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a b s t r a c t

When constructing a building, manufactured materials are used. That is the reason for their excellent
material properties. In the case of the foundation, the natural condition of the soils must mostly always
be respected. The geostatical stress plays a significant role on the subsoil behavior because it is the de
facto natural form of the soil compaction. The soil has a memory of the highest stress that has ever
been loaded on it. The soil can be considered incompressible if the magnitude of a surcharge is lower.
In engineering practice the construction of higher buildings is founded in a deeper hole so that the
depth of the influence zone achieves an acceptable value for the future surcharge of the upper structure.
For very tall buildings, the deep hole foundation must be prolonged by piles. In particular, this article
deals with laboratory testing that provides the preconsolidation. In Czech, we term it the structural
strength of soil. The test provides the initial void ratio as well as the initial coefficient of fully saturated
hydraulic conductivity. The isotropic consolidation test with the triaxial test apparatus and consequent
knowledge of the pore pressure course was chosen to determine the initial soil properties, including the
preconsolidation level. Derived theory together with the genetic algorithms provide an efficient tool for
the determining parameters. Good knowledge of the influence zone is crucial when solving soil structure
interaction. The progress of the influence zone was considered from the extensive research carried out
at the University of Brasília, Brazil. Thus, using the measurements, the preconsolidation and its effect
were verified in situ. The derived formulas and presented graphs for influence zone depth estimation
have considerable importance for civil engineering practice. The Kantorovich method together with the
strategy of convolution was used to reach dimensional reduction when deriving analytical formulas.
Recommended results and formulas were verified against FEM code ADINA.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

It has been experimentally confirmed that a soil substantially
changes itsmaterial propertieswhen subjected to external loading.
Apart from that, the soil, when subjected to a certain loading
history, has the ability to memorize the highest level of loading
mathematically represented by the over-consolidation ratio, and
the initial void ratio. In its virgin state, the soil deformability
is relatively high. In contrast, following the unloading/reloading
path shows almost negligible deformation until the highest stress
state the soil has ever experienced before is reached [1–3].
To study this behavior of soil, we performed several small
laboratory tests. Transport processes were observed carrying out
isotropic consolidation with triaxial test apparatus. Employing
genetic algorithms, soil parameters were determined comparing
the pore pressure course (measured and calculated) [4,5]. In the
large scale, the effect of over-consolidation was simultaneously
investigated by way of rigid plate and pile working diagram
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analysis. Both the finite element technique and elastic layer theory
were employed in back analysis of the measured data. The great
effect of overburden was observed on the depth of the influence
zone in deep hole foundations [6,7]. This study is in general focused
on the description of preconsolidation effects by self weight of
overburden andon selection of themainparameters characterizing
this memory of the subsoil.

2. Preconsolidation, structural strength, in laboratory testing

The test was arranged in two runs, loading/reloading. Readings
were taken of the highest level of effective mean stress. Referring
to experimental measurements carried out with the triaxial
apparatus, the isotropic consolidation can be viewed as a one phase
flow in a fully saturated deforming medium undergoing small
deformation. When neglecting the body forces, the hydrostatic
state of stress maintained during the experimental measurement
gives
σx(x, y, z, t) = σy(x, y, z, t) = σz(x, y, z, t) = σm, (1)
whereσm is the totalmean stress. Following the Terzaghi–Fillunger
concept of effective stresses, this quantity can be expressed in
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terms of the pore pressure ps and the effective stresses between
grains σ eff

m as

σm = σ eff
m − ps. (2)

Assuming full saturation (Sw = 1) the pore pressure ps equals
the pressure in the liquid phase pw . Referring to experimental
conditions, the total mean stress remains constant throughout the
consolidation process. The assumed stress homogeneity together
with Eq. (2) then provide

σ̇m = σ̇ eff
m − ṗw = 0, (3)

where (·) represents the time derivative ∂( )/∂t . Transport of the
liquid phase throughout the soil sample can be described by the
following set of equations:

Transport equation

Jw = −
K ρw

γ w
· grad pw, (4)

where Jw is the mass flux of pore water, γ w = gρw is the specific
weight of water, ρw is the intrinsic mass density and K represents
an instantaneous coefficient of permeability.

