e des Essarts 189 téléphone: 04 72 11 28 57 www.soilboring.fr

Calcul de la pente clouée

Données d'entrée

Projet

Date: 28.10.2015

Paramètres

(saisie pour l'étude actuelle)

Matériaux et normes

Structures en béton : EN 1992-1-1 (EC2)

Coefficients EN 1992-1-1: standard

Calcul des murs

Calcul de la pression active : Théorie de Coulomb (norme CSN 730037)

Calcul de la pression passive : Théorie de Caquot-Kerisel

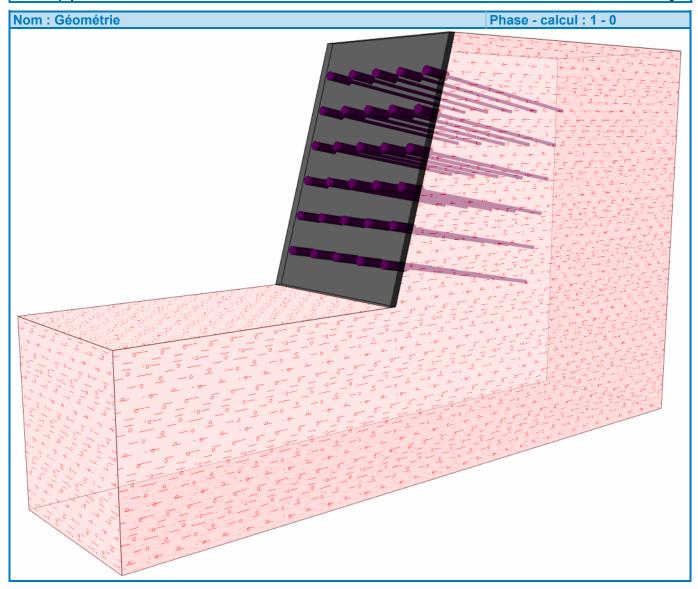
Calcul du séisme : Mononobe-Okabe Forme du coin de sol : calculer comme incliné

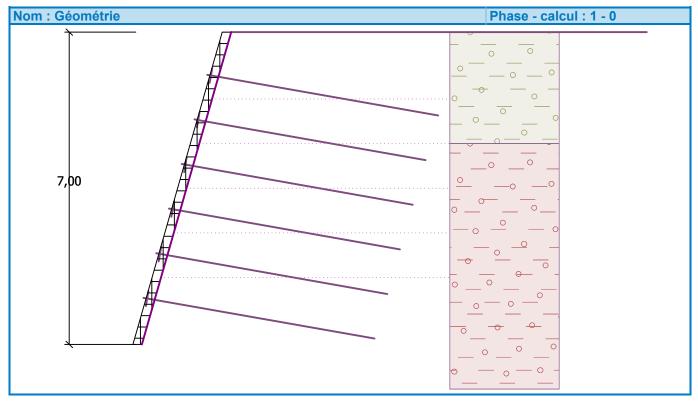
Excentricité admissible : 0,333

Méthode de vérification : coefficients de sécurité

Coefficients de sécurité						
Situation de calcul permanente						
Coefficient de sécurité au renversement :	SF _o =	1,50	[-]			
Coefficient de sécurité au glissement :	SF _s =	1,50	[-]			
Coefficient de sécurité de la capacité portante du sol de fondation :	SF _b =	1,00	[-]			

Calcul de la stabilité


Méthode de vérification : coefficients de sécurité

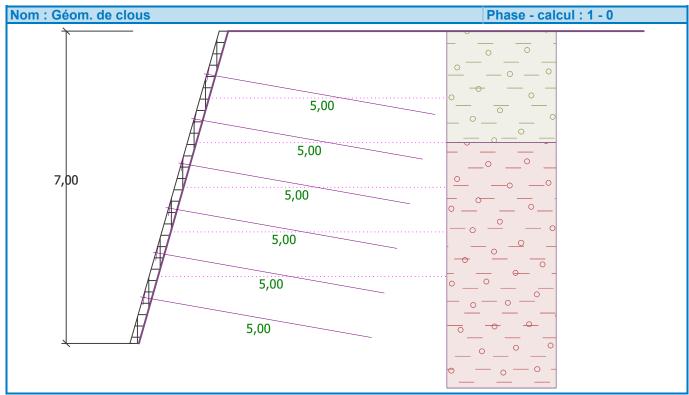

Coefficients de sécurité					
Situation de calcul permanente					
Coefficient de sécurité de la surface de glissem. plan :	1,20 [–]				
Coefficient de sécurité de la surface de glissem. brisée :	SF _{br} =	1,30 [–]			

