]	Kut trenja konstrukcija- tlo δ= [°]				
MS – pješčani mulj, čvrste konsistence	18,0	26,5	12,0	18,0				

Dodaj novo tlo			×
Identifikacija Ime : Þješčani mulj (MS),	čvrste konsistence		Nacrtati Šablona
Osnovni podatak		?	and boja Radna površina
Jedinica težine : Stanje-napona :	γ = 18,00 [kN/m ³]		
Kut unutarnog trenja :	φ _{ef} = 25,50 [°]		
Kohezije tla : Kut trenja konstrtlo :	$c_{ef} = 12,00$ [kPa] $\delta = 18,00$ [°]		Silke
Tlak u mirovanju Tlo :	kohezivan 💌	2	
Poissonov razmjer :	v = 0,35 [-]		Klasifikacija
uzdignut pritisak Računski oblik podizanja :	standard	2	Klasificirati Izbriši
Saturirana jedinica težine :	$\gamma_{sat} = 20,00 \text{ [kN/m}^3]$		💌 Dodaj
			Odustani

Dijalog prozor "Dodaj novo tlo"

Napomena: veličina aktivnog pritiska ovisi i od trenja između konstrukcije i tla u kutu $\delta \approx (^{1}/_{3})^{2}/_{3})\cdot \varphi_{ef}$. U tom slučaju smatramo utjecaj trenje između konstrukcije i tla s vrijednošću $^{2}/_{3} \cdot \varphi_{ef}$ (=18°), kod analiziranja tlaka zemlje. (više informacija u POMOĆ-F1).

U okviru "Teren" odaberite oblik terena iza zida. Definirajte njegove parametre, u smislu nasipa dužine i nagiba kao što je prikazano u nastavku.

1						
	Grafikon parameta	Parametri terena				
	+ d +	Dužina nasipa :	d =	3,00	[m]	
	v	🔘 Visina nasipa :	v = [0,53	[m]	
		🔘 Kosina :	1:s =	5,67	[-]	
		Kut kosine:	β =	10,00	[°]	
5						
Tere						
			"Teren"			

U slijedećem koraku definirajte "Preopterećenje". Upišite preopterećenje od cestovnog prometa ko Traka, s lokacijom na terenu i s tipom akcije "Promjenljiv".

Novo preoptereće	enje		— X
Ime preoptereće	nja		
Ime :	Preopterećenje Br. 1 -	cestovni promet	
Značajke preopte	erećenja		
Tip :	Traka	-	
Tip akcije :	promjenljiv	-	
Lokacija :	na cerena	•	
Početni položaj :	x = 3,00	[m]	Upis sheme
Dužina :	l = 10,00	[m]	
Magnituda preop	oterećenja		
Magnituda :	q = 10,00	[kN/m ²]	
			Dodaj

Dijalog prozor "Novo preopterećenje"

U okviru "FF otpornost" odaberite oblik terena ispred zida i nakon toga definirajte parametre otpornosti na čelu.

			4			
Graf	ikon parameta	Parametri otpornost	ti na čelu –			
		Tip otpornosti :	nije uzet	u obzir		•
	4	Tlo :	Pješčani r	mulj (M	S), čvrste konsiste	nce 🔻
		Kut trenja (konstruk	cija-tla) :	δ =	17,50	[°]
_		Debljina :		h =	1,00	[m]
	·/// ······ /·	Preopterećenje tere	na	f =	0,00	[kN/m ²]
LIOST						
t j		// .				

"FF otpornost"

Napomena: U ovom slučaju, ne smatramo otpora na prednjoj strani, tako da ću biti rezultati konzervativni. Otpor ovisi o kvaliteti tla i dozvoljenih pomaka konstrukcije. Možemo uzeti u obzir tlak u mirovanju za izvorno tlo, ili dobro zbijenog. Moguće je uzeti u obzir i pasivni pritisak ako su dozvoljeni pomaci konstrukcije. (za više informacija u POMOČ – F1)

U okviru "Postavke faze" odaberite tip dizajna situacije. U pri konstrukcijski fazi, odaberite "stalne" dizajn konstrukcije.

Dizajn situacije :	stalne	•
	"Postavke faze"	

Sada otvorite okvir "Kontrola", gdje možete analizirati gravitacijski zid za prevrtanje i kliz.

"Kontrola - faza 1"

Napomena: Gumb "U detalj" u desnom dijelu zaslona prikazuje se dijaloški prozor s detaljnim informacijama o rezultatima analize.

<mark>Sile koje djelujeju na konstrukciju</mark> Ime	F _{hor}	Ap.Pt.	F _{vert}	Ap.Pt.	Koef.	Koef.	Koef.
Širina - zid	0.00	-2.80	247.20	1.67	1.000	1,000	1.350
Aktivni tlak	84,17	-1,73	27,35	2,50	1,350	1,350	1,350
Preopterećenje Br. 1 - cestovni promet	16,36	-2,72	6,05	2,50	1,500	1,500	1,500
Provjera stabilnosti momenta prevv Otpornostni moment M _{res} = 376,91 kNm Moment prevrtanja M _{ovr} = 263,73 kNm	r tanja 1/m 1/m						
Provjera stabilnosti momenta prev Otpornostni moment M _{res} = 376,91 kNm Moment prevrtanja M _{ovr} = 263,73 kNm Zid za prevrtanje ZADOVALJAVAJUĆI	rtanja I/m I/m						
$\begin{array}{l} \textbf{Provjera stabilnosti momenta previ}\\ Otpornostni moment M_{res} = 376,91 kNm \\ Moment prevrtanja M_{ovr} = 263,73 kNm \\ Zid za prevrtanje ZADOVALJAVAJUĆI \\ \textbf{Provjerite za klizanje} \\ Otpornostna horizontalna sila H_{res} = 152 \\ Aktivne horizontalne sile H_{act} = 138 \\ Zid za kliz ZADOVALJAVAJUĆI \\ \end{array}$	rtanja I/m I/m 1,53 kN/m 1,17 kN/m						
$\begin{array}{l} \textbf{Provjera stabilnosti momenta previ Otpornostni moment M_{res} = 376,91 kVm Moment previtanja M_{ovr} = 263,73 kVm Zid za previtanje ZADOVALJAVAJUĆI \\ \textbf{Provjerite za klizanje} Otpornostna horizontalna sila H_{res} = 152 Aktivne horizontalne sile H_{act} = 138 Zid za kliz ZADOVALJAVAJUĆI \\ Sveukupna provjera - ZID ZADOVALJAVAJ$	rtanja ,/m ,/m ,53 kN/m ,17 kN/m JUĆI						

Dijalog prozor "Kontrola (u detalj)"

Napomena: Za analize na temelju EN-1997, program ocijeni ako sila djeluje povoljno ili nepovoljno. Svaka slijedeća sila množi se s odgovarajućim djelomičnim faktorom koji je u izvješću.

Otvorite okvir "Stabilnost" i analizirajte sveukupno stabilnost zida. U ovom slučaju ćemo koristiti metodu "*Bishop*", koja rezultira konzervativnim rezultatima. Napravite analizu **s optimizacijom kružne klizne površine**, a zatim sve provjerite s klikom na "OK". Rezultati ili slike bit će prikazane u izvješću o analizi programa Gravitacijski zid.

Analiz	a: 🖲 🗏 🗌	[1]							1
Klizna	površina : kru	žni	•	Nadomjestiti	Ukloniti				Slike _
	Kružr	na klizna	a povr	šina					Dodaj sliku
Centar	:			🕐 Promijeni	Metoda :	Bishop		Kontrola stabilnosti kosine (Bishop) Zbroj aktivnih sila : F _a = 488,83 kN/m	Analiza : 0
x =	-2,82	[m]			Tip analize :	Optimizacija		Zbroj pasivnih sila : F _p = 739,68 kN/m	Denie elika
z =	1,04	[m] K	iuti :		Ograničavanje	e nije upisano		Otpornostni moment : M _p = 4159,98 kNm/m Otpornostni moment : M _p = 5722,45 kNm/m	
Polumje	r :	1	α1 =	-34,18 [°]	Predviđam	o sidra ko bezmjerna		Korištenje : 72,7 %	Uspjeti _
R =	8,51	[m]	α2 =	86,56 [°]	🕒 Analizira	aj	-	Stabilhost Kosine PRINVATLJIVO	🗹 ок
	5,55; -10,89 [r	m]							🛛 🛛 Odustani

Program "Stabilnost kosina – faza 1"

- Rezultati analize: Faza 1

Kod analiziranja nosivosti, tražimo vrijednosti za prevrtanje i kliz zida na dnu temelja. Nakon toga trebamo znati njegovo sveukupnu stabilnost. U tom slučaju potrebe zida su:

-	Prevrtanje: 70,0%	M _{vzd} =376,91>M _{kl} =263,73 [kNm/m]	ZADOVOLJAVAJUĆE
-	Kliz: 90,6%	H _{vzd} =152,53>H _{pos} =138,17 [kN/m]	ZADOVOLJAVAJUĆE
-	Sveukupna stabilnost: 72,3%	Metoda- Bishop (optimizacija)	ZADOVOLJAVAJUĆE

Osnovni upis: Faza

Sada dodajte fazu konstrukcije 2, pomoću alatne trake u gornjem lijevom kutu zaslona.

Faza kon	strukcije :	•	[1]	[2]	

Alatna traka "Faza konstrukcije"

U ovoj fazi, definirate opterećenje od utjecaja vozila na barijeri, pomoću okvira Unos sila. Opterećenje je slučajno i razmatra utjecaj vozila s težinom od 5 tona.

– Parametri primijenene	sile			
Ime:		Sila Br. 1 - Prom	etna nesreča	a
Tip akcije :		slučajan	-	+X
Točka akcije :	x =	-0,35	[m]	[0,0] F
Točka akcije :	z =	1,00	[m]	777 Fx +M
Sila magnitude :	F _x =	-50,00	[kN/m]	+z↓
Sila magnitude :	F _z =	0,00	[kN/m]	
Moment magnitude :	M =	0,00	[kNm/m]	

Dijalog prozor: "Unos sile" – faza konstrukcije 2 (slučajni dizajn situacije)

Sada otvorite okvir "Postavke faze" i promijenite dizajn na "slučajan".

Dizajn situacije :	slučajan	•
	Postavke faze	

Podaci u drugim okvirima koje smo upisali u fazi 1, nisu promijenjeni, tako da ne trebate okvire opet otvarati. Odaberite "Kontrola" da ponovno izvršite provjeru na prevrtanje i kliz.

"Kontrola – faza 2"

- Rezultat analize: Faza 2

Iz rezultata, vidimo, da postojeći zid nije zadovoljavajući za utjecaj vozila na barijeri. U tom slučaju, rezultati zida su:

-	Prevrtanje: 95,8%	M _{vzd} =488,62>M _{kl} =468,13 [kNm/m]	ZADOVOLJAVAJUĆE
-	Kliz: 90,6%	H _{vzd} =142,35>H _{pos} =140,16 [kN/m]	NIJE OK

Zaključak

Postojeći gravitacijski zid u slučaju nosivosti zadovoljava samo za prvu fazu konstrukcije, gdje djeluje cestovni promet. Za drugu fazu konstrukcije, koja je predstavljena kao utjecaj na barijeru na vrhu zida za vozila od 5 tona, zid je nezadovoljavajući.

Kao rješenje za povećanje nosivosti za prevrtanja i klizenja moguće je uvesti sidra. Alternativno, moguće je da se barijeru postavi na rub ceste, i tako zid nije opterećen silama od pada sustava automobila.

4. Dimenzioniranje ne sidrenih potpornih konstrukcija

U ovom poglavlju dimenzioniramo ne sidrene potporne konstrukcije za stalnu i slučajno opterećenje.

Zadatak

Dimenzioniranje ne sidrenog potpornog zida iz pilota pomoću EN 1997-1 (EC 7-1, PP3). Dubina iskopa je 2,5 m. Tablica podzemne vode je na dubini 1,0 m. Analiza konstrukcije vrši se i za poplave, kada je voda 1,0 m iznad visine zida (uključene moraju biti mobilne barijere protiv poplava).