The balance equation reads

ρw ε̇V + div Jw = 0. (5)

The volumetric strain εV follows from the constitutive equation

εV =
e − ē0
1 + ē0

= −
κ

1 + ē0
ln(−σ eff

m ),

σ eff
m > σ̄ eff

m = −pc, (6)

εV =
e − e0
1 + e0

= −
λ

1 + e0
ln(−σ eff

m ),

σ eff
m > σ̄ eff

m = −pc, (7)

they were derived for the case of the modified Cam clay model
from the bilinear consolidation line, Fig. 1. Actual void ratio is
denoted by e. The initial branch, often referred to as κ-line, gives
evidence of the previous stress history and represents the effect
of preconsolidation. The slope discontinuity between the κ and
λ-lines can be identified with the structural strength of the soil
given in terms of a certain level of the effective mean stress σ̄ eff

m =

−pc (pc is termed the preconsolidation pressure). Initial void ratios
for the κ and λ-lines are ē0, e0 respectively. Differentiating Eq. (7)
with respect to time gives the rate of volumetric strain in the form

ε̇V (t) =
ė

1 + e0
= −

λ

1 + e0

ṗw

σ eff
m
. (8)

Substituting Eqs. (4) and (8) into Eq. (5) and taking into account the
actual triaxial set-up, in which only the bottom face of the cylinder
is drained, leads to

−
1 + e0
γ wλ

σ eff
m (z, t)

∂

∂z


K(z, t)

∂pw(z, t)
∂z


− ṗw(z, t) = 0. (9)

It has been verified experimentally that in the case of isotropic
consolidation a simple power law written as (more in [8–11])

K(z, t)
K0

=


e(z, t)
e0

m

, (10)

represents the soil behavior fairly well. The dependence of the
actual void ratio e on the effective mean stress, Eq. (7), together
with Eq. (10) provide

∂K(z, t)
∂z

= −
mK(z, t)λ

e(z, t) σ eff
m (z, t)

∂pw(z, t)
∂ z

. (11)
Fig. 1. Bilinear form of the normal consolidation line.

Introducing Eq. (11) into Eq. (9) finally yields.

ṗw(z, t) = −
K(z, t)(1 + e0)

γ wλ


−

mλ
e(z, t)


∂pw(z, t)
∂ z

2

+ σ eff
m (z, t)

∂2pw(z, t)
∂z2


. (12)

A similar equation can be derived for the unloading branch when
replacing λ by κ and e0 by ē0 in Eq. (12)

ṗw(z, t) = −
K(z, t)(1 + ē0)

γ wκ


−

mκ
e(z, t)


∂ pw(z, t)

∂z

2

+ σ eff
m (z, t)

∂2pw(z, t)
∂z2


. (13)

The main objective of these steps is to introduce a simple yet
accurate numerical technique for extracting material parameters
of clayey soils that behave according to the Cam clay model, from
a simple one-dimensional consolidation test. To introduce this
task, recall that reproducing laboratory data requires supplying
the structural strength parameter pc , the initial void ratio ē0, the
initial coefficient of permeability K0, the swelling index κ and the
compression index λ. The last two material parameters and the
starting value of preconsolidation pressure could be specified from
the steady state response corresponding to the diagram shown
in Fig. 1. This however, would require carrying out a number
of isotropic consolidation tests for several predefined levels of
isotropic pressures attained at the end of the consolidation process
while measuring at the same time the change in volumetric strain
1εV . Such an approach would become not only time consuming
but also would be burdened by an additional experimental
error associated with the difficulty of measuring 1εV and the
determination of ē0 and K0 would require additional laboratory
tests. In addition a trial and error methodwould have to be used to
determine the remaining parameterm.

A simple solution avoiding such difficulties is offered by
following the steps ofmixed experimental andnumericalmethods.
In such a case, combining the experimental measurements and
numerical computations in a suitable optimization environment
(more in [12]) provides an efficient tool for inferring the desired
parameters from a single laboratory test. In particular, matching
experimentally obtained data with those derived numerically
might be the simplest view on a complex optimization procedure
that provides the desired results.
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Table 1
Optimal material parameters.

κ λ ē0 K0 (m s−1) pc (kPa) m
0.012 0.074 0.56 1.53e−9 28.45 4.7

Fig. 2. Time variation of pore pressure.

To that end, recall Eq. (12) describing the excess pore pressure
variation during consolidation. In view of the optimization
problem, the used material and structural strength parameters
ē0, K0, κ, λ, pc,m now become the search variables to be found by
minimizing the following objective function

F =

κ−
k=1

(pw(tk)− p̄w(tk))2.