Géométrie de la structure

Epais. d'enrobage en bét. = 0,20 m

Num.	Profondeur	Ordonnée
Nulli.	z [m]	x [m]
1	0,00	0,00
2	7,00	-2,00

Types des clous


Num.	Nom			Capac. port. de la tête
		R _t [kN]	T _p [kN/m]	R _f [kN]
1	Nail type No. 1	235,62	18,85	37,70

Géométrie des clous

Nombre totale des clous- 6

Inclin. des clous par rapport à la horizontale = 10,00 °

Clou	Profondeur [m]	Profondeur du niveau [m]	Long. [m]	Dist. [m]	Type du clou
1	1,00	0,50	5,00	1,00	Nail type No. 1
2	2,00	0,50	5,00	1,00	Nail type No. 1
3	3,00	0,50	5,00	1,00	Nail type No. 1
4	4,00	0,50	5,00	1,00	Nail type No. 1
5	5,00	0,50	5,00	1,00	Nail type No. 1
6	6,00	1,00	5,00	1,00	Nail type No. 1

Matériau de la structure

Le calcul des structures en béton a été effectué selon la norme EN 1992-1-1 (EC2).

Béton : C 20/25

Résistance cylindrique à la $f_{ck} = 20,00 \text{ MPa}$

compression

Résistance à la traction $f_{ctm} = 2,20 \text{ MPa}$

Acier longitudinal: B500

Limite d'élasticité $f_{vk} = 500,00 \text{ MPa}$

Paramètres des sols

Soil No. 1

Poids volumique : $\gamma = 19,50 \text{ kN/m}^3$

Etat de contraintes : effective

Angle de frottement interne : $\phi_{ef} = 27,00 \,^{\circ}$ Cohésion du sol : $c_{ef} = 12,00 \,^{\circ}$ kPa Angle de frot. structure-sol : $\delta = 15,00 \,^{\circ}$ Sol : cohérent

Coefficient de Poisson : $_{\rm V}$ = 0,35 Poids volumique du sol saturé : $_{\rm Ysat}$ = 19,50 kN/m³

Soil No. 2

Poids volumique : $\gamma = 21,00 \text{ kN/m}^3$

Etat de contraintes : effective Angle de frottement interne : $\phi_{ef} = 30,00 \, ^{\circ}$ Cohésion du sol : $\phi_{ef} = 15,00 \, ^{\circ}$ Angle de frot. structure-sol : $\delta = 15,00 \, ^{\circ}$ Sol : cohérent

Coefficient de Poisson : $_{V}$ = 0,35 Poids volumique du sol saturé : $_{\gamma_{sat}}$ = 21,50 kN/m³

Coupe géologique et assignation des sols

Num.	Couche [m]	Sol assigné	Echantillon
1	2,50	Soil No. 1	
2	-	Soil No. 2	

Profil du terrain

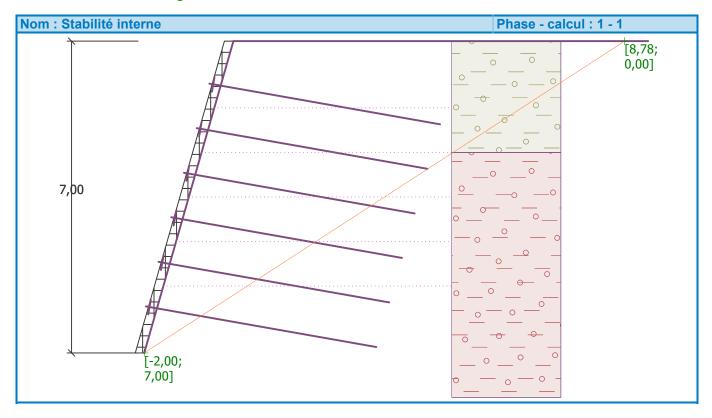
Le terrain derrière la structure est plan.

Effet de l'eau

La nappe phréatique est en dessous de la structure.