Shema ne sidrenog potpornog zida – zadatak

Rješenje

Za rješavanje problema, koristiti ćemo GEO5 program, Dizajn zagatne stijene. U ovom tekstu ćemo korak po korak objasniti rješenje ovog primjera:

- 1 faza konstrukcije: stalni dizajn situacije
- 2 faza konstrukcije: slučajan dizajn situacije
- Dimenzioniranje geometrije pilotne zagatne stijene
- Analiza rezultata (zaključak)

Osnovni upis: Faza 1

U okviru "Postavke" kliknite na "Odaberite postavke" i odaberite Br. 5 - "Standard – EN 1997 – PP3".

Popis pos	tavka			
Broj	Ime	Vrijedi za		1
1	Standard - faktori sigurnosti	Sve	^	
2	Standard - granična stanja	Sve		
3	Standard - EN 1997 - PP1	Sve		
4	Standard - EN 1997 - PP2	Sve		
5	Standard - EN 1997 - PP3	Sve		L
6	Standard - LRFD	Sve	Ξ	L
7	Standard - bez smanjenja parametara	Sve		L
8	Češka - stari standardi CSN (73 1001, 73 1002, 73 0037)	Sve		L
16	Njemačka - EN 1997	Sve		L
17	Austrija - EN 1997	Sve		
24	Italija - EN 1997 , PP1	Sve		1
25	Italija - EN 1997 - PP2	Sve		
26	Finska - EN 1997	Sve		L
27	Engleska - EN 1997	Sve		
20	Portugalia EN 1007	Suo.		11

Dijalog prozor "Popis postavka"

Upišite geološki profil, parametre tla i dodijelite ih u profil.

Dodaj novo tlo		X
Identifikacija Ime : Glina niske plas	tičnosti (CL,CI), čvrste konsistencije	Nacrtati Šablona and boja
Osnovni podatak Jedinica težine : Stanje-napona :	γ = 21,00 [kN/m ³] efektivan	(?) Radna površina
Kut unutarnog trenja : Kohezije tla :	Φ _{ef} = <u>19,00</u> [°] C _{ef} = <u>12,00</u> [kPa]	
Kut trenja konstrtio : uzdignut pritisak Računski oblik podizanja :	δ = 14,00 [°] standard	Klasifikacija (Klasificirati Izbriši
Saturirana jedinica tezine :	γ _{sat} = 21,00 [kN/m ³]	DodajOdustani

Dijalog prozor "Dodaj novo tlo"

Tablica parametara tla					
Tlo (klasifikacija)	Profil [m]	Jedinica težine γ[κN/μ³]	Kut unutarnjeg trenja φ _{ef} [°]	Kohezija c _{ef} [kPa]	Kut trenja konstrukcija- tlo δ= [°]
S-F – pijesak slijedom finih djelca, srednje gust	0,0 - 1,5	17,5	29,5	0,0	14,0
MS – pješčani mulj, tvrde konsistence, S _r < 0,8	1,5 – 2,5	18,5	27,0	8,0	14,0
CL, Cl – glina s niskom ili srednjom plastičnostjo, čvrste konzistencije	od 2,5	21,0	19,0	12,0	14,0

U okviru "Geometrija" odaberite oblik dna iskopa i unos njegovih dubina.

•									
	Grafikon parameta		/						
		Dubina rova :	h =	2,50	[m]				
		Preopterečenja dna jarka :	f =	0,00	[kPa]				
		Reduciran koef. tlaka zemlje ispod dna :		1,00	н				
	•///////								
Isko									
	"Geometrija"								

Napomena: Koeficijent smanjenja pritisak tla ispod jarak smatra se samo za proučavajuću zagatnu stijenu (potporni zid s gredom); za standardne pilotnih zagatnih stijena je jednaka 1,0. Za više informacija u POMOĆ-F1. U ovom slučaju, ne koristimo okvira "Sidra", "Potporni stup", "Potpore", "Određ. pritiska", "Preopterećenje" i "Uporabne sile". Okvir "Potres" nema utjecaja na ovu analizu, jer se izgradnja ne nalazi na seizmičko aktivnom području. "Teren" ostaje horizontalan.

U okviru "Voda" upišite vrijednost TPV – 1,0 m.

1							
	Grafikon parameta	Parametri tablice podzemne vode (TPV) TPV iza konstrukcije : TPV pred konstrukcijo :	h 1 = h2 =	1,00 m] [m]			
Voda		Zatezna pukotina Dubina pukotine otporne na istezanje :	h _t =	[m]			

"Voda" – 1. Faza konstrukcije

U okviru "Postavke faze" odaberite stalan dizajn situacije.

Sada otvorite okvir "Analiza" i kliknite na gumb "Analiziraj". To će obaviti analizu potpornog zida.

Napomena: Za kohezivna tla od mnogih standarda preporučuje se korištenje minimalnog tlaka, koji djeluje na potporni zid. Standardna vrijednost koeficijenta minimalnog tlaka dimenzioniranja je $K_a=0,2$. To znači, da je minimalan pritisak na konstrukciju 0.2 geostatičkog napona – i nikad manje.

Kod dimenzioniranja pilotne zagatne stijene, zanima nas dubina gradnje i unutarnje sile na konstrukciji. Za prvu fazu, rezultati analize su:

- Dužina konstrukcije : 4,83 m
- Potrebna dubina tla: 2,33 m
- Maksimalni upogibni moment: M_{1,max}= 28,21 kNm/m
- Maksimalna sila smicanja: Q_{1,max}= 56,98 kN/m

U slijedećoj fazi, pokazat ćemo vam kako analiziramo minimalno dubino i unutarnje sile u tlima za slučajan dizajn situacije – poplave.

Osnovni upis: Faza 2

Odaberite fazu 2 na traci "Faza konstrukcije" na gornjem lijevom kutu zaslona (ako je potrebno, dodajte novi)

U okviru "Voda", promijenite TPV iza konstrukcije na vrijednost -1,0 m. Nećemo razmatrati vode ispred konstrukcije.

Okvir "Voda" – 2 faza konstrukcije

U okviru "Postavke faze" odaberite dizajn situacije "Slučajan".

Dizajn situacije :	slučajan	*
	"Destaulus fare"	

"Postavke faze"

Sve druge vrijednosti su jednake kao u fazi 1, tako nam nije potrebno promijeniti ostalih podataka. Idemo na okvir "Analiza" i kliknemo "Analiziraj".

Za drugu fazu, rezultati analize su:

- Dužina konstrukcije : 6,56 m
- Potrebna dubina tla: 4,06 m
- Maksimalni upogibni moment: M_{1,max}= 142,00 kNm/m
- Maksimalna sila smicanja: Q_{1,max}= 185,17 kN/m

Upotrebom maksimalnog momenta savijanja, projektirati ćemo pilotno zagatno stijeno. Minimalna dužina pilotne zagatne stijene je postavljena kako maksimalna potrebna dužina od faze konstrukcije 1 do faze konstrukcije 2.

Dimenzioniranje pilotne zagatne stijene:

Pilotnu zagatnu stijenu dimenzioniramo na temelju maksimalnog momenta savijanja, pomoću doljnje tablice sa dozvoljenimi vrijednostmi nosivosti.

Dasic parameters Sheer Piles					\sim				
Profile				IIIn	VL 503	VL 503K	VL 503Z	VL 601	VL 602
Width		В	mm	400	500	500	500	600	600
Wall height		н	mm	290	340	340	340	310	310
Thickness Back		t	mm	13.0	9.7	10.0	10.0	7.5	8.2
Web thickness		with	mm	9.0	8.4	9.0	10.0	6.4	8.0
Width of the spine		b	mm	250	266	266	265	253	250
Unlocking		about	mm	16	16	16	16	14	14
Width of the nose		n	mm	24.5	24.5	24.5	24.5	22.5	22.5
Angle		a	•	81.9	63.4	63.4	63.4	43.5	43.5
Sectional area of the wall		A	cm ² / m	197.2	149.4	156.4	166.4	98.3	115.4
Mana	Profile		kg / m	62.2	58.7	61.4	65.3	46.3	54.3
Mass	Wall	G	kg / m ²	155.5	117.3	122.8	130.6	77.2	90.5
Section modulus of resistance		Wy	cm ³ / m	1,600	1,250	1,300	1,336	742	845
Moment of inertia		Ι _γ	cm ⁴ / m	23200	21191	22054	22719	11496	13075
Radius of gyration		r y	cm / m	10.9	11.9	11.9	11.7	10.8	10.6
Static moment		s _y	cm ³ / m	878	715	747	775	429	495
The surface area of the wall		S **	m ² / m	3.15	2.85	2.84	2.85	2.49	2.49
Allowable bending moment	Steel grade	S 270 GP	kNm / m	288	224	234	241	134	152
to load 1 *		S 355 GP	kNm / m	384	299	311	321	178	203
* Allowable moment for the conditions of pressure, bending to ensure the stability of a reduced allowable stress according to EAU 1990									

e of the sheet pile wall surfaces without internal locks Dimenzioniranje pilotne zagatne stijene upotrebom ČSN EN 10 248-1 standarda

Odabrati ćemo pilot VL 503 (500x340x 9,7 mm), čelik S 270 GP, kojeg maksimalan moment savijanja je M_{max} = 224,0 kN/m.

Sigurno dimenzioniranje konstrukcije je po jednačbi:

 $M_{dov} = 224 \text{ kN/m} > M_{max} = 142 \text{ kNm/m}$

Rezultat analize:

Kod dimenzioniranja ne sidrenog potpornog zida, provjerili smo vrijednosti minimalne dubine konstrukcije u tla i unutarnje sile konstrukcije:

- Minimalna dubina konstrukcije u prvi fazi: 2,33 m
- Minimalna dubina konstrukcije u drugi fazi: 4,06 m
- Dimenzionirali smo pilote s dubinom u tlo 4,1 m i sveukupnu duljinu 6,6 metara.

Zaključak

Dimenzioniranje pilotnog potpornog zida VL 503 iz S 270 čelika i duljine od 6,6 metara je zadovoljavajuće.

5. Dimenzioniranje sidrenih potpornih konstrukcija

U ovom poglavlju, ćemo vam pokazati dimenzioniranje potporne konstrukcije s jednim redom sidara.

Zadatak

Dimenzioniranje potpornog zida s jednim redom sidara. Potporni zid je izrađen s pilotima upotrebom standarda EN 1997-1 (EC 7 – 1, PP3). Red sidara je 1,5 m ispod površine. Tlo, geološki profil, tablica podzemne vode i oblik terena su iste kao u prošlom zadatku. Uklonite fazu konstrukcije 2, da ne razmatrate poplave.

Shema sidrenog zida iz pilota - zadatak

Rješenje

Za rješavanje ovog problema, koristiti ćemo program GEO5, Dizajn Zagatne stijene. U ovom tekstu, objasniti ćemo svaki korak u primjeru:

- Analiza 1 stalna situacija dimenzioniranja zid fiksan na peti
- Analiza 2 stalna situacija dimenzioniranja zid sa zglobom na peti
- Rezultat analize (zaključak)

Osnovni upis: Analiza 1

Ostavite okvire "Postavke", "Profil", "Tla", "Teren", "Voda" i "Postavke faze" iz prošlog problema bez promjena. Također, izbrišite fazu konstrukcije 2 ako ste ponovno koristili datoteku problema 4. U okviru "Geometrija" dodajte dubino iskopa 5,0 m.

Otvorite okvir "Sidra" i kliknite na "Dodaj". Za ovaj slučaj, dodajte jedan red sidara na dubini 1,5 m ispod vrha zida z razmještanjem sidara na 2,5 m. Također definirajte dužinu sidra (koja nema nikakvog utjecaja na program Dizajn Zagatne stijene, je samo za vizualizaciju) i nagib sidra (15 stupnjeva).

U okviru "Postavke faze" odabrajte "stalne".

Novo sidro Parametri sidra Dubina : Slobodna dužina : Dužina osnove : Kosina : Razmak sidra :	z = 1,50 [m] l = 5,00 [m] $l_{k} = 2,00$ [m] a = 115,00 [7] b = 2,500 [m] d = 300 [8]	Ups sheme					
B B Sidro Br. novo	Dubina z [m]	Dužina I [m]	Korijen I _k (m)	Kosina α [º]	Razmak b [m]	[🖲 Dodaj
▶ 1 DA	1,50	5,00	2,00	15,00	2,50	^	🕑 Uredi
							🗏 Ukloniti

Okvir "Sidra"

U okviru "Analiza" odabrajte "Zid fiksan na peti" i izvršite analizu.