The minimization problem is solved with an optimization pro-
cedure called the augmented (or parallel) simulated anneal-
ing (AUSA) which efficiently combines the essentials of genetic
algorithms (a population of possible solutions rather than a single
solution) with the basic concept of simulated annealing. The
genetic algorithm cycle consists of reproduction, recombination
and selection of a new population of input parameters in which
the common ‘‘cross-breeding’’ and ‘‘mutation’’ operators are ran-
domly employed. The principle of simulated annealing is used to
reduce the probability of replacing an existing individual solution
by a worse one. Thus the method searches the space more evenly
in the first steps and continues to concentrate in local minimums
as it proceeds. The limits of the solution space correspond to min-
imum and maximum acceptable values of input parameters and
were adopted from the literature.

In keeping up with the general scheme of the paper, we
will limit our attention to two essential parameters, namely the
preconsolidation pressure pc representing the loading history and
the exponent m affecting the time variation of the coefficient of
permeability, Eq. (10) (details in [4,11,13]).

To derive a robust numerical procedure, the optimal parameters
were sought comparing numerical data with measured values of
pore pressure. An example of the result is listed in Table 1.

The influence of the preconsolidation pc and the influence of the
parameterm, describing the change of the permeability coefficient,
are clearly presented in Fig. 2. Finally, the proposed theory is
highlighted in Fig. 3. It is seen that the theoretical and measured
loading/reloading curves fit fairly well (all details in [4]).

3. Validation of preconsolidation in situ and its testing

The pre-designed Brazilian capital Brasília, located in the Fed-
eral District of Brazil, was designed to house only the main Gov-
ernmental administrative institutions and its public employees.
Nevertheless, it has increased four times more than what was ini-
tially forecast and is still expanding. Construction is advancing
through distinct (geological) zones of this same district, and allows
the use of distinct techniques for deep foundation deployment and
design.
Fig. 3. Time variation of pore pressure.

Fig. 4. Location of the studied sites.

Hence in 1995, the University of Brasília (UnB) started a major
research project in order to enhance knowledge on the behavior
of the typical deep foundations that are in the stratified, tropical
subsoil of the Federal District. Itwas decided to carry out horizontal
and vertical field loading tests on locally used foundation types.
These foundations had full-scale dimensions and were placed
within the University of Brasília campus at the experimental
research site of the Geotechnical Post-Graduation Program. The
geotechnical profile of this campus is composed of the typical
unsaturated ‘‘porous’’ clay of Brasília. In addition, field loading tests
on full-scale instrumented foundations outside the campus were
also carried out. In all cases, the tests were performed with the
cooperation of local engineering companies and University staff
(Fig. 4).

A mechanically bored pile founded in the University of
Brasília campus (UnB research site) is analyzed together with
instrumented piles from two other engineering sites within this
same district (Table 2).

One of them is a continuous flight auger type pile located in
the North Wing of Brasília (212N site), close to the University
Campus, and founded in the same geological material. The other is
a mechanically bored pile excavated with bentonite mud, located
in a site around 25 km from the University Campus (Taguatinga
site), and founded in a foliated and stratified material which
originates from slate decomposition.

The experimental curves of pile load versus displacement,
structural load transfer along the pile’s shaft, and average skin
friction and base pressure versus loading level are presented
and compared to numerical predictions made from a semi-
analytical procedure. This procedure is coded in the industrial
software denominated GEO4 Pile modulus that was developed in
cooperation between theDepartment ofMechanics, Faculty of Civil
Engineering, CTU in Prague and Fine Ltd. Software Company.

The results of back analysis are depicted in Figs. 5 and 6. The
necessity for a further refinement for both 212N and Taguatinga
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Table 2
General geotechnical parameters of the UnB site [14].

Parameter Unit Range

Sand percentage % 12–27
Silt percentage % 8–36
Clay percentage % 80–37
Dry unit weight kN/m3 10–17
Natural unit weight kN/m3 17–19
Moisture content % 20–34
Degree of saturation % 50–86
Void ratio – 1.0–2.0
Liquid limit % 25–78
Plastic limit % 20–34
Plasticity index % 5–44
Drained cohesiona kPa 10–34
Drained friction anglea degrees 26–34
Young’s modulusb MPa 1–8
Coefficient of collapse % 0–12
Coeff. earth press (K0)

c – 0.44–0.54
Coeff. permeability cm/s 10−6–10−3

Fig. 5. Working diagram 212N pile.

analyses is evident when comparing the load transfer curves
of these same sites, as is respectively done in Figs. 7 and 8.
Hence, although refinement is required, the results can be already
considered suitable from a practical point of view, if one accepts as
valid and within tolerable range (in engineering terms) the errors
involved in this first series of analyses (Table 3).