Paramètres du calcul de la phase

Situation de calcul : permanente


Vérification n° 1

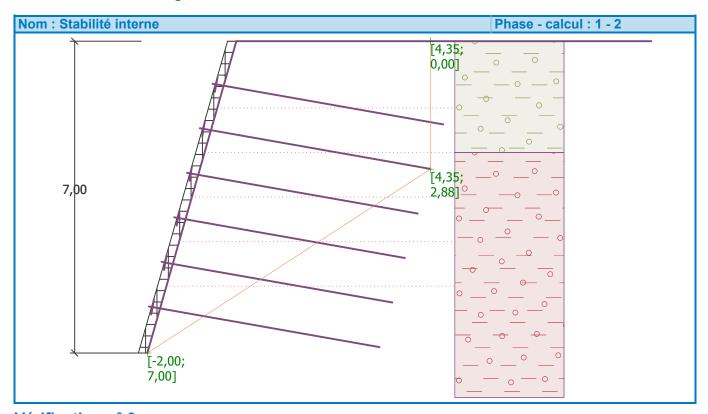
Surface de glissement plane pour l'optimisation :

Angle de la surface de glissement = 33,00 ° Origine de la surface de glissement en profondeur = 7,00 m Poids = 618,22 kN/m Force totale des clous derrière la surf. de gliss. = 169,41 kN/m Forces motrices sur la surf. de gliss. (poids) = 336,71 kN/m Forces motrices sur la surf. de gliss. (pression) = 0,00 kN/m Forces résist. sur la surf. de gliss. (sol) = 529,71 kN/m Forces résist. sur la surf. de gliss. (clous) = 123,90 kN/m

Coefficient de stabilité = 1,94 > 1,20

Stabilité de la surface de glissement ADMISSIBLE

Vérification n° 2


Surface de glissement brisée pour l'optimisation :

Angle de la surface de glissement = 33,00 ° Origine de la surface de glissement en profondeur = 7,00 m = 493.87 kN/m

Force totale des clous derrière la surf. de gliss. = 169,41 kN/m Forces motrices sur la surf. de gliss. (poids) = 268.98 kN/mForces motrices sur la surf. de gliss. (pression) = 2,07 kN/m Forces résist. sur la surf. de gliss. (sol) = 419,42 kN/mForces résist. sur la surf. de gliss. (clous)

Coefficient de stabilité = 2,00 > 1,30

Stabilité de la surface de glissement ADMISSIBLE

= 123,90 kN/m

Vérification n° 3

Pression horizontale appliquée à la structure:

Point	Profondeur	Pression
Polit	[m]	[kPa]
1	0,00	0,00
2	2,50	0,00
3	4,29	0,00
4	7,00	11,54

Vérification de la capacité portante des clous

Coef. de réduct. de la pression active de l'analyse de vérif. de la capac. port. des clous $k_n = 0.85$.

Clou	h [m]	Capacité portante du clou [kN]	Force du clou [kN]
1	1,00	94,25	0,00
2	2,00	94,25	0,00

Clou	6.503	Capacité portante du clou	Force du clou
	h [m]	[kN]	[kN]
3	3,00	94,25	0,00
4	4,00	94,25	0,08
5	5,00	94,25	2,62
6	6,00	94,25	10,81

Capacité portante des clous ADMISSIBLE

Vérification n° 1

Somme des forces appliquées à la structure

Nom	F _{hor}	Point d'application	F _{vert}	Point d'application	Partiel
	[kN/m]	z [m]	[kN/m]	x [m]	coefficient
Poids	0,00	-3,40	731,18	3,53	1,000
Pression active	17,42	-1,00	4,36	5,46	1,000

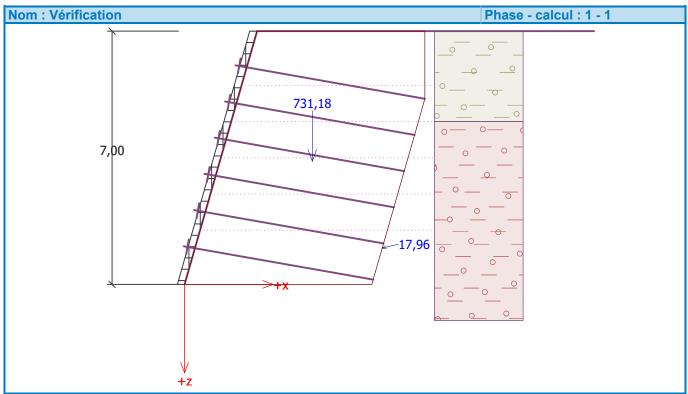
Vérification du mur entier

Vérification de la résistance au renversement

Moment résistant $M_{res} = 2601,99 \text{ kNm/m}$ Moment de renversement $M_{ovr} = 17,41 \text{ kNm/m}$