Geometrija konstrukcije Dužna konstrukcije = 10,72 m Dubina u tlom = 5,72 m	Upogibni moment Max. M = 89,16 kNm/m	Poprečna sila Max. Q = 128,27 kl/m
165,77 Mg/ 500 	45.02 45.02 45.02 138,05 40.05	4,0%,2 -64,12 0,00 138,00 -138,07 55,07 -64,12 -74,12
Kontrola : 🕑 Qodaj 😑 Uklaniti [1]		Analiziraj
Rationanie je završeno. Tip zida - potopra na peti © Zid fikaran na peti		
Zota Ageo na prei [2] Minimalan tlak za dimenzioniranje Koef, minimalnog dimenzioniranog tlaka : 0,20		

U našem slučaju, moramo znati dubinu pilota i silu sidra. Za zid fiksan na peti, vrijednosti su:

- Dužina konstrukcije: 10,72 m
- Dubina u tla: 5,72 m
- Sila sidra:

- 5,72 m 165,77 kN
- Maksimalan moment: 89,16 kNm/m
- Maksimalna strižna sila: 128,27 kN/m

Osnovni upis – analiza 2

Dodajte novu kontrolu u lijevom kutu okvira

Alatna traka "Kontrola"

Odaberite "Zid zglob na peti" i izvršite analizu.

Dužna konstrukcije = 7,85 m	Max. M = 119,35 klim/m	Max. Q = 69,84 kW/m
Dubina u tiom – 2,85 m		
201,60 kH/	-119.35	40.04
L75,00 + + + + + + + + + + + + + + + + + +	L _{13b,0b} + + + + + + + + + + + + + + + + + + +	200 [75];08 ⁺ + + + + + + + + + + + + + + + + + +
Kontrola:		Analizire)
Tip zida - potopra na peti ② Zid ∯ksiran na peti ④ Zid zglob na peti		
Immalan tlak za dimenzioniranje Koef. minimalnog dimenzioniranog tlaka : 0,20		

Okvir "Analiza"

Za zid sa zglobom na peti, vrijednosti su:

- Dužina konstrukcije: 7,85 m
- Dubina u tla: 2,85 m
- Sila sidra: 201,68 kN
- Maksimalan moment: 119,35 kNm/m
- Maksimalna strižna sila: 69,84 kN/m

Rezultati analize

Sveukupna dužina konstrukcije treba biti u intervalu između H_{fiksna} – H_{sa zglobom} . Za zid, koji je fiksiran na peti je dužina konstrukcije duža, a sila u sidru manja. Za zid sa zglobom na peti, je obrnuto, sila sidra je veća a dužina konstrukcije manja. Kako dimenzionirati konstrukciju je zadatak korisnika.

Zaključak

U našem dimenzioniranju, ćemo upotrebiti pilote VL 503 iz čelika S 270 sa sveukupnu dužinu 9,0 m, sidra sa veličinom sile 240kN i razmještanjem na 2,5 m. U sljedećem poglavlju ćemo konstrukciju provjeriti sa programom "Provjera Zagatne stijene".

Napomena: Dimenzioniranje ne može se uzeti kako konačni rezultat, za to trebate provjeriti zid s programom "Provjera Zagatne stijene", jer zbog sidrenja na pravi konstrukciji postoji preraspodjelo tlaka zemlje.
6. Provjera potpornih zida s jednim redom sidra

U ovom poglavlju, pokazati ćemo vam, kako se može dimenzionirani potporni zid provjeriti sa provjerom unutarnje stabilnosti sidara i sveukupne stabilnosti konstrukcije.

Zadatak

Provjerite potporni zid kao je dimenzioniran u poglavlju 5.

Rješenje

Za rješavanje ovog problema upotrebiti ćemo GEO5 program, program Provjera zagatne stijene. U tom tekstu ćemo objasniti korak po korak, kako bi riješili ovaj zadatak:

- Faza konstrukcije 1: iskop rova do dubine 2,0 m + geometrija zida
- Faza konstrukcije 2: sidrenje zida + iskop rova do dubine 5,0 m.

Osnovni upis: Faza konstrukcije 1

Da si naš rad bio lakši, možemo kopirati podace iz zadnjeg zadatka, kada smo dimenzionirali zid u programu "Dizajn Zagatne stijene". U programu "Dizajn Zagatne stijene" odaberemo "Uredi" na gornji alatni traki i "Kopiraj podatak" a u programu "Provjera Zagatne stijene" u "Uredi" odaberite "Zalijepi podatak". Tako ste kopirali većino podataka iz prošlog zadatka u novi program, tako ne trebamo upisivati toliko podataka, koji su potrebni u ovom programu.

Okvir "Unos podataka"

U okviru "Postavke", odaberite broj 5 - "Standard – EN 1997 – PP3". Odaberite analize ovisne pritiscima i "Smanji u skladu postavka analiza". Koeficijent za minimalan pritisak dimenzioniranja ostavite na 0,20.

Analiza ovisna pritiscima :	smanji u skladu postavka analiza	
Broj KE za promjenu zida :	20	
Analize tlaka ▼ Razmisliti o minimumu dimenzioniranog pritisaka Koef. za minimalnu dim.tlaka (σ _{a,min} =kσ _z) :	k = 0,20 [-]	

Okvir "Postavke (Analiza pritiska)"

Napomena: izbor "Analiza ovisna pritiscima - ne smanjuju" omogućuje analizu graničnih tlaka (aktivan i pasivan) bez smanjenja upisanih parametara paricalnih faktora. To je bolje za procjenu stvarnog ponašanja konstrukcije. A s druge strane to znači da ne slijedi standardu EN 1997-1 (više informacija u POMOČ – F1)

Sada otvorite okvir "Moduli k_h " a odabrajte "analiza - Schmitt". Ova metoda za određivanje modula reakcije tla ovisi na edometarskih modulih i krutosti konstrukcije (*Više informacija u POMOČ – F1*)

Modul reakcije tla :	analiza - Schmitt 🔹 🗸
	Okvir ″Moduli k₅″

Napomena: moduli reakcije tla su važni unosi, kada analiziramo konstrukciju metodom ovisnom na tlake (elasto-plastični nelinarani model). Moduli k_h utječe na deformacije, koje su potrebne da dostigne aktivne i pasivne tlake. (više informacija u POMOČ-F1).

U okviru "Tlo" unesite sljedeće vrijednosti za svaki tip tla. Poissonov Koeficijent i edometarski modul nisu upisani u prošlom programu, zato ih treba upisati tu.

Tlo	Poissonov koeficijent	Edometarski modul
(klasifikacija)	ν[–]	$\mathrm{E}_{edo}\left[MPa\right]$
S-F – pijesak slijedom finih djelca, srednje gust	0,30	21,0
MS – pješčani mulj, tvrde konsistence, S _r < 0,8	0,35	12,5
CL, CI – glina s niskom ili srednjom plastičnostjo, čvrste konzistencije	0,40	9,5

U okviru "Geometrija" definirajte parametre pilota – tip zida, dužina odjeljaka, Koeficijent tlaka smanjen ispod dna rova, geometrija i materijal konstrukcije. Iz baze podataka pilota, odabrajte **VL 503** (500x 340 x 9,7 mm).

Uredi sekciju		-	×
Tip zida : Ploć	a pilota		•
Ime priječnog presjek			
Dužina sekcije :	1	= 9,00	[m]
Koef. tlaka reduk. ispod dr	na jarka :	1,00	Η
Geometrija			
Ploća pilota VL 503 500 x	340 x 9.7 mm		-
Materijal			
Elastični moduli :	E =	210000,00	[MPa]
Modul smicanja :	G =	81000,00	[MPa]
· · · · · · · · · · · · · · · · · · ·			
Tafaanaaiia			
Δ = 1.49E-02 [n	1 ² /m] I =	2,12E-04 [m ⁴ /m]
E = 210000,00 [M	IPa] G =	81000,00 [MPa]
T-D Katalog korjenika	. E		

Dijalog prozor "Uredi sekciju"

Sada u okviru "Iskop" definirajte prvi jarak dubine – 2,5 m za prvu fazu konstrukcije.

					1. 1. 1.
			2,50		<u></u>
1					
	Grafikon parameta				
		Dubina rova :		h = 2,50 [m]	
		Preopterečenja dna jarka :		f = 0,00 [kPa]	
		🔲 Doskok tla			
		Nasipano tlo :	(nije pripisano)		_
		Debljina sloja :		0,90 [m]	

″Iskop″

Sada idite u okviru "Analiza". Na lijevom djelu okvira, možete vidjeti module reakcije tla u desnom tlak zemlje i premještanje. (za više informacija, u POMOČ F1).

Osnovni upis – faza konstrukcije 2

Dodajte još jednu fazu konstrukcije kao što je navedeno u nastavku. Okvire "Postavke", "Profil", "Moduli Kh", "Tla" i "Geometrija" nije potrebno promijeniti, jer su isti za sve faze konstrukcije. Promijeniti ćemo samo "Iskop" i "Sidra".

U okviru "Iskop", promijenite dubino rova na konačno dubinu – 5,0 m.

Faza konstrukcije : 重 💻	1 [1] [2]			
Grafikon parameta	Dubina rova : Preopterečenja dna jarka : Doskok tla Nasipano tlo : Debljina sloja :	(nije pripisano)	h = 500 [m] f = 0,00 [kPa]	

″Iskop′

Sada idite na "Sidra" i s kliknite na "Dodaj". Za to konstrukciju ćemo dodati red sidara na dubini 1,5 m ispod vrha zida (ispod površine). Također je potrebno upisati važne podace: sveukupna dužina sidra je 10 m, kut nagiba na 15° i razmještanje na 2,5 m. Dodajte i sile prenaprezanja 240 kN i promjer sidra.

Faza konstrukcije : 💽 😑 🛛 🛛			
Novo sidro			
Parametri sidra	Line chome	1.60	
Dubina :	z = 1,50 [m] Opis siteme		
Slobodna dužina :	I = 7,00 [m]		
Dužina osnove :	lk = 3,00 [m]		
Kosina :	α = 15,00 [9]		
Razmak sidra :	b = 2,50 [m]		
Otačanost sidra			
Promjer:	d = 32,0 [mm]		
C Područie :			
Elastični moduli :	E = 210000.00 [MPa]		
Prepaprezane sie :	E = 240.00 [kh]		
	240,00 044		
	💌 Dodat 🛛 🕅 Odustani		
			8
	Dušna Korilen Korina	Parmak Dromiar Dodruči	e Moduli Sila
Br. novo po-napre; z [m]	l (m) l _k (m) α. (°)	b [m] d [mm] A [mm]	E [MPa] F [kN]
> 1 DA 1,50	7,00 3,00 15,0	2,50 32,0	210000,00 240,00 ^ 💽 Uredi
			B goons
	"	idra"	
	-	nuru	

Napomena: krutosti sidara su uzeti u obzir za sve slijedeće faze izgradnje. Zbog deformacija kod izgradnje sile u sidrima se mijenjaju. (više informacija u POMOĆ F1)

Mi ne promijenimo ni jednog unosa podataka. Sara izvršimo analizu da vidimo maksimalne unutarnje sile i maksimalne pomake sidrene konstrukcije.

Kontrola materijala i poprečnog presjeka:

Maksimalan moment iza konstrukcije je 116,03 kN/m Pilot VL 503 (500 x 340 x 9,7 mm), kvalitete čelika S 270 GP je zadovoljavajući. (*Dozvoljen moment = M_u = 224,0 kN/m > M_{max} = 116,0 kNm/m*) Maksimalna pomak konstrukcije je 30,1 mm, koji je isto zadovoljavajući.

Kontrola stabilnosti sidara

Sada otvorite okvir "Unutarnja stabilnost". Vidite, da unutarnja stabilnost sidara nije zadovoljavajuća. To znači, da se može sidro odkinuti iz tla.

"Unutarnja stabilnost" - ne zadovoljavajući rezultati

Razlog je, da je sidro prekratko, tako da u "Sidra" promijeniti njegovo dužinu na 12 metara. Tako novi upis sidra sada zadovoljava zahtjeve unutarnje stabilnosti.