Fig. 8 presents the comparison of load transfer curves for the
Taguatinga pile. It indicates that a fairly good result was obtained,
Fig. 6. Working diagram Taguatinga pile.

Fig. 7. Load transfer curve 212N pile.

and a better (that is than the 212N pile) agreement was achieved.
Similarly as before, one can affirm that the analyses can be already
considered as valid from a practical point of view. Indeed, the
comparison of the average unit skin friction and the percentage of
base load between numerical and experimental values is good. It
is observed that, for the failure condition (3200 kN), ≈42% of the
applied load at the pile’s head was transmitted to the base of this
pile (numerical prediction).

At working conditions (1600 kN) however, the software has
estimated that ≈11% of the applied load at the pile’s head would
Table 3
Back analyzed geotechnical parameters from all sites via GEO4 software.

Sublayer type Depth (m) Geotechnical parameter N∗(SPT)
φ′ (deg) c ′ (kPa) E (MPa) K

UnB site:

Clay I 0–3 27 13 5 0.6 3
Clay II 3–8 27 14 13 0.6 4
Clay III 8–12 27 52 19 0.6 4–15
Rock >12 (Non deformable)

212N site:

Embankment 0–4 25 0 25 0.4 9
Clay A 4–8 27 15 20 0.4 9–5
Clay B 8–15 27 5 40 0.4 5–15
Clay C 15–25 27 5 100 0.4 15–20
Rock >25 (Non deformable)

Taguatinga site:

SClay 0–2.5 27 15 20 0.7 6
CSand 2.5–5 30 10 60 0.7 10
SSilt I 5–10 30 20 120 0.7 16–40
SSilt II 10–15 40 30 600 0.7 50+
Rock >15 (Non deformable)
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Fig. 8. Load transfer curve Taguatinga pile.

Fig. 9. Comparative results 212N pile.

be transmitted to the base of this pile. Also at this latter condition,
the comparison of average unit skin friction between numerical
(≈56 kPa) and experimental (≈40 kPa) values were reasonably
good.

This value is very close to the value that has been experimen-
tally measured throughout the test (as given before, around 40%).

The discrepancies are again related to the fact that the pile was
founded in a very hard soil stratum (saprolite), which was not
perfectly simulated in this first analysis.

The lack of agreement for the base pressure is directly related
to the fact that the analyses failed to properly model the last
layer or the foundation layer, where extremely high values of unit
pressures took place and were indirectly measured. In numerical
terms, a unique and particular soil spring was assigned to this
last layer. Since it is evident from Figs. 9 and 10 (in particular
the latter one) that the numerically predicted base pressures were
substantially lower than the measured values, one can conclude
that the stiffness of this spring was not properly incorporated
in the analyses. A fine readjustment of the stiffnesses for both
situations, increasing towards more representative values, would
certainly improve the matching quality of the load transfer curves
of Figs. 9 and 10, especially at the deepest pile sections. The
experience gainedwith these analyses has demonstrated that deep
strata, stiffer than the overlying layers and leveled to the pile’s
base, shall be incorporated in the numerical back analysis. This
holds particularly true for the Taguatinga site, where the pile was
founded on a hard saprolite medium. There was also realised the
importance of having instrumented piles at the site. Although
such efforts may increase construction costs, the assistance of the
Fig. 10. Comparative results Taguatinga pile.

Fig. 11. Formulation of the elastic layer solution.

instrumentation in guiding and benchmarking the back analysis is
of major importance (more information in [14,15]).

4. Elastic layer theory, basic ideas of dimensional reduction

The aim of the analytical solution is to determine the deforma-
tion of an elastic layer in the vertical direction. The solution proce-
dure builds upon neglecting the horizontal displacements similar
to standard assumptions applied to the analysis ofWestergard sub-
space. Clearly, such an assumption results in a stiffer soil response
thereby providing an upper estimation of the depth of influence
zone. The problem formulation is evident from Fig. 11. Referring to
the Kantorovich method (details in [16,17]) the distribution of the
displacement field is obtained in the form

w(x; y; z) =

∞−
j=1,3,5

wj(x; y)ψj(z),

ψj(z) = cos
jπ
2H

z, (14)

where the functions ψj(z), j = 1, 3, 5, . . . represent a complete
set of base functions. Let us calculate the components of the small
strain tensor. The small strain tensor is the symmetrical part of the
gradient matrix tensor. From (14), it yields:

εxx = 0, εyy = 0, εzz =

∞−
j=1,3,5

wjψj,z,

γxy = 2εxy = 0, γyz = 2εyz =

∞−
j=1,3,5

wj,yψj,

γzx = 2εzx =

∞−
j=1,3,5

wj,xψj.