Coefficient de sécurité= 149,48 > 1,50

Résistance du mur au renversement ADMISSIBLE


Vérification de la résistance au glissement

Force horizontale résistante $H_{res} = 502,25 \text{ kN/m}$ Force horizontale sollicitante $H_{act} = 17,42 \text{ kN/m}$

Coefficient de sécurité = 28,83 > 1,50

Résistance du mur au glissement ADMISSIBLE

Vérification globale - MUR ADMISSIBLE

Capac. port. du sol de fondation

Forces appliquées au centre de la base de la fondation

Ī	Num.	Moment	Effort normal	Force mot.	Excentricité	Contrainte
	Nulli.	[kNm/m]	[kN/m]	[kN/m]	[-]	[kPa]
I	1	-682,43	735,54	17,42	0,000	142,21

Forces standardes appliquées au centre de la base de fondation (calcul du tassement)

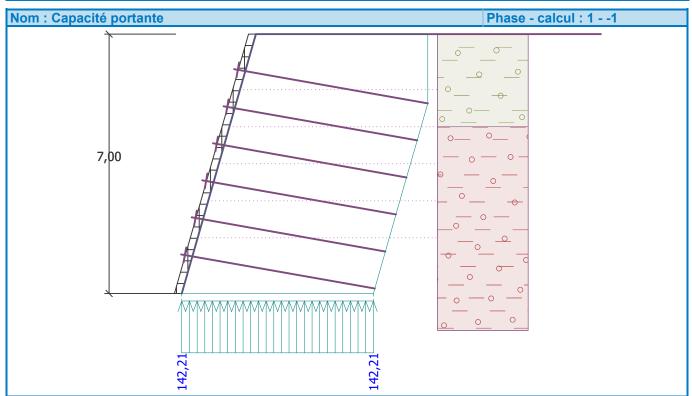
Num.	Moment [kNm/m]	Effort normal [kN/m]	Force mot. [kN/m]
1	-682,43	735,54	17,42

Vérification de la capacité portante du sol de fondation

Vérification de l'excentricité

Excentricité max. de l'effort normal e = 0,000Excentricité maximale permise $e_{alw} = 0,333$

Excentricité de l'effort normal ADMISSIBLE


Vérification de la capacité portante de la base de la fondation

Contrainte maximale à la base de la fondation σ = 142,21 kPa Capac. port. du sol de fondation R_d = 160,00 kPa

Coefficient de sécurité= 1,13 > 1,00

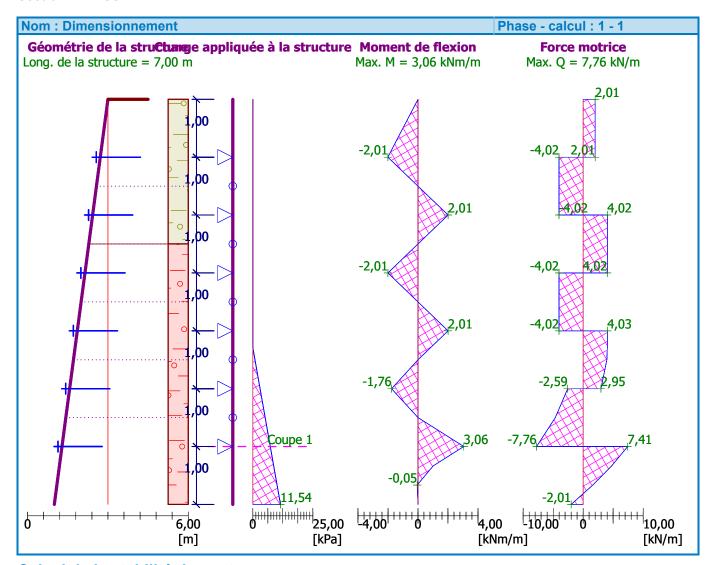
Capac. port. du sol de fondation ADMISSIBLE