"Unutarnja stabilnost" - zadovoljavajući rezultati

Zadnja provjera sveukupne stabilnosti konstrukcije je potrebna. Kliknite na "Vanj.. Stabilnost". Otvori se vam program "Stabilnost kosina". U okviru "Analiza" kliknite na "analiziraj". Tako dobijemo rezultat, da je stabilnost kosine prihvatljiva.

-24,00 -22,00 -20,00 -18,00 -16,00 -14,00 -12,00	-10,00 -8,00 -6,00 -4,00 -2,	00, 0,00, 2,00, 4,00, 6,00, 8,00, 10,00, 12,00, 14,00, 16,00, 18,00, 20,00, 22,00, 24,00, 26,00, 28,00 [m]
' Analiza : 🖲 📄 [1]		🖸 Detajl rezultatov
Klizna površina : kružni 💌 🖻 Nadomjestiti 🖃	Ukloniti	
Kružna klizna površina		Analiza
Centar : Promijeni	Metoda : Bishop	Zbroj aktivnih sila : $F_a = 453,75 \text{ kV/m}$
	Iip analize : Optimizacija	Zbroj pasivnih sila : $r_p = 517,62$ KV/m Moment pomicania : $M_a = 4306.06$ KVm/m
Polumier: α ₁ = -54.88 [⁹]	Ograničavanje nije upisano	Otpornostni moment : Mp = 4912,25 kVm/m
$R = 9.49$ [m] $\alpha_2 = 87.22$ [9]	Application	Notisetije i 0777 / //

Rezultati analize – zaključak: Napravljene analize:

- Nosivost poprečnog presjeka:
 51,8 % M_u = 224,0 kN/m > M_{max} = 116,0 kNm/m
 ZADOVOLJAVAJUĆE
- Unutarnja stabilnost: 91,3 % F_{vzd} = 262,83 kN > F = 240 kN ZADOVOLJAVAJUĆE
- Sveukupna stabilnost : 87,7 % Metoda Bishop (optimizacija) ZADOVOLJAVAJUĆE

U tom primjeru projektiranja konstrukcija zadovoljava sve provjerene parametre.

7. Provjera više sidrenog zida

U tom poglavlju, pokazat ćemo kako dimenzionirati više sidreni zid.

Zadatak

Kontrolirati ćemo više sidreni zid koji se sastoji iz pilota I 400 s dužinom 21 m. Dubina iskopa je 15 m, Teren je horizontalan. Preopterećenje, koje djeluje na površinu je stalno i veličine 25,0 kN/m². TPV je iza konstrukcije i 10,0 m ispod površine.

Shema sidrenog zida u više slojeva

rabilea parametara	lia i stijelie					
Tlo (klasifikacija)	Profil [m]	Jedinica težine γ[κN/μ ³]	Kut unutarnjeg trenja φ _{ef} [°]	Kohezija c _{ef} [kPa]	Deformacijski moduli E _{def} [MPa]	Poissonov Koeficijent v [—]
CL, CI – glina s niskom ili srednjom plastičnostjo, čvrste konzistencije	0,0 - 2,0	19,5	20	16	6,0	0,4
CS - pješčana glina, čvrste konzistencije	2,0 - 4,5	19,5	22	14	7,0	0,35
R4 (dobra stijena) niske čvrstoće	4,5 – 12,0	21	27,5	30	40,0	0,3
R3 (dobra stijena) Srednje čvrstoće	12,0 – 16,6	22	40	100	50,0	0,25
R5 (slaba stijena) Jako niske čvrstoće	16,6 – 17,4	19	24	20	40,0	0,3
R5 (slaba stijena) Jako niske čvrstoće	17,4 – 25,0	21	30	35	55,0	0,25
R5 (slaba stijena) Jako niske čvrstoće	Od 25,0	21	40	100	400,0	0,2

Tablica parametara tla i stijene

Kut trenja između konstrukcije i tla je δ = 7,5° za sve sloje. Također je zasićena jedinica težine jednaka jedinici težine.

Tablica pozicije i geometrije sidara

Napomena: Moduli deformacije su u upotrebi za materijale tla.

Sidro	Dubina	Dužina	Korijen	Kosina	Razmještanje	Sila sidra
Br.	z [m]	l [m]	l _k [m]	α [°]	b [m]	F [kN]
1	2,5	19,0	0,01	15,0	4,0	300,0
2	5,5	16,5	0,01	17,5	4,0	350,0
3	8,5	13,0	0,01	20,0	4,0	400,0
4	11,0	10,0	0,01	22,5	4,0	400,0
5	13,0	8,0	0,01	25,0	4,0	400,0

Sva sidra imaju razmjer d = 32,0 mm, modul elastičnosti E = 210,0 GPa. Razmještanje sidra je b= 4,0 m.

Rješenje

Za rješavanje ovog zadatka, koristit ćemo GEO5 program – Provjera Zagatne stijene. Analiza će biti izvedena na klasičan način, bez smanjenja ulaznih podataka, tako da će biti prihvaćeno stvarno ponašanje konstrukcije. Unutarnja stabilnost sistema sidara i ukupna stabilnost će se provjeriti s faktorom sigurnosti 1,5. Ovo rješenje pretpostavlja, da ste upisali sve podace (tip tla, profil i stalno opterećenje) što je zapisano gore.

U okviru "Postavke" odaberite opciju br. 1 - "Standard – faktori sigurnosti" Sada u okviru "Geometrija" upišite osnovne dimenzije u odsjeku i također i koeficijent smanjenog tlaka ispod dna jarka, koji je u tom slučaju 0,4.

Uredi sekciju	-			×
Terrida	Čelik Lodciek			•
np zida .	Cellk I Oddjek			
Ime priječnog presjek				
Dužina sekcije :		1 =	21,00	[m]
Koef. tlaka reduk. ispo	od dna jarka :		0,40	H
Geometrija				
Razmak od centara :		a =	2,00	[m]
Poprečni presjek		_		
katalog	Uredi		5	-
Ime : I(IPN) 40	00			
				_
Materijal				
Elastični moduli :		E =	210000,00	[MPa]
Modul smicanja :		G =	81000,00	[MPa]
Informacija	2 [m2/m]		1 465 04	[m4/m]
A = 5,90E-0.	o [MR-]	1=	1,40E-04	[m·/m] [MP=1
E = 210000,0	o [mea]	G =	61000,00	[rira]
Latalog korisnil	ka		🗹 <u>o</u> k	🔀 Odustani

Dijalog prozor "Novi odsjek"

Napomena: Koeficijent smanjenja zemljanih pritisaka ispod iskopa, smanjuje pritisak na tlo. Za klasične potporne zidove jednak je 1,0. Za sidrane potporne zidove je manji ili jednak jedan. To ovisi od veličine i razmaka zidova (Više informacija u POMOĆ – F1).

Sada ćemo opisati izgradnju zagatne stijene korak po korak. Potrebno je, da se zadatak modelira u fazama. Tako možemo vidjeti, kako bi se izgradnja održavala u stvarnosti. U svakoj fazi potrebno je

gledati na vrijednosti unutarnje stabilnosti i deformacija. Ako zagatnice u neki fazi izgradnje nisu stabilne ili ako su analizirane deformacije prevelike, onda moramo mijenjati konstrukciju – na primjer posteljicu zida produžimo, uredimo plići jarak, povećamo sile u sidrima itd.

U fazi konstrukcije 1, jarak je dubine 3,0 m. U fazi 2, sidro je postavljeno na dubinu 2,5 m. TPV je iza konstrukcije, na dubini 10, 0 ispod površine.

"Sidra" - faza konstrukcije 2

U trećoj fazi konstrukcije, iskop se izvrši do dubine 6,5 m. U fazi 4, sidro je postavljeno na dubini 5,5 m. TPV nije promijenjena.

"Sidra" - faza konstrukcije 4

U fazi konstrukcije 5, iskop se izvrši do dubine 9,0 m. U fazi 6, sidro je postavljeno na dubini 8,5 m. TPV nije promijenjena.

U fazi konstrukcije 7, iskop se izvrši do dubine 11,5 m. U fazi 8, sidro je postavljeno na dubini 12 m ispod površine. TPV iza konstrukcije, nije promijenjena.

"Sidra" - faza konstrukcije 8

U fazi konstrukcije 9, iskop se izvrši do dubine 13,5 m. U fazi 10, sidro je postavljeno na dubini 13 m. TPV ispred konstrukcije je na 15,5 m ispod površine.

"Sidra" - faza konstrukcije 10

U zadnji fazi konstrukcije, u fazi 11, jarak je iskopan do dubine 15,0 m. Tu ne dodavamo sidara. TPV je ispred zida na dubini 15,5 m. Iza zida je na dubini 10,0 m.

"Sidra" - faza konstrukcije 11

Napomena: Zbog deformacije konstrukcije se sile u sidrima mijenjaju. Ove promjene ovise o krutosti sidra i deformacije glave sidra. Sila se može smanjiti (zbog gubitka sile prenaprezanja) ili povećati. Sile se mogu opet prenapeti u bilo kojoj fazi izgradnje na potrebnu snagu.

Rezultati analize

Na donjim slikama su rezultati analize posljednje, 11. faze izgradnje.

المعلم (m) Dkvir Analize (unutarnje sile) "

300,0 [kN/m

Sve faze su analizirane zadovoljavajuće – to znači da je konstrukcija stabilna i funkcionalna u svim fazama gradnje. Deformacije treba provjeriti, da nisu prevelike i također da sile u sidrima ne prelazi nosivosti sidra (korisnik to treba provjeriti jer to nije provjereno sa programom Provjera zagatne stijene).

• Maksimalan pomak zida je 28,8 mm, što je zadovoljavajuće.

Napomena: Ako program ne pronađe rješenja u neki građevinski fazi, podace moramo revidirati - npr. produžiti konstrukciju, povećati sile u sidrima, promijeniti broj sidara, itd.

Provjera poprečnog presjeka konstrukcije

Otvorite okvir "Omotnica" u 1. fazi konstrukcije, gdje možete vidjeti maksimalnu i minimalnu vrijednost varijabla.

•	Maksimalna strižna sila:	237,24 kN/m
•	Maksimalni moment savijanja:	220,80 kNm/m

Moment savijanja izračunava se po jednom metru konstrukcije (pete), zato moramo izračunati moment, koji djeluje na gredu. Razmak grede u našem primjeru je 2,0 m, tako je rezultirani moment 220,80 *2,0 = 441,60 kNm.

Korisnici mogu obavljati provjeru poprečnog presjeka za I 400 ručno ili koristiti neki drugi program, kao što je FIN EC – STEEL.

Provjera - poprečni presjek I 400 – ispis iz programa FIN EC STEEL

Ukupna iskoristivost poprečnog presjeka:

72,8% $M_{v.R}$ = 606,582 kNm ≥ M_{max} = 441,6 kNm

Taj dizajniran poprečni presjek zadovoljava kriterije analiza.

Napomena: Dimenzioniranje i provjera betonskih i čeličnih zidova nije dio programa Provjera zagatne stijene, ali se planira za buduće verzije.

Provjera nosivosti:

Analiza unutarnje stabilnosti

U zadnji fazi konstrukcije idite do okvira "Unutarnja stabilnost" i pronađite rezultate za maksimalnu dozvoljenu silu u svakom sidru i određen faktor sigurnosti. Minimalan faktor sigurnosti je 1.5.

Okvir "Unutarnja stabilnost"

Napomena: Provjera napravljena je ovom putem. Prvo smo ponovili sile u sidrima, što je rezultiralo u izjednačenost svih sila koje djeluju na rubu. Taj rub je ograničen s konstrukcijom, terenom, srednjim djelom korijena sidra i teoretičkom petom konstrukcije. Ako sidro ne zadovoljava problemu, najbolje je, da ga produljimo ili smanjimo prenapregnuto silu.

Provjera Vanjske stabilnosti

Zadnja preporučena analiza je analiza "vanjske stabilnosti". S pritiskom na gumb, automatski vam se otvori program "Stabilnost kosina", gdje možete obaviti sveukupne analize stabilnosti.

Program "Stabilnost kosina"

Zaključak

Konstrukcija uspješno je projektirana s maksimalnom deformacijom od 28,8 mm. To je zadovoljavajuće za taj tip konstrukcije. Osim toga granice sila u sidrima nisu prekoračene.