(15)

Notation ∂wj
∂x = wj,x is used for the partial derivative.
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For the stress–strain relation, Hooke’s law is adopted:

σxx =
v

1 − v
Eoed

∞−
j=1,3,5

wjψj,z,

σyy =
v

1 − v
Eoed

∞−
j=1,3,5

wjψj,z, σzz = Eoed
∞−

j=1,3,5

wjψj,z,

τxy = Gγxy = 0, τyz = G
∞−

j=1,3,5

wj,yψj,

τzx = G
∞−

j=1,3,5

wj,xψj.

(16)

Symbols E, ν, Eoed,G represent known values of Young’s modulus,
Poisson’s ratio, oedometric modulus and shear modulus, respec-
tively. Lagrange’s principle of virtual work for the general principle
of equilibrium is used in the following form:∫

R2

∫ H

0


G
∂w

∂x
∂δw

∂x
+ G

∂w

∂y
∂δw

∂y

+ Eoed
∂w

∂z
∂δw

∂z


dz − fz(x, y)δw(x, y, 0)


dxdy = 0. (17)

Since the virtual functions δw will be used in the same form as w,
integrating the equilibrium equation in the vertical direction takes
the form of an infinite number of partial differential equations:

−1wj(x, y)+ (jα)2wj(x, y) =
2
GH

fz(x, y), j = 1, 3, 5, . . . ,

α =
π

2H


Eoed
G

=
π

2H


2 − 2v
1 − 2v

. (18)

In the case of axisymmetry or if the uniform load is acting on
an infinite strip, the solution can be discovered by solving the
system of ordinary differential equations. Otherwise, the strategy
of convolution must be employed. Eq. (18) is the generalized form
of the known Pasternak solution of subsoil (see e.g. [8,18,10,19]).

The solution of the partial differential equation can be written
as the convolution of the right hand side and the fundamental
solution Fj corresponding to the left hand side

wj(x, y) =
2
GH

∫
R2

fz(ξ , η)Fj(ξ − x, η − y)dξdη

=
2fz
GH

∫
R2

Fj(ξ − x, η − y)dξdη. (19)

The function Fj satisfies the equation

−1Fj + (jα)2Fj = 0 for x2 + y2 > 0. (20)

It is of the form

Fj =
1
2π

K0(jα

x2 + y2)

whereK0(jα

x2 + y2) is themodified Bessel function of zero order

(see [9,16]). Due to singularity of Fj at [0, 0] satisfies the right
hand side of (19) and is evaluated as the limit of integrals over the
smaller region Ωε = Ω \ Kε for ε → 0, where Kε is the small
ball of a small positive radius ε and the center at the point [x, y].
Integrating (20) over and applying Green’s theorem we can write∫
Ωε

Fj(ξ − x, η − y)dξdη =
1

(jα)2

∫
Ωε

1Fj(ξ − x, η − y)dξdη

=
1

(jα)2


∂Ωε


∂Fj
∂ξ

dη −
∂Fj
∂η

dξ

. (21)
Fig. 12. The governing idea of the influence zone calculation.

If [x, y] is not a point of ∂Ω, ∂Ω \ Kε = ∂Ω , in particular we can
simplify and write

wj(x, y) =
2fz
GH


1
jα

2 
1 +


∂Ω


∂Fj
∂ξ

dη −
∂Fj
∂η

dξ


, (22)

for [x, y] ∈ Ω ,

wj(x, y)
2fz
GH


1
jα

2 
∂Ω


∂Fj
∂ξ

dη −
∂Fj
∂η

dξ


(23)

for [x, y] ∈ R2
\ (Ω ∪ ∂Ω).

If wj(x, y) for j = 1, 3, 5, . . . are known functions, the stress
function σzz(x, y, z) takes the form

σzz(x, y, z) = −Eoed
∂w

∂z
(x, y, z)

= Eoed
−

j=1,3,...

jπ
2H
wj(x, y) sin


jπz
2H


. (24)

5. The phenomenon of influence zone and its estimation

We introduce the subject of considering the distribution of
vertical stresses according to Fig. 12. Due to excavation to a certain
depth h, the original geostatic stress state, which sets the initial
compaction of soil represented by the preconsolidation pressure
(see [20,3]), the highest stress level in the soil recorded during
the prior loading history, is reduced. Subsequent surcharge at the
footing bottom gives further redistribution of the vertical stress.
It is assumed that in the region where the vertical effective stress
due to surcharge at the footing bottom combinedwith the reduced
geostatic effective stress (by excavation) does not exceed the
original geostatic effective stress, the skeleton deformations are
negligible. This condition, in our sense, describes the depth of the
influence zone H [8,6].