Vérification globale- capacité portante du sol de fondation ADMISSIBLE

Dimensionnement n° 1

Profondeur	Pression hor.	Force mot.	Moment
[m]	[kPa]	[kN/m]	[kNm/m]
0.00	0.00	2.01	-0.00
0.33	0.00	2.01	-0.67
0.67	0.00	2.01	-1.34
1.00	0.00	2.01	-2.01
1.00	0.00	-4.02	-2.01
1.50	0.00	-4.02	0.00
2.00	0.00	-4.02	2.01
2.00	0.00	4.02	2.01
2.50	0.00	4.02	0.00
3.00	0.00	4.02	-2.01
3.00	0.00	-4.02	-2.01
3.50	0.00	-4.02	0.00
4.00	0.00	-4.02	2.01
4.00	0.00	4.03	2.01
4.29	0.00	4.03	0.85
4.50	0.91	3.93	0.00
5.00	3.03	2.95	-1.76
5.00	3.03	-2.59	-1.76
5.50	5.16	-4.64	0.00
6.00	7.29	-7.76	3.06
6.00	7.29	7.41	3.06
6.33	8.71	4.74	1.02
6.67	10.13	1.60	-0.05
7.00	11.54	-2.01	0.00

Le dimensionnement de l'enrobage en béton de la coupe 6,00 m. (moment maximal)


Calcul de l'armature verticale

Rue des Essarts 189

Armature et dimensions de la section: Diamètre = 12,0 mmNb de barres Enrobage de l'armature = 20,0 mm Larg. de la section = 1,00 mHauteur de la section = 0.20 m

Pourcentage d'armature = 0.32 % > 0.13 % = ρ_{min} Situation de l'axe neutre = 0.02 m< 0.11 m $= x_{max}$ $= V_{Ed}$ Force motrice limite ultime $V_{Rd} = 77,93 \text{ kN/m} > 7,76 \text{ kN/m}$ Moment limite ultime $M_{Rd} = 40,51 \text{ kNm/m} > 3,06 \text{ kNm/m} = M_{Ed}$

Section ADMISSIBLE.

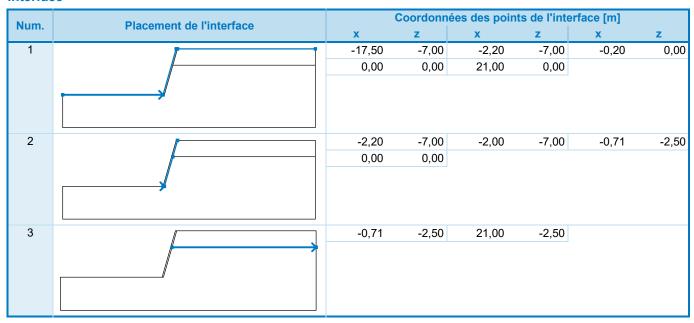
Calcul de la stabilité de pente

Données d'entrée

Projet

Paramètres

(saisie pour l'étude actuelle)


Calcul de la stabilité

Calcul du séisme : Standard

Méthode de vérification : coefficients de sécurité

Coefficients de sécurité				
Situation de calcul permanente				
Coefficient de sécurité :	SF _s =	1,50	[-]	

Interface

Paramètres des sols - état de contraintes effectif

Num.	Nom	Echantillon	Фef [°]	c _{ef} [kPa]	γ [kN/m³]
1	Soil No. 1	_ 0 _ 0 _ 0	27,00	12,00	19,50
2	Soil No. 2	_ 0 _ 0 _ 0	30,00	15,00	21,00

Paramètres des sols - soulèvement hydraulique

Num.	Nom	Echantillon	γsat [kN/m³]	γs [kN/m³]	n [-]
1	Soil No. 1		19,50		
2	Soil No. 2	_	21,50		

Paramètres des sols

Soil No. 1

Poids volumique : $\gamma = 19,50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Etat de contraintes}: & \text{effective} \\ \text{Angle de frottement interne}: & \phi_{\text{ef}} = 27,00 \,\,^{\circ} \\ \text{Cohésion du sol}: & c_{\text{ef}} = 12,00 \,\,\text{kPa} \\ \text{Poids volumique du sol saturé}: \, \gamma_{\text{sat}} = 19,50 \,\,\text{kN/m}^{3} \end{array}$