- Provjera nosivosti poprečnog presjeka
- Unutarnja stabilnost
 Sidro br. 4 (analiziran faktor sigurnosti) :
- Vanjska stabilnost
 Faktori sigurnosti (Bishop optimizacija):

ZADOVOLJAVAJUĆE ZADOVOLJAVAJUĆA FS_{min} = 10,27 > FS_a = 1,50 ZADOVOLJAVAJUĆA FS = 2,10 > FS_s = 1,50

Projektirana potporna konstrukcija zadovoljava ocijenjenim kriterijima.

8. Analiza stabilnosti kosina

U ovom poglavlju, pokazati ćemo kako provjeriti stabilnost kosina za kritične kružne i poligonalne klizne površine (upotrebom optimizacije) i razlike između analiza metoda stabilnosti kosina.

Zadatak

Izvršite analizu stabilnosti kosina za gravitacijski zid. To je stalna projektirana situacija. Potreban faktor sigurnosti je FS = 1,50. U kosini nema vode.

Shema zadatka

Rješenje

Za rješavanje tog problema, koristiti ćemo program GEO5, program Stabilnost kosina. U tekstu ćemo vam objasniti svaki korak za rješavanje tog problema:

- Analiza br. 1: optimizacija kružne klizne površine (Bishop)
- Analiza br. 2: provjera stabilnost kosine za sve metode
- Analiza br. 3: optimizacija poligonalne klizne površine (Spencer)
- Rezultat analize (zaključak)

Osnovni upis – Analiza 1:

U okviru "Postavke" kliknite na "Odaberite postavke" i odaberite broj 1 - "Standard – Faktori sigurnosti".

opis pos	tavka		
Broj	Ime	Vrijedi za	
1	Standard - faktori sigurnosti	Sve	^
2	Standard - granična stanja	Sve	
3	Standard - EN 1997 - PP1	Sve	
4	Standard - EN 1997 - PP2	Sve	
5	Standard - EN 1997 - PP3	Sve	E
6	Standard - LRFD 2003	Sve	
7	Standard - bez smanjenja parametara	Sve	
8	Češka - stari standardi CSN (73 1001, 73 1002, 73 0037)	Sve	
14	Njemačka - EN 1997	Sve	
15	Austrija - EN 1997	Sve	
22	Italija - EN 1997 , PP1	Sve	
23	Italija - EN 1997 - PP2	Sve	
24	Finska - EN 1997	Sve	
25	Engleska - EN 1997	Sve	
27	Desturation EN 1007	Suc.	

Popis postavka

Modelirajte granične površine slojeva, terena upotrebom slijedećih koordinata:

	Granična po	vršina 1	Granična	površina 2	Granična	oovršina 3	Granična površina 4	
	x [m]	z [m]	x [m]	z [m]	x [m]	z [m]	x [m]	z [m]
1	0,00	-4,75	16,80	-4,54	19,17	-2,48	0,00	-8,07
2	10,81	-3,64	18,87	-4,57	27,61	-1,75	19,06	-7,50
3	16,80	-4,54	19,17	-2,48	32,66	-0,74	31,40	-5,77
4	18,59	0,63	19,62	0,71	40,00	0,36	40,00	-5,05
5	19,62	0,71						
6	19,71	0,71						
7	26,00	2,80						
8	34,30	3,20						
9	40,00	4,12						

Dodavanje točka graničnih površina

Prvo, u okviru "Granična površina" upišite opseg koordinate u zadatku. "Dubina najniže točke granične površine" je samo za vizualizaciju primjera – nema utjecaja na analizu.

	Točka :
^	🕑 Dodaj
	Promijeni
	🔳 Ukloniti
-	

Nakon unosa podataka graničnih površina, upišite geološki profil, definirajte parametre tla i dodajte ih u profil.

Dodaj novo tlo						×
Identifikacija Ime :	S-F - pijesak	sa slijedom fini	h djelca, gust			Nacrtati Boja
– Osnovni podatak Jedinica težine : Stanje-papopa :		γ =	17,50 [k	(N/m³]	2	Kategorija uzoraka GEO Uzorak
Kut unutarnog trer Kohezije tla : Pritisak uzgona	nja :	φ _{ef} =	31,50 [° 0,00 [k	?] (Pa]	[9]	Pijesak
Računski oblik podi Saturirana jedinica	zanja : težine :	standard $\gamma_{sat} =$	17,50 [k	▼ ⟨N/m³]	2	
Folijacija						
Foliacija tla :		nije uzet u ob	ozir			Klasifikacija Klasificirati Izbriši
						Dodaj Odustani

Napomena: U toj analizi, provjeravamo dugoročne stabilnosti kosina. Stoga smo za rješavanje ovog zadatka uzeli efektivne parametre klizenja tla (φ_{ef} , c_{ef}). Folijacija tla - loših ili drugačijih parametara tla u jednom smjerom – nisu uzeti u obzir u dodijeljenih tlima.

Tlo (klasifikacija)	Jedinica težine $\gamma[\kappa N/\mu^3]$	Kut unutarnjeg trenja φ _{ef} [°]	Kohezija c _{ef} [kPa]	Dodijeljeno tlo Područje				
MG – Šljunčani mulj, čvrste konzistencije	19,0	29,0	8,0	1				
S-F – pijesak slijedom finih djelca, srednje gust	17,5	31,5	0	3				
MS – pješčani mulj, tvrde konsistence, S _r < 0,8	18,0	26,5	16,0	4				

Model gravitacijskog zida je ko Čvrsto tijelo sa jedinicom težine $\gamma = 23,0$ kN/m². Kliz površine ne prođe kroz ovaj objekt, jer je to područje s velikom snagom. (više informacija u POMOĆ –F1).

U slijedećem koraku, definiramo preopterećenje, gdje uzmemo u obzir stalnu trakastu preopterećenje, z lokacijom na površini terena.

Novo preoptereće	nje				x
– Ime preoptereće	nja				
Ime :	Preoptered	ćenje br. 1			
– Značajke preopte	erećenja				
Tip :	traka	▼	Tip djelovanja	a: stalne	◄
Lokacija :	n	a terenu			
Ishodište :	x =	26,00	[m]	F	
Dužina :	=	8,30	[m]	q /+α	
Kosina :	α =	0,00	[°]	[0,0]	
				18 17 1811 11 1//////	
– Magnituda preop	terećenja –				
Magnituda :	q =	10,00	[kN/m ²]		
			ſ		luctori
			L.		Justani

Dijalog prozor "Novo preopterećenje"

Napomena: Preopterećenje je upisano na 1 m širine kosine. Jedino odstupanje je koncentrirano preopterećenje, gdje program izračunava utjecaj opterećenja na analiziranom profilu. Za više informacija, POMOĆ (F1).

Preskočite okvire "Nasip", "Zemaljski zarez", "Sidra", "Armatura", "Voda". Okvir "Potres" nema utjecaja u toj analizi, zato jer kosina nije locirana na seizmičko aktivnom području.

Sada u okviru "Postavke faze", odaberite dizajn situacije. U tom slučaju, obravnavamo "Stalan" dizajn situacije.

1	Dizajn situacije Dizajn situacije :	stalne
	″ F	Postavke faze″

Analiza 1 – kružna klizna površina

Otvorite okvir "Analiza", gdje korisnik unese početni kliz površine pomoću koordinata središta (x, y) i njegov radijus ili pomoću miša izravno na radni površini – klikom na tri mjesta granične površine, na kojih klizna površina prolazi.

Napomena: U kohezivnih tlima najčešće pojavljuju se rotacijske klizne površine. Te se modeliraju upotrebom kružne klizne površine. Ova površina koristi se, da se pronađe kritično područje analizirane kosine. Za nekoherentna tla analiza se vrši pomoću poligonalne klizne površine a također potrebno je obaviti provjeru stabilnosti kosina. (pogledajte u POMOĆ – F1).

Sada odaberite "Bishop" metodu analize, i nastavite tip analize "Optimizacija". Provjeru izvršite tako da kliknete na "Analiziraj".

"Analiza" - Bischop – optimizacija kružne klizne površine

Napomena: Optimizacija se sastoji u pronalaženju kružne klizne površine s najmanjom stabilnostjom – kritična klizna površina. Optimizacija kružnih kliznih površina u programu Stabilnost kosina, ocjenjuje cijelu kosinu i je jako sigurna. Za različite klizne površine dobili smo isti rezultat kritičnog kliza površine.

Nivo stabilnosti, definiran za kružni kliz površine po "Bishopu" ocjenjuje metodu zadovoljavajućom: FS = 1,82 > FS_s = 1,50 ZADOVOLJAVAJUĆE

Analiza 2:

Sada odaberite drugu analizu na alatni traki na gornjem desnom rubu vašeg okvira Analiza u GEO5.

ч	Analiza : 🔳 🔳	[1]	[2]	[3]		
Alatna traka "Analiza"						

Promijenite tip analize u "Standard" i ko metodu odaberite "Sve metode" i kliknite "Analiziraj".

•	Analiz	a: 🖲 🖃	[1]	[2]	[3]				
	Klizna površina : kružni 🔻 🖲 Nadomjestiti 🖃 Uk				Ukloniti	😢 Pretvori u poligon			
	Kružna klizna površina								
	Centar :				🕐 Promijeni	Metoda :	[sve metode]	Kontrola stabilnosti k	cosine (sve metode)
	x = [17,41	[m]			Tip analize :	Standard	Fellenius / Petterson :	FS = 1,82 > 1,50 PRIHVATLJIVO FS = 1,61 > 1,50 PRIHVATLJIVO
	z =	4,68	[m]	Kuti :		Ograničavar	nje	Janbu :	FS = 1,80 > 1,50 PRIHVATLJIVO
	Polumje	r:		α1 =	-19,52 [°]	Predviđa	mo sidra ko bezmjerna	Morgenstern-Price : Shahunyant :	FS = 1,80 > 1,50 PRIHVATLJIVO FS = 1,63 > 1,50 PRIHVATLJIVO
Analiza	R = [9,38	[m]	α2 =	78,62 [º]	📕 돈 Analizi	raj		An analysis and a second second second

"Analiza" - Sve metode – standardni tip analize

Napomena: Ako koristite taj postupak, klizne površine izrađene su za sve metode i odgovaraju kritični klizni površini iz prethodne analize, koristeći Bishop metode. Za bolje rezultate korisnik treba odabrati metodu i nakon toga optimizirati kliznu površinu.

Vrijednosti stabilnosti kosine su:

-	Bishop:	FS = 1,82 > FS _s = 1,50	ZADOVOLJAVAJUĆE
-	Fellenius/ Petterson:	FS = 1,61 > FS _s = 1,50	ZADOVOLJAVAJUĆE
-	Spencer:	FS = 1,79 > FS _s = 1,50	ZADOVOLJAVAJUĆE
-	Janbu:	FS = 1,80 > FS _s = 1,50	ZADOVOLJAVAJUĆE
-	Morgenstern-Price:	FS = 1,80 > FS _s = 1,50	ZADOVOLJAVAJUĆE
-	Shahunyant:	FS = 1,82 > FS _s = 1,50	ZADOVOLJAVAJUĆE

Napomena: odabir metode analize ovisi od iskustva korisnika. Najpopularnije su metode dijelova, od kojih se najviše koristi Bishop metoda. Ta metoda daje konzervativne rezultate.

Za armirane ili sidrene kosine prednost imaju druge metode (Janbu, Spencer i Morgenstern-Price). Te metode bolje ispuniju sve uvjete ravnoteža, i bolje opisuju stvarno ponašanje kosine.

Nije potrebno (ili pravilno) analizirati kosine sa svima metodama analize. Za primjer, Švedska metoda Fellenius – Petterson donosi jako konzervativne rezultate, tako mogu biti faktori sigurnosti u rezultatima nerealno niski. Ta metoda je popularna i u nekim zemljama preporučena za analize stabilnosti kosina, zato je i dio u programima GEO5.

Analiza 3

U zadnji fazi analize upišemo poligonalni kliz površine. Za metodu analize odaberemo "Spencer", tip analize "optimizacija" i upišemo poligonalni kliz te pokrenemo analizu.