Denote thewidth of uniform load strip fz by 2a, i.e.Ω = {[x, y] :

−a < x < a, y ∈ R}. The solutionw(x, y, z) of (18) is independent
of y : w = w(x, z). There are an infinite number of the ordinary
differential equations, together with the boundary and continuity
conditions

lim
|x|→∞

wj(x) = 0, wj ∈ C1(R), j = 1, 3, . . .

produce the solution

wj(x) =


A0 + A1 cosh(jαx) for x ∈ ⟨−a, a⟩
A2 exp(−jα|x|) for |x| > a,

where A0 =
2fz
GH


1
jα

2
.

Unknown constants A1, A2 of integration result from the
condition of continuity (of the displacement and its first derivative)
at the points of |x| = a. Inserting these constants into the above



P. Kuklík / Engineering Structures 33 (2011) 1195–1204 1201
formula it provides

wj(x)

=
2fz
GH


1
jα

2

·


1 − cosh(jαx) exp(−jαa) for |x| ≤ a
exp(−jα|x|) sinh(jαa) for |x| > a. (25)

Hence, the functionw(x, z) being in the form of series

w(x, z) =

−
j=1,3,...

wj(x) cos

jπz
2H


(26)

solves the problem. The component of the vertical stress function
σzz is evaluatedbydifferentiatingw(x, z)with respect to z by terms

σzz(x, z) = −Eoed
∂w

∂z
(x, z) = Eoed

−
j=1,3,...

jπ
2H
wj(x) sin


jπz
2H


=

4fz
π

−
j=1,3,...

1
j
sin

jπz
2H


·


1 − cosh(jαx) exp(−jαa) for |x| ≤ a
exp(−jα|x|) sinh(jαa) for |x| > a.

All three series in the above formula can be summed (more in [9]).
Finally, the vertical stress σzz can be written in the form

σzz(x, z) = fz −
fz
π


arctan


sin(πz/2H)

sinh(α(a − x))


+ arctan


sin(πz/2H)

sinh(α(a + x))


, for |x| ≤ a

σzz(x, z) =
fz
π


arctan


sin(πz/2H)

sinh(α(|x| − a))


− arctan


sin(πz/2H)

sinh(α(|x| + a))


, for |x| > a. (27)

The stress function σzz(x, z) for fixed z ∈ ⟨0,H⟩ acquires its
maximum at the point x = 0:

max
x∈R

σzz(x, z) = σzz(0, z) = fz −
2fz
π

arctan

sin(πz/2H)

sinhαa


=

2fz
π

arctan


sinhαa
sin(πz/2H)


.

The function σzz(0, z) decreases with increasing z. The maximum
of the stress function at the bottom (z = H) of the influence zone
depth is

σzz(0,H) =
2fz
π

arctan sinhαa. (28)

The influence zone depth is estimated by means of the quality

σzz(0,H) = γ h, (29)

where γ is the specific weight of soil and h is the depth of the
excavation. Comparing the last two identities we obtain

γ h
fz

=
2
π

arctan sinhαa.

Denoting

β =
2αa
π

=
a
H


2 − 2v
1 − 2v

, Fstrip(β) =
2
π

arctan

sinh

βπ

2


.

The above identities give the equation

γ h
fz

= Fstrip(β).
Fig. 13. Progress of influence zone depth of the 1 m wide strip.

Eliminating the influence zone finally yields

H =
πa
2


2 − 2v
1 − 2v

1

sinh−1

tan πγ h

2fz


=
π(2a)

4


2 − 2v
1 − 2v

1

sinh−1

tan πγ h

2fz


=
πa
2


2 − 2v
1 − 2v

1

ln

sin πγ h

2fz
+ 1


− ln


cos πγ h2fz

 . (30)

This closed formula can be effectively used in civil engineering
practice. Now we give several comments on the derived identity.
First, the influence zone is proportional to the strip load width 2a.
Secondly, the influence zone does not depend on Young’smodulus,
but there is a significant role for Poisson’s ratio. Overloading of the
excavation geostatic stress state fz/γ h is the third parameter to
be taken into account. All these statements are highlighted in the
following Fig. 13.