Soil No. 2

Poids volumique : $\gamma = 21,00 \text{ kN/m}^3$

Soilboring co. France Rue des Essarts 189

téléphone: 04 72 11 28 57 Lyon www.soilboring.fr

Etat de contraintes : effective Angle de frottement interne : 30,00° φ_{ef} = Cohésion du sol : c_{ef} = 15,00 kPa Poids volumique du sol saturé : γ_{sat} = 21,50 kN/m³

Corps rigides

Num.	Nom	Echantillon	γ [kN/m³]
1	Matériau du mur		23,00

Assignation et surfaces

Num.	Placement de la surface	Coordonné	es des poi	ints de la sui	rface [m]	Assignée	
Nulli.	Flacement de la Surface	X	Z	X	Z	sol	
1	1	21,00	-2,50	21,00	0,00	Soil No. 1	
		0,00	0,00	-0,71	-2,50	Soil No. 1	
						<u> </u>	
2	1	-2,00	-7,00	-0,71	-2,50	Matériau du mur	
	 	0,00	0,00	-0,20	0,00	Materiau du mui	
		-2,20	-7,00				
3		-0,71	-2,50	-2,00	-7,00	Soil No. 2	
		-2,20	-7,00	-17,50	-7,00	3011 NO. 2	
		-17,50	-12,00	21,00	-12,00	0	
		21,00	-2,50			-	
						o o	

Renforc.

	Point à	gauche	Point à droite		Long. Résistance			Installation
Num.	x [m]	z [m]	x [m]	z [m]	L [m]	R _t [kN/m]	Rés. à l'arrach.	de renforcement
1	-0,29	-1,00	4,64	-1,87	5,01	235,62	$T_p = 18,85 \text{ kN/m}^2$	Solide
2	-0,57	-2,00	4,35	-2,87	5,00	235,62	$T_p = 18,85 \text{ kN/m}^2$	Solide
3	-0,86	-3,00	4,07	-3,87	5,01	235,62	$T_p = 18,85 \text{ kN/m}^2$	Solide
4	-1,14	-4,00	3,78	-4,87	5,00	235,62	$T_p = 18,85 \text{ kN/m}^2$	Solide
5	-1,43	-5,00	3,50	-5,87	5,01	235,62	$T_p = 18,85 \text{ kN/m}^2$	Solide
6	-1,71	-6,00	3,21	-6,87	5,00	235,62	$T_p = 18,85 \text{ kN/m}^2$	Solide

Eau

Type: Pas d'eau Fissure de traction

La fissure de traction n'est pas saisie.

Séisme

Le séisme n'est pas considéré.

Paramètres du calcul de la phase

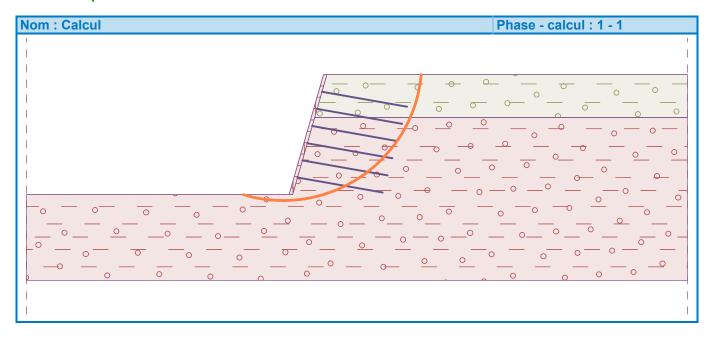
Situation de calcul : permanente

Résultats (Phase de construction 1)

Calcul 1

Surface de glissement circulaire

Paramètres de la surface de glissement						
$x = -2,55$ [m] $\alpha_1 = -16,68$ [°]						-16,68 [°]
Centre :	z =	0,74	[m]	Angles :	α ₂ =	84,75 [°]
Rayon : R = 8,08 [m]						
Surface de glissement après l'optimisation.						


Forces des renforcements

Renforcement	Force [kN/m]
1	0,00
2	0,00
3	0,00
4	8,54
5	21,68
6	41,35

Vérification de la stabilité de pente (Bishop)

Sommation des forces actives : $F_a = 358,05 \text{ kN/m}$ Sommation des forces passives : $F_p = 670,98 \text{ kN/m}$ Moment de glissement : $M_a = 2893,05 \text{ kNm/m}$ Moment résistant : $M_p = 5421,54 \text{ kNm/m}$

Coefficient de sécurité= 1,87 > 1,50 Stabilité de pente ADMISSIBLE