"Analiza" - Spencer – optimizacija poligonalne klizne površine

Vrijednosti stabilnosti kosine su:

FS = 1,58 > FS_s = 1,50

ZADOVOLJAVAJUĆE

Napomena: Optimizacija poligonalnog kliza površine je postupan i ovisi o položaju početnog kliza površine. To znači, da je dobro napraviti nekoliko analiza s različitimi početnimi kliznimi površinami i s različitim brojem odsjeka. Optimizacija poligonalne klizne površine može također utjecati na lokalni minimum faktora sigurnosti. To znači, da je potrebno naći pravu kritičnu površinu. Ponekad je učinkovitije za korisnika, da unese početni poligonalni kliz površine u sličnom obliku i stavi ga kao optimiziran kružni kliz.

Lokalni minimum

Napomena: Često smo dobivali pritužbe od korisnika, da je su klizne površine nakon optimizacije "nestale". Za nekohezivna tla, gdje je $c_{ef} = 0$ kPA kritična klizna površina jednaka je najviše nagnuti liniji nagiba površine. U tom slučaju, korisnik treba promijeniti parametre tla ili unesti ograničenja u kojima klizna površina ne može proći.

Zaključak

Stabilnost kosina po optimizaciji:

-	Bishop (kružna – optimizacija):	FS = 1,82 > SF _s = 1,50
	ZADOVOLJAVAJUĆE	
-	Spencer (poligonalna – optimizacija):	FS = 1,58 > SF _s = 1,50
	ZADOVOLJAVAJUĆE	

Dimenzionirana kosina s gravitacijskom zidom zadovoljava zahtjeve stabilnosti.

9. Stabilnost kosine s potpornimi zidovi

U tom poglavlju, opisat ćemo stabilnost analize postojeće kosine, zatim kako modelirati neizgrađeni potporni zid i kako se može provjeriti unutarnju i vanjsku stabilnost.

Zadatak:

Napravite analizu postojeće kosine, a zatim provjerite dimenzioniranje podzemnog zida za izgradnju parkirališta. Kada obavljate analizu, trebate razmisliti o trajnom dizajnu situacije u svih fazah izgradnje. Provjerite stabilnost koristeći faktora sigurnosti. Potreban faktor sigurnosti je FS_s= 1,50. Sve stabilnostne analize napravljene su sa Bishop metodom sa optimizacijom kružne klizne površine.

Shema zadatka

Zid je iz betona marke C 30/37, debljina zida h = 0,5 m. Izračunana strižna otpornost zida je V_{Rd} = 325 kN/m.

Rješenje:

Za rješavanje tog problema, koristiti ćemo program GEO5, program Stabilnost kosina. U tekstu ćemo vam objasniti svaki korak za rješavanje tog problema.

- Faza konstrukcije 1: modeliranje kosine, određivanje faktora sigurnosti postojeće kosine;
- Faza konstrukcije 2: napraviti zemaljski zarez za parkiralište (samo za radnu fazu)
- Faza konstrukcija 3: konstrukcija zida, analize vanjske i unutarnje stabilnosti;
- Rezultati analize (Zaključak).

Faza konstrukcije 1: modeliranje kosine

U okviru "Postavke" kliknite na "Odaberi" i odaberite postavke analize br. 1 "Standard – faktori sigurnosti".

Nakon toga u model upišite granične površine sloja, teren, upotrebom donjih koordinata.

	Granična površina 1		Granična površina 2		Granična površina	
	x [m]	z [m]	x [m]	z [m]	x [m]	z [m]
1	-25,00	5,84	-25,00	3,33	-25,00	0,84
2	-15,00	7,50	-12,29	4,75	-8,72	-0,52
3	-10,90	9,34	-3,01	5,30	-2,11	0,89
4	-2,24	10,07	1,92	6,88	4,62	0,69
5	3,00	12,00	7,26	8,24	15,00	3,50
6	8,20	14,35	11,93	8,83	25,00	8,15
7	25,00	15,95	25,00	12,17		

Koordinate graničnih površina

Napomena: Ako su podaci upisani pogrešno, možete ih poništiti sa gumbom PONIŠTI (prečac Ctrl-Z). Na isti način možete koristiti suprotan gumb PONOVI (prečac Ctrl-Y).

File Edit	Input	Picture
0 🖻 🖪	5) +	(¥ *

Gumbi "Poništi", "Ponovi"

Nakon toga definirajte parametre tla i prepišite ih u profil.

Tlo (klasifikacija)	Jedinica težine $\gamma[\kappa N/\mu^3]$	Kut unutarnjeg trenja φ _{ef} [°]	Kohezija c _{ef} [kPa]			
SM – Muljast pijesak, srednje gust	18,0	29,0	5,0			
ML, MI – mulj s niskom ili srednjom plastičnostjom, tvrde konsistence, S _r < 0,8	20,0	21,0	30,0			
MS – pješčani mulj, tvrde konsistence	18,0	26,5	12,0			

Tablica sa parametrima tla

U okviru "Postavke faze" odaberite stalni dizajn situacije.

Analiza 1 – stabilnost postojeće kosine

Otvorite okvir "Analiza" i pokrenite provjeru stabilnosti postojeće kosine. Metoda provjere je izabrana po "Bishopu" i napravljena s optimizacijom kružne klizne površine. Kako upisati kliz površine i principe optimizacije detaljno opisani su u prošlom poglavlju i u POMOĆ (F1).

		- 				
		777				
		/ /				
1	Analiza : 🖲 🔳 [1	0				
	Klizna površina : kružn	i 🔻	🖲 Nadomjestiti 🔲 U	Kloniti	🗈 Pretvori u poligon	
	Kružna	i klizna površ	ina			Kantaala atabilaasti kasina (Bishan)
	Centar :	[m]	🕑 Promijeni	metoda :	Bisnop 💌	Zbroj aktivnih sila : F _a = 367,48 kN/m
	-10,40	ing ware		rip analize :	Optimizacija 💌	Zoroj pasivnin sila : H _p = 1029,82 kN/m Moment pomicania : M _a = 14585,26 kNm/m
	Polumjer :	α1 =	-11.35 [9]	Ograničavanje	nje upisano	Otpornostni moment : Mp = 40873,51 kNm/m
Analiza	R = 39,69	[m] α ₂ =	38,80 [°]	Analizira	j	Stabinost kosine PRIHVATLJIVO

Analiza 1 – stabilnost originalne kosine

Faktor sigurnosti postojeće kosine analizirane po Bishopu je: FS = 2,80 > FS_s = 1,50 Zadovoljavajuće

Faza konstrukcije 2: modeliranje zemaljskog zareza

Dodajte drugu fazu konstrukcije sa gumbom na lijevom rubu prozora.

Faza konstrukcije : 🔳 💻	[1]	[2]	

Alatna traka "Faza konstrukcije"

Dodajte zemaljski zarez u graničnu površinu dodavanjem pojedinačnih točaka promatranog zemaljskog zareza (slično je dodavanju točaka na trenutnu graničnu površinu). Iskop za potporni zid je širine 0,5 m. Nakon što se završili s dodavanjem točaka kliknite "OK".

	Granična	Granična površina		
	x [m]	z [m]		
1	-15,00	7,50		
2	-10,00	4,50		
3	2,00	4,50		
4	2,00	-2,00		
5	2,50	-2,00		
6	2,50	11,75		

Koordinate za zemaljski zarez

Napomena: Ako definirate dve točke s istima x koordinatama (gledaj sliku), program vas pita ili želite novu točku dodati na lijevoj ili desnoj strani. Shema rezultata unosa točke, je obojana sa crvenom i zelenom bojom u dijalog prozoru.

"Zemaljski zarez"

Faza konstrukcije 3: dimenzioniranje potpornog zida

Sada dimenzionirajte potporni zid. U okviru "Nasip" dodajte točke nasipa granične površine. Time modelirate čelo konstrukcije zida (gledaj sliku).

Analiza 2 – unutarnja stabilnost potpornog zida

Za provjeru unutarnje stabilnosti kružne klizne površine je konstrukciju potrebno modelirati kao kruto tlo s kohezijom trenja, i ne kao kruto tijelo. Ako je modelirano kao kruto tijelo, klizna površina ne može presjeći konstrukcije.

Napomena: strižna otpornost potpornog zida je modelirana pomoću kohezije trenja, koju izračunamo ko:

$$c_{flet} = \frac{V_{Rd}}{h} = \frac{325,0}{0,5} = 650 \ kPa$$

Gdje je: h [m] - širina zida V_{Rd} [kN/m] - strižna otpornost zida

Vratite se do **faze konstrukcije 1** i dodajte novo tlo, imenom "Materijal potpornog zida". Definirajte vrijednost kohezije trenja ko c_{ef} = 650 kPa, kut unutarnjeg trenja je male vrijednosti (npr. $\phi_{ef} = 1^{\circ}$). Program ne dozvoljava unosa 0. Definirajte i jedinicu težine $\gamma = 25 \text{ kN/m}^3$, koja zadovoljava konstrukciji armiranog betona.

Analiza 3 – stabilnost kosine iza zemeljnog zareza i potpornog zida (unutarnja stabilnost)

Rezultat analize unutarnje stabilnosti pokazuje da su kosina sa zemeljskom zarezom i potporni zid stabilni:

 $FS = 1,57 > FS_s = 1,50$ ZADOVOLJAVAJUĆE

Analiza 3 – vanjska stabilnost potpornog zida

Dodajte novu analizu, upotrebom alatne trake na lijevom dolnjem rubu programa

Prije pokretanja analize vanjske stabilnosti kosina, dodajte ograničenja na postupku optimizacije, pomoću linije koje klizna površina ne može presjeći, kada izvršava postupak optimizacije (više informacija u POMOĆ - F1). U našom slučaju su linije ograničenja iste ko ograničenje pilota.

Analiza 4 - ograničavanja postupka optimizacije

Napomena: Za analize vanjske stabilnosti kosina je potrebno upisati potporni zid kao kruto tijelo. Kada je zid modeliran kao kruto tijelo, klizna površina ne presiječe ga tijekom optimizacije.

Analiza 4 – stabilnost kosine sa zemeljnom zarezom i potpornim zidom (vanjska stabilnost)

Iz rezultata vanjske stabilnosti možemo vidjeti, da je kosina sa zemeljnom zarezom i potpornim zidom stabilna:

 $FS = 2,59 > FS_s = 1,50$ ZADOVOLJAVAJUĆE

Zaključak

Cilj ovog zadatka je bio provjeriti stabilnost kosine i dizajn zemaljskog zareza sa potpornim zidom za izgradnju parkirališta s analizama unutarnje i vanjske stabilnosti. Rezultati analize su:

-	Analiza 1 (stabilnost postojeće kosine):	$FS = 2,80 > FS_s = 1,50$	ZADOVOLJAVAJUĆE
-	Analiza 2 (unutarnja stabilnost kosine):	FS = 1,57 > FS _s = 1,50	ZADOVOLJAVAJUĆE
-	Analiza 3 (vanjska stabilnost kosine):	$FS = 2,59 > FS_s = 1,50$	ZADOVOLJAVAJUĆE

Ova kosina sa zemeljnom zarezom i potpornim zidom iz betona (sa širinom 0,5 m) u smislu dugoročne stabilnosti zadovoljava kriterije ocjenjivanja.

Napomena: ovaj dimenzioniran potporni zid potrebno je provjeriti za napon od momenta savijanja i od aktivnog pritiska zemlje. Moment savijanja može se analizirati programom GEO5, program Dizajn Zagatne stijene i Provjera Zagatne stijene.

Za isti moment savijanja je potrebno i dimenzioniranje i provjera armature – na primjer u programu FIN EC – Concrete 2D.

10. Dimenzioniranje geometrije proširenog temelja

U tom poglavlju pokazat ćemo vam kako dimenzionirati prošireni temelj jednostavno i učinkovito.

Zadatak:

Za taj zadatak upotrebiti ćemo standard EN 1997-1 (EC 7-1, PP1) za dimenzioniranje dimenzija koncentričnog proširenog temelja. Unos sila: N, H_x, H_y. M_x, M_y. Teren iza konstrukcije je horizontalan; temeljno tlo sastoji se od S-F – pijesak tragom finih djelca, srednje gust. Na 6,0 m je malo razjeden škriljac. TPV je također na dubini 6,0m. Dubina temeljenja je 2,5 m ispod terena.