Similarly, we can estimate the depth of influence zone in the
case of rectangular footings. Let us introduce the function

F(β) =
2
π


arctan

βπb
2a

+ arctan
βπ

2


−

4
π2

∫ 1

0

1 a
b

2
+ 1 − t2

arctan sinh

×


βπb
2a

√
1 − t2

a
b

2
+ 1 − t2


dt −

4
π2

×

∫ 1

0

1 b
a

2
+ 1 − t2

arctan sinh

×

 βπ

2
√
1 − t2


b
a

2

+ 1 − t2

 dt,

β =
2αa
π

=
a
H


2 − 2v
1 − 2v

.

(31)

The function F(β) describes the maximum layer bottom vertical
stress σz(0, 0,H) by the unit uniform load acting in the rectangular
region 2a× 2b. The depth of the influence zone is described by the
point where the vertical stress due to surcharge reaches the value
γ h. Themaximum stress below the centre of rectangle at the depth
H can be then expressed in the following form

σz(0, 0,H) = fzF(β) = γ h. (32)
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Fig. 14. Courses of F(β) function.

As the value of preconsolidation γ h and the level of surcharge fz
are known, the value β is obtained as the inverse of the function
F(β). The following formula describes this statement and the idea
as to how to calculate the depth of the influence zone

γ h
fz

= F(β) → β =
a
H


2 − 2v
1 − 2v

→ H. (33)

Functions F(β) for some quotients a/b are presented in Fig. 14.

6. Verification of derived formulas using FEM ADINA solutions

This part focuses on the comparison between results obtained
using the formulas described above and results obtained from
the finite element code ADINA (Automatic Dynamic Incremental
Nonlinear Analysis). At first the infinite strip (line for an
infinitezimal a) load line load problemwas selected for comparison
and the values of σzz(0,H) are compared. The size of the numerical
model in terms of depth equals the selected depth of the influence
zone, i.e. H .

Let us first restate the derived formulas for σzz(0,H) in the case
of an infinite strip load.

σzz(0,H) =
2fz
π

arctan sinhαa
Fig. 15. Scheme of the tested example.

where:
H . . . depth of influence zone,

fz . . . value of the strip load,
ν . . . Poisson’s ratio,
a . . .half of the strip width,
α . . . α =

π
2H


2−2ν
1−2ν .

For the FEM analysis, the following assumptions were used.
• 1 degree of freedom for nodes (z-direction)
• Plain strain
• Isotropic elastic material
• Symmetry—only one half of the model
• Software ADINA (Automatic Dynamic Incremental Nonlinear

Analysis).

Shape of the FE mesh, type of the FE are subjected to change to
observe the influence on the results.

The tested example has the following details:
Infinite strip line load fz = 100 000 kN/m2.
Infinite line load fz = 100 000 kN/m.
Depth of influence zone H = 5 m.
Material properties are E = 75 GPa; ν varies from ny = 0.3.
Model width B = 30 m (15 m using symmetry).

The main reason for applying such a high and nearly unreal mag-
nitude of load was to get sufficient digital output in the com-
puter code. The geometry of the described example is clear from
Fig. 15.

Table 4 shows the results obtained from numerical analysis for
five different shapes of the FE mesh. Three setups had coarse mesh
with different points of densification. Two other setups had fine
mesh. The mesh shapes tested are clear from Fig. 16. For every
mesh shape four types of FE were used, i.e. triangle with 7 and 3
nodes and quad with 9 and 4 nodes. The details for the used FE
types can be found in [21]. An analytical solution gives σzz(0.5) =

18 708 kPa.
Table 4
Numerical results for varying FE mesh and types of FE.

Mesh type FE type FE area (m2) Number of DOF Number of FEM σzz (kPa) Relative diff. (%)

Type 1

9-Node quad 0.06875 1559 374 18665 −0.23
7-Node triangle 0.034375 2259 724 18678 −0.16
4-Node quad 0.06875 406 374 18621 −0.47
3-Node triangle 0.034375 406 724 18765 0.31

Type 2

9-Node quad 0.0187 1559 374 18687 −0.11
7-Node triangle 0.00935 2259 724 18694 −0.08
4-Node quad 0.0187 406 374 18657 −0.27
3-Node triangle 0.00935 406 724 18757 0.26

Type 3

9-Node quad 0.0125 1559 374 18698 −0.06
7-Node triangle 0.00625 2259 724 18699 −0.05
4-Node quad 0.0125 406 374 18689 −0.10
3-Node triangle 0.00625 406 724 18912 1.09

Type 4

9-Node quad 0.0825 3731 900 18638 −0.38
7-Node triangle 0.04125 5531 1800 18659 −0.26
4-Node quad 0.0825 966 900 18568 −0.75
3-Node triangle 0.04125 966 1800 18817 0.58

Type 5

9-Node quad 0.01155 3709 900 18691 −0.09
7-Node triangle 0.005775 5455 1773 18697 −0.06
4-Node quad 0.01155 955 900 18672 −0.20
3-Node triangle 0.005775 955 1773 18729 0.11
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TYPE1 TYPE2

TYPE3 TYPE4

TYPE5

Fig. 16. Shapes of FE mesh.
Table 5
Numerical results.