Shema zadatka – analiza nosivosti proširenog temelja

Rješenje

Za rješavanje tog problema, upotrebiti ćemo program GEO5 – program Proširenje temelja. Najprije ćemo upisati sve podace u svaki okvir, osim "Geometrije". U okviru Geometrija, ćemo kasnije dimenzionirati proširenje temelja.

Osnovni upis

U okviru "Postavke" kliknite na "Odaberite postavke" i odabrajte broj 3 - "Standard – EN 1997-PP1".

Popis pos	tavka			
Broj	Ime	Vrijedi za	\square	
1	Standard - faktori sigurnosti	Sve		
2	Standard - granična stanja	Sve		
3	Standard - EN 1997 - PP1	Sve		
4	Standard - EN 1997 - PP2	Sve		
5	Standard - EN 1997 - PP3	Sve	=	
6	Standard - LRFD 2003	Sve		
7	Standard - bez smanjenja parametara	Sve		
8	Češka - stari standardi CSN (73 1001, 73 1002, 73 0037)	Sve		
14	Njemačka - EN 1997	Sve		
15	Austrija - EN 1997	Sve	11	
22	Italija - EN 1997, PP1	Sve		
23	Italija - EN 1997 - PP2	Sve	11	
24	Finska - EN 1997	Sve		C OK
25	Engleska - EN 1997	Sve		
77	Dectuality EN 1007	Sug.	-	

"Popis postavka"

Također je potrebno odabrati metodu analize – u tom slučaju "Analiza za drenirane uvjete". Nećemo analizirati slijeganja.

Instalacija analiza	(Oddhada)	Analitička metoda Tip analize :	analiza za drenirane uvjete 💌
Peterseni: Standard = 19 1997-1911 Shydkar behaves : BE 1992-1-11 (BCC) Kedingent D1 1992-1-11 standard Analdka methods: Analar sa upoterbu sedonetarskih modulov Ograničnje const (brickat: po poterbu Analar sa methods: Analar sa upoterbu sedonetarskih modulov Analar sa methods: Analar sa upoterbu sedonetarskih modulov Analar sa methods: Birght (1997-1000) Analar sa methods: U silaku seD1 1997 Projedna primbu : 1 - smargerge alkimods (parametars fla	Oddorite postavke upravitelj Dodat upravitelj	Ne taračunaj sljeganja	

"Postavke"

Napomena: Obično proširenje temelja analizira se za drenirane uvjete = upotrebom efektivnih parametara tla (φ_{ef} , c_{ef}). Analiza za nedrenirane uvjete je izrađena za kohezivna tla i za kratkoročno izvođenje, upotrebom totalnih parametara tla (φ_u , c_u). S obzirom na EN 1997 ukupno trenje smatra se uvijek $\varphi_u = 0$.

U slijedećem koraku upišemo geološki profil, parametre tla i dodajte ih u profil.

			Kut	
Tlo	Profil	Jedinica težine	unutarnjeg	Kohezija
(klasifikacija)	[m]	$\gamma[\kappa N/\mu^3]$	trenja	c _{ef} [kPa]
			$\phi_{ef}[^{\circ}]$	
S-F – Pijesak pijesak				
tragom finih djelca,	0,0 — 6,0	17,5	29,5	0,0
srednje gust				
malo razjeden škriljac	od 6,0	22,5	23,0	50,0

Tablica sa parametrima tla

Sada otvorite okvir "Temelj". Kao tip temelja odaberite "centrično proširenje temelja" i upišite dimenzije; dubina od osnovne površine, dubina dna temelja, debljina temelja i inklinacije konačne granice. Također je potrebno upisati težino preopterećenja, koja je u zasipu temelja po gradnji.

'	Tip temelja centrično proširenje temelja 🔹	Dimenzije Dubina od osnovne povr. :	h _z = 2,50 [m]	Temelj Jedinica težine preopterečenja : $\gamma_1 = 20,00$ [kN/m ³]
	Shema geometrije	Dubina dna temelja :	d = 2,00 [m]	
	11	Debljina temelja :	t = 1,00 [m]	
	n ₂ I	Sa konačno granico : Sa dnom temelja :	s ₁ = 0,00 [°] s ₂ = 0,00 [°]	
melj				
₽I				

″Temelj′

Napomena: Dubina dna temelja ovisi od puno različitih čimbenika kao što su prirodni i klimatski faktori, hidrogeologija gradilišta i geološki uvjeti. U Češki Republiki dubina dna temelja priporučuje se, da je najmanje 0,8 metara ispod površine zbog smrzavanja. Za gline je preporučeno, da je dubina do 1,6 metara. Kod analiziranja nosivosti temeljenja, dubina temelja smatra se minimalne vertikalne udaljenosti između dna temelja i konačne granice.

U okviru "Opterećenje" unesete sile i momente koji djeluju na gornjem djelu temelja: N, H_x , H_y , M_x , M_y . Te vrijednosti možemo dobiti iz strukturne analize programa, a možemo ih uvesti u našoj analizi klikom na "uvoz".

999	Load		Load name	N	M _x	My	Hx	Hy	Design
Load No.	new	change		[kN]	[kNm]	[kNm]	[kN]	[kN]	
> 1	YES		Load Nr. 1 - Design	2500,00	150,00	200,00	100,00	75,00	*
2	YES	6	Load Nr. 2 - Service	1755,00	92,00	114,00	57,00	43,00	
3	YES		Load Nr. 3 - Design	2170,00	110,00	165,00	85,00	60,00	*
4	YES		Load Nr. 4 - Service	1523,00	77,00	116,00	59,00	42,00	
5	YES		Load Nr. 5 - Design	1850,00	105,00	120,00	65,00	30,00	×
6	YES	1	Load Nr. 6 - Service	1295,00	74,00	86,00	32,00	13,00	
7	YES		Load Nr. 7 - Design	1920,00	135,00	160,00	95,00	70,00	1
8	YES		Load Nr. 8 - Service	1637.00	96.00	108.00	64.00	23.00	1

Napomena: za dizajn proširenja temelja je općenito, da je dizajnirano opterećenje i odlučivano opterećenje. U ovom slučaju mi upotrebimo postavke analize EN 1997-1 – PP1, i potrebno je da unesemo vrijednosti usluga opterećenja, jer analiza zahtijeva dve kombinacije.

Novo opterećenje			
– Parametri opterečenja –			
Ime:	Op	oterećenje Br. 1 - Diza	ajn
Vertikalna sila :	N =	2500,00 [kN]	Ugovor N
Upogibni moment :	M _x =	150,00 [kNm]	
	M _Y =	200,00 [kNm]	M HV Hx J +x
Horizontalna sila :	H _x =	100,00 [kN]	M _×
	H _y =	75,00 [kN]	+ 4 *
Plan		Pomoć	
			🕑 Dodaj 🛛 🖸 Odustani

"Uredi opterećenje"

U okviru "Materijal" unesite karakteristike temelja.

Preskočite okvir "Preopterećenje", jer u blizini temelja nema nikakvog preopterećenja.

Napomena: Preopterećenja u okolici temelja utječu na analizu slijeganja i rotacije temelja a ne na nosivost. U tom slučaju vertikalna nosivost uvijek djeluje pozitivno tako da možemo analizirati utjecaj, bez ikakvog teoretskog znanja.

U okviru "Voda" upišite dubino podzemne vode na 6,0 m. Nećemo upisati pješčane posteljice, jer obravnavamo propusna nevezana tla na temelju. Sada otvorite okvir "Postavke faza", odaberite "stalna" i dimenzionirajte situaciju.

Dimenzioniranje dimenzije temelja

Sada otvorite okvir "Geometrija" i primijenite funkciju "Proračun dimenzije temelja", s kojom program određuje minimalne potrebne dimenzije temelja. Te dimenzije možemo kasnije urediti.

U dijalog prozoru moguće je upisati nosivost temeljnog tla Rd ili odabrati "Analiziraj". Mi ćemo odabrati "Analiziraj". Program automatski analizira težinu temelja i težinu tla ispod temelja i određuje minimalne dimenzije temelja.

Dijalog prozor "Proračun dimenzije temelja"

Napomena: Dimenzioniranje centričnog i ekscentričnog proširenja temelja se uvijek izvodi tako, da su dimenzije temelja tako male kao što mogu biti i da dalje održavaju odgovarajuću vertikalno nosivost. Opcija "Unos" dimenzionira dimenzije proširenog temelja na osnovi upisanih nosivosti temeljnog tla.

Sada možemo provjeriti dimenzioniranje u okviru "Nosivost"

Vertikalna nosivost : 97,8 %

 $R_d = 545.26 > \sigma = 533.04$ [kPa] ZADOVOLJAVAJUĆE

Zaključak:

Nosivost dimenzioniranoga temelja (2,0 x 2,0 m) je zadovoljavajuća.
11. Slijeganje proširenog temelja

U tom poglavlju opisat ćemo kako analizirati slijeganje i rotaciju proširenog temelja.

Zadatak:

Analizirajte slijeganje centrično proširenog temelja, koji je dimenzioniran u prošlom poglavlju (10. Dimenzioniranje geometrije proširenog temelja). Geometrija konstrukcije, opterećenje, geološki profil i tla su jednaki. Izvršite analizu pomoću edometarskih modula i razmotrite strukturnu čvrstoću tla. Analizirajte temelj u pogledu graničnih stanja upotrebljivosti. Za strukturno neodređene betonske konstrukcije, od kojih je proširenje temelja dio od njih, je ograničeno slijeganje: s_{m,lim} = 60,0 mm.

Shema zadatka – analiza slijeganja proširenog temelja

Rješenja:

Za rješavanje ovog zadatka, koristiti ćemo GEO5, program Proširenje temelja. Upotrebiti ćemo podace iz prošlog poglavlja, gdje su preporučeni podaci već upisani.

Osnovni upis:

Dimenzioniranje proširenog temelja u zadnjem zadatku izvedeno je pomoću standarda EN 1997, PP1. Eurokodi nemaju posebne teorije za analizu slijeganja, zato možemo koristiti svaku drugu sličnu teoriju slijeganja. Provjerite postavke u okviru "Postavke" sa klikanjem na "Uredi". U okviru "Slijeganje " odaberite metodu "Analiza upotrebom edometarskih modula" i namjestite Ograničenje zone utjecaja u "temelji na čvrstoći konstrukcije".

Dijalog prozor "Uredi trenutne postavke"

Napomena: Strukturna čvrstoća predstavlja otpor tla protiv deformacije od opterećenja. To je samo u Češki i Slovački republici. U drugih zemljama, ograničenja zone utjecaja su opisane ko postotak početnog in-situ napona. Preporučene vrijednosti strukturne čvrstoće su iz CSN 73 10021 standarda (Temeljno tlo ispod temelja).

U slijedećem koraku, definiramo parametre tla za analizu slijeganja. Svaki vrijednosti tla, trebamo dodati Poissonov razmjer, koeficijent čvrstoće konstrukcije i edometrski modul.

Tlo (klasifikacija)	Jedinica težine γ[κN/μ³]	Kut unutarnjeg trenja φ _{ef} [°]	Koeficijent čvrstoće konstrukcije m	Deformacijski modul E _{def} [MPa]	Poissonov razmjer v [–]
S-F – Pijesak pijesak tragom finih djelca, srednje gust	17,5	29,5	0,0	15,5	0,3
malo razjeden škriljac	22,5	23,0	0,3	500,0	0,25

Tablica sa parametrima tla

Analiza:

Sada pokrenite analizu u okviru "Slijeganje". Slijeganje je uvijek analizirano za servisno opterećenje.

U okviru "Slijeganje" potrebno je upisati i druge parametre:

- Početni in-situ napon u dnu temelja je uzet u obzir iz konačne ocjene

Napomena: vrijednosti in-situ napona u dnu temelja imaju utjecaj na iznos slijeganja i dubine zone utjecaja - veći je početni in-situ napon, manje je slijeganje. Mogućnost in-situ napona, koji djeluje na dno temelja ovisi o vremenu koliko je temelj otvoren. Ako je dno temelja otvoreno duže vrijeme, zbijanje tla, će biti manje i nije moguće, da uzmemo u obzir izvorne uvjete napona tla.

- U Redukcijski Koeficijent za izračun slijeganja, odaberite Efekt debljine temelja uzeti u obzir (κ1).

Napomena: Koeficijent " κ_1 " održava utjecaj na dubini temelja i daje realnije rezultate slijeganja.

Rezultat analize

Konačno slijeganje konstrukcije je 22,8 mm. U okviru analize graničnih stanja uslužnosti usporedimo vrijednosti analiziranih slijeganja s graničnim vrijednostima, koje su dopuštene za konstrukciju.

Napomena: Ojačanost konstrukcije (tlo- temelj) ima veliki utjecaj na slijeganje. Ojačanost opisana je koeficijentom k – ako je k veći od 1, temelj smatra se krutim i slijeganje je izračunano ispod karakteristične točke (locirana 0,371 ili 0,37 b iz centra temelja, gdje su l i b dimenzije temelja). Ako je koeficijent manji od 1, slijeganje izračunano je ispod centra temelja.

- Analizirana ojačanost temelja u smjeri je k = 175,02. Slijeganje je izračunano ispod karakteristične točke temelja.

Napomena: informativna vrijednost dozvoljenog slijeganja za različite vrste konstrukcije mogu se naći u različitih standardih – na primjer CSN EN 1997-1 (2006) – Dizajn geotehničkih konstrukcija.

Program Proširenje temelja također predvidi rezultate rotacije temelja, koje se analizira iz razlika slijeganja centra svakog ruba.

⁻ Rotacija u smjeri x : 0,75· (tan*1000)

- Rotacija u smjeri y : 1,776· (tan*1000)

Zaključak

Proširenje temelja u smislu slijeganja zadovoljava kriterije ocjenjivanja.

Slijeganje: $s_{m,lim} = 60, 0 \ge s = 22,8$ [mm].

U tom temelju provjera rotacije nije potrebna.

12. Analiza konsolidacije ispod nasipa

U tom poglavlju objasnit ćemo kako analizirati konsolidaciju ispod zasnovanog nasipa.

Uvod:

Konsolidacija tla uzima u račun čas slijeganja (izračunane deformacije zemlje) pod utjecajem vanjskih (konstantnih ili promjenjivih) opterećenja. Opterećenje dovodi do povećanja napona u formaciji zemlje i do postupno istiskivanja vode iz pora, odnosno do konsolidacije tla. Primarna konsolidacija odgovara situaciji u kojoj je rasipanje pornog tlaka kompletno, a sekundarna konsolidacija utječe na reološke procese u tlima (tzv. "učinak protjecanja"). To je proces koji ovisi od utjecaja broja faktora (permeabilnost, kompresija, duljina drenaže, itd.). S obzirom na stupanj konsolidacije razlikujemo slijedeće slučaje slijeganja:

- Konačno slijeganje odgovara 100% konsolidacije iz odgovarajućeg preopterećenja
- Djelomično slijeganje odgovara određenom stupnju konsolidacije iz odgovarjajučeg preopterećenja.

Zadatak:

Odredite vrijednost slijeganja iz središta nasipa izgrađenog na nepropusni glini, nakon jedne in nakon deset godina njegove gradnje. Napravite analizu pomoću standarda CSN 73 1001 (upotrebom edometarskih modula) a granicu zone utjecaja razmotrite korištenjem koeficijenta čvrstoće konstrukcije.

Shema zadatka – konsolidacija

Rješenje:

GEO5 program Slijeganje ćemo koristiti za rješavanje tog zadatka. Korak po korak ćemo modelirati taj primjer:

- 1 faza konstrukcije model graničnih površina, izračun početnog geostatičnog napona.
- 2 faza konstrukcije dodavanje preopterećenja pomoći nasipa.

- 3 -5 faza konstrukcije izračun konsolidacije nasipa u različitih časovnih intervalih (u skladu sa zadatkom)
- Ocjena rezultata (zaključak)

- Osnovni zadatak (postupak): Faza 1

U okviru "Postavke" provjerite "Izvođenje analize konsolidacije". Nakon toga odaberite određene postavke za izračun slijeganja iz "Popisa postavka". Taj popis opiše metodu analize za izračun slijeganja i ograničenje zone utjecaja.

Instalacija analiza	_	Konsolidacija	
Postavke : Češka - stari standardi CSN (73 1001, 73 1002, 73 0037) Analitička metoda : Analize sa upotrebu oedometarskih modulov Ograničenje cone utjecaja : temelji na čvrstoči konstrukcije	*	● Odaberite postavke Image: Postavke upravitelj Izvođenje analize konsolidac Image: Postavke upravitelj Izvođenje an	ije

"Postavke"

Napomena: Ovaj izračun uzima u obzir tzv primarnu konsolidaciju (rasipanje pornog tlaka). Sekundarno slijeganje (protjecanje), koje se može pojaviti uglavnom nekonsolidiranom tlu, nije riješen u tom primjeru.

Sada unesemo graničnu površinu. Cilj je da odaberete dva sloja između kojih se konsolidacija odvija.

Napomena: Ako postoji homogeno tlo, potrebno je unijeti izmišljen sloj, po mogućnosti na dubini zone deformacije, kako bi izračunali konsolidaciju (upotrebite iste parametre za dva sloja koja su odvojena od originalne granične površine).

Onda definirajte "Nesažimano tlo" (NT) (na dubini 10 m) pomoću unosa koordinata, slično kao modeliranje graničnih površina. Slijeganja ispod NT nema.

U slijedećem koraku upišemo parametre tla. Za konsolidirana tla, potrebno je navesti ili Koeficijent permeabilnosti "k" ili koeficijent konsolidacije " c_v ". Približne vrijednosti možete naći u POMOĆ (F1).

lodaj novo tlo					×
Identifikacija				_ _ N	lacrtati
Ime :	Nasip				Boja
Osnovni podata	k			0	Kategorija uzoraka
Jedinica težine :		γ =	20,00 [kN/m ³]	G	εο 💌
Slijeganje - edo	metarski modu	i		2	Uzorak
Poissonov razmje	er:	v =	0,30 [-]		
Analiza Slijeganja		umetni Eoed			
Edometrični modu	ul :	E _{oed} =	30,00 [MPa]		Mulj
Slijeganje - izrač	ćun uplivne co	ne		?	
Koef. čvrstoće ko	onstrukcije :	m =	0,30 [-]		
Pritisak uzgona				?	
Računski oblik po	dizanja :	standard			
Saturirana jedinio	a težine :	γ _{sat} =	20,00 [kN/m ³]	- K	Jasifikacija
				[Klasificirati
Konsolidacija					Izbriši
Tlo :		konsolidacija, upist	k 🖸		
Koeficijent perme	abilnost	ne konsolidira konsolidacija, upist	k		🕑 Dodaj
		konsolidacija, upis	cv		🔀 Odustani

"Promjena parametara tla"

Tlo (klasifikacija)	Jedinica težine γ[κN/μ ³]	Poissonov razmjer v [-]	Edometarski modul E _{edo} [MPa]	Koeficijent čvrstoće konstrukcije M [/]	Koeficijent permeabilnosti k [m/dan]
Glinasto tlo	18,5	0,3	1,0	0,1	1,0·10 ⁻⁵
Nasip	20,0	0,35	30,0	0,3	1,0·10 ⁻²
Pješčan mulj	19,5	0,35	30,0	0,3	1,0·10 ⁻²

Tablica sa parametara tla

Sada dodijelimo tla u profil. Okvir preopterećenje u 1 fazi konstrukcije nije uzet u obzir, jer se u tom slučaju pretpostavlja stvarni nasip (u fazah 2-5). U slijedećem koraku, ćemo dodati tablicu podzemne vode, upotrebom točka granične površine, u našem slučaju na površini.

U okviru "Postavke faze" možemo samo promijeniti izgled i profinjenost rupa, tako da ostavimo standardne postavke.

Prva "Faza izračuna" predstavlja početni geostatični napon i početno vrijeme gradnje. Međutim potrebno je navesti osnovne rubne uvjete za izračun konsolidacije u daljnjim fazama. Vrh i dno granične površine konsolidiranog tla je upisan, kao i smjer protoka vode iz tog sloja – to je drenaže.

	╶╶╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴	-[
		<u> </u>
I Analiziraj Analiza može biti provedena	no u fazi, u kojoj je uključena "Ukupno sljeganje"	
Konsolidacija Vrh granične površine konsolidiranog tla :	Granična površina Br. 1	
Dno granične površine konsolidiranog tla : Odljev vode :	Granična površina Br. 2 💌 Oba prema dolje i prema gore 💽	

"Analiza" - Faza konstrukcije 1

Napomena: Ako upišete "Nesažimano temeljno tlo" potrebno je razmisliti o smjeri protoka vode od konsolidiranog tla samo prema gore.

- Osnovni zadatak (postupak): Faze 2 -5

Pomaknimo se na fazu konstrukcije 2.

Faza konstrukcije : 🔳	[1]	[2]	

Alatna traka "Faza konstrukcije"

Definiramo naspi sa dodavanjem koordinata. Specifičan tip tla je dodijeljen u nasipu.

"Faza 2 – Točke granične površine nasipa"

Napomena: Nasip djeluje kao preopterećenje na osnovnu površinu temeljnog tla. Pretpostavlja se, da je dobro izvršen (optimalno sabijen) i teoretski ne podmiri. U praksi se može pojaviti slijeganje (loše zbijanje, utjecaj puzanja tla), ali program Slijeganje toga ne obravnava.

U okviru "Analiza" sada upišite vrijeme trajanja 2. Faze u skladu sa stvarnim vrjemenom gradnje nasipa. Stvarni izračun slijeganja još ne može biti izveden, jer je najprije potrebno poznati cijelu povijest nalaganja zemljanih radova konstrukcije, odnosno svih faza izgradnje.

I	📕 📧 Analiziraj 🗌 Analiza može biti provedena samo u fa	azi, u kojoj je uključena "Ukupno slijeganje"
	Konsolidacija	A
	🗌 Ukupno slijeganje	
	Vrijeme trajanja faze :	30,0 [dan]
	Opterećenje akcije :	opterećenje linearno povećano tijekom trajanja fa 💽
		cijelo učitavanje izvedeno početkom faze opterećenje linearno povećano tijekom trajanja faze
9		
HIGH		

"Analiza – Faza konstrukcije 2"

Pretpostavljamo, da je nasip građen postupno, zato smo u 2 fazi konstrukcije uzeli u obzir linearno rast opterećenja. U slijedećih fazah, smo trajanje faze upisali (1 godina je 365 dana - **3 faza**, 10 godina je 3650 dana – **4.faza** i ukupno slijeganje – **5. Faza**). I sva opterećenja su predstavljena na početku faze.

Izračuni su obavljeni nakon upisa zadnje faze konstrukcije, kod koje je uključeno "Ukupno slijeganje" (možete ga provjeriti u bilo koji fazi, osim u prvoj).

🚪 💽 Analiziraj	
Konsolidacija	
V Ukupno slijeganje	
Vrijeme trajanja faze :	[dan]
Opterećenje akcije :	cijelo učitavanje izvedeno početkom faze

"Izračun – Faza konstrukcije 5"

Rezultati analize

Po izračunu sveukupnog slijeganja, možemo promatrati djelomične vrijednosti konsolidacije ispod središta nasipa. Dobili smo slijedeće maksimalne vrijednosti slijeganja u pojedinim fazama izgradnje:

- Faza 1: samo geostatični napon slijeganje nije izračunano.
- Faza 2 (preopterećenje nasipa): za 30 dana \rightarrow 29.2 mm
- Faza 3 (nepromjenljivo): za 365 dana \rightarrow 113.7 mm
- Faza 4 (nepromjenljivo): za 3650 dana \rightarrow 311.7 mm
- Faza 5: sveukupuno slijeganje \rightarrow 351.2 mm

"Analiza – faza konstrukcije 5 (sveukupno slijeganje)"

Ako nas zanima slijeganje nasipa nakon izgradnje, prebaciti ćemo rezultate iz 3 in 4 faze (gumb "Vrijednosti") u odnosu na fazu 2, koja oduzima odgovarajuće vrijednosti slijeganja.

"Analiza – Slijeganje (razlike u odnosu na prethodne faze)"

Zaključak:

Slijeganje nasipa (ispod središta) u roku od godine dana od njegove izgradnje je 84.5 mm (113.7 – 29.2) i nakon deset godina 282.5 mm (= 311.7 – 29.2).