1/2 uniform load width (m) 0 0.5 1 2 4 8

Poisson’s ratio σzz(0,H) (kPa)

0.05 14531.1 14412.0 14053.9 12853.8 9959.04 6044.0
0.15 15585.0 15437.8 15000.4 13565.1 10269.9 6091.8
0.25 17322.0 17118.7 16528.5 14661.8 10702.9 6147.7
0.3 18709.0 18453.2 17720.4 15472.4 10988.6 6177.8
0.35 20818.0 20464.7 19479.0 16596.9 11339.0 6207.5
0.4 24495.8 23922.6 22388.4 18273.6 11767.9 6233.1
Table 6
Analytical results.

1/2 uniform load width (m) 0 0.5 1 2 4 8

Poisson’s ratio σzz(0,H) (kPa)

0.05 14529.7 14405.1 14049.9 12851.1 9958.2 6043.6
0.15 15583.9 15430.5 14996.2 13562.5 10269.1 6091.6
0.25 17320.5 17110.7 16524.1 14659.3 10702.4 6147.6
0.3 18708.3 18444.7 17715.8 15470.0 10988.2 6177.8
0.35 20816.7 20455.3 19474.1 16594.7 11338.6 6207.5
0.4 24494.9 23912.0 22383.3 18271.7 11767.7 6233.1
Another group of numerical tests were performed for the
infinite stripe load problem with varying width of the strip (a =

0–8 m) and Poisson’s ratio (from 0.05 to 0.4). The strip load
was width dependent so in total it remains the same, i.e. fz =

100 000 kN/m2 for a = 0.5 m; fz = 50 000 kN/m2 for a = 1.0 m;
etc.

The results obtained are presented in Tables 5 and 6. The
presented results show very good agreement. The differences are
smaller than 0.1% for this range of Poisson’s ratio. In all presented
results, we keep the geotechnical convention in the stress values,
i.e. positive stress value means pressure while the negative stress
value is tension.

The results obtained from numerical analysis are generally in
very good agreement with the results derived from the presented
formulas. We can actually now use the described theory for
checking the accuracy of newly built FE codes and FE types. More
tests were performed with other codes and types of problems and
results can be found in [22].

7. Conclusion

The contribution summarized research activity carried out
at CTU in Prague, Czech Republic, and UnB Brasilia, Brazil.
Within the scope of interest were mainly preconsolidation, a
special kind of soil memory, and its effect on the soil upper
structure interaction. In the laboratory the significant influence
of over-consolidation on pore pressure evolution during isotropic
consolidation with the triaxial test apparatus was considered.
Vice versa, employing the genetic algorithms the soil parameters
can be effectively investigated; namely initial void ratio and
preconsolidation effective mean pressure. Concerning in situ
testingwe analyzed theworking diagrams of piles. In collaboration
with UnB Brazil, provider of in situ tests, we observed also the
significant effect of preconsolidation in the pile heel. Robust theory
andderivation ofmany analytical formulaswere accomplished and
consequently implemented to the computer code to capture the
relevant result of the pile behavior. Alsowewould like to underline
the idea of influence zone estimation. The close formula for its
estimation can be effectively used in civil engineering practice
as it gives immediately the value of influence zone depth. As it
was derived from the load acting in infinite strips the value of
the influence zone depth is just almost a little bit overestimated.
The present close formula was verified against the numerical code
ADINA, to enhance its credit. In general, the benefit of a semi-
analytical solution can be found in what follows. Input parameters
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are very easily estimated and also they are intelligible for civil
engineers. Calculation is very fast and it gives relevant results.
Analytical and semi-analytical solutions significantly save time for
designers in contrast to pure numerical methods.

Otherwise, if it is necessary, the semi-analytical solution gives
a very good starting point for future numerical fine tuning.
Technical knowledge based on the presented results and theory
was implemented in the computers codes, namely GEO5.
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