

Assentamento de uma sapata contínua

Programa: Sapata

Arquivo: Demo_manual_10.gpa

Neste Manual de Engenharia, descrevemos como realizar as análises de assentamento e de rotação da sapata.

Tarefa

Analisar o assentamento de uma sapata concêntrica, dimensionada no capítulo anterior (No. 9 Dimensionamento da geometria de uma sapata de fundação). A geometria da estrutura, carregamento, perfil geológico e solos são os mesmos que no capítulo anterior. Realize a análise de assentamento com recurso ao módulo edométrico e considere a resistência estrutural do solo. Analise a fundação para o estado limite de serviço. Para uma estrutura de concreto estruturalmente indeterminada, da qual a sapata de fundação faz parte, o assentamento limite é: $s_{m,lim} = 60,0$ mm.

Esboço da tarefa – análise do assentamento de uma sapata de fundação

Resolução

Para resolver esta tarefa, vamos utilizar o programa GEO5 Sapata. Vamos utilizar os dados do capítulo anterior, onde a maioria dos dados já foram introduzidos.

O dimensionamento da sapata de fundação do último capítulo foi realizado de acordo com a Norma EN 1997, DA1. Os Eurocódigos não definem uma teoria para a análise de assentamentos, podendo ser utilizada qualquer uma das teorias de assentamento correntes. Na configuração original do programa, está definida a configuração mais comum.

1	Configurações de análises :	(apenas para a tarefa atual)	→ Selecionar configurações	Método de análise	
Configurações	Estruturas de concreto : Coeficientes EN 1992-1-1 Método de análise : Restrição da zona de influ Análise para condições dr Análise de levantamento : Excentricidade permitida : Metodologia de verificaçã Abordagem do projeto :	EN 1992-1-1 (EC2) : Norma Análise utilizando módulo edométrico encia : baseado na resistência estrutural endas : EC 7-1 (EN 1997-1:2003) Padrão 0.333 D: de acordo com EN 1997 1 - redução das ações e parâmetros do solo	Administrador de configurações Adicionar ao administrador	Não calcular assentamento	

Janela "Configurações"

Verifique as configurações definidas através do botão "Editar". Na secção "Assentamento", selecione o método "Análise utilizando o método edométrico" e defina a restrição da zona de influência como "baseada na resistência estrutural".

Editar configurações atuais : Sapata		×
Materiais e Normas Assentamente	o Sapata	
Método de análise :	Análise utilizando módulo edométrico	
Restrição da zona de influência :	baseado na resistência estrutural	
		🗸 ОК
		🗙 Cancelar

Caixa de diálogo "Editar configurações atuais"

Nota: A resistência estrutural representa a resistência do solo contra deformações provocadas por carregamentos. Apenas é utilizada na República Checa e na Eslováquia. Nos restantes países, a restrição da zona de influência é definida como uma percentagem da tensão inicial in-situ. Os valores recomendados para a resistência estrutural estão definidos na Norma CSN 73 1001 (Solo de fundação abaixo da fundação).

No passo seguinte, defina os parâmetros dos solos para a análise de assentamento, na janela "Solos". É necessário editar o solo existente e adicionar os valores do coeficiente de Poisson, coeficiente da resistência estrutural e do módulo edométrico (módulo de deformação).

Solo, rocha (classificação)	Peso volúmico $\gamma \left[kN/m^3 \right]$	Ângulo de atrito interno φ_{ef} [°]	Coeficiente de resistência estrutural m [-]	Módulo de deformação $E_{def} \ [MPa]$	Coeficiente de Poisson $ u \left[- ight]$
S-F – Areia com partículas finas, solo mediamente denso	17.5	29.5	0.3	15.5	0.3

Tabela com os parâmetros do solo

Nota: O coeficiente da resistência estrutural depende do tipo de solo (F1 – Ajuda).

Adicionar novos solos					×
— Identificação ———					— Desenhar ———
Nome : S-F – Areia com partículas finas				Categoria de padrão :	
					GEO
— Dados base ————				?	Procurar :
Peso volúmico :	γ =	17.50	[kN/m ³]		Subcategoria :
Ângulo de atrito interno :	φef =	29.50	[°]		Solos (1 - 16)
Coesão do solo :	c _{ef} =	0.00	[kPa]		Padrão :
— Assentamento - módulo	edométrico ——			? ·	
Coeficiente de Poisson :	v =	0.30	[-]		e dia
Tipo E _{oed} : constante			•		
Análise de assentamento :	inserir Edef		•		9 Arela
Módulo de deformação :	E _{def} =	15.50	[MPa]		Cor:
— Assentamento -zona de i	nfluência de com	putação ——		? ·-	
Coef. estrutural elástico do solo :	m =	0.30	[-]		Fundo :
- Computação de empuxos ? - Computação de empuxos ? -					
Cálculo da pressão hidrostática : padrão			Saturação < 10 - 90 > . 50 [/6]		
Peso volúmico saturado : γ _{sat} =		18.00	[kN/m ³]		
Classificar Limpar					🕂 Adicionar 🗙 Cancelar

Caixa de diálogo "Editar parâmetros do solo"

Análise

Agora, execute a análise na janela "Assentamento". Os assentamentos são sempre analisados para a carga de **serviço**. Primeiro, é necessário introduzir alguns parâmetros na parte inferior esquerda do ecrã:

- A tensão inicial local na base da sapata é considerada a partir da superfície final
- Para o coeficiente de redução para computar o assentamento, selecione a opção "Considerar a espessura efetiva da fundação (κ₁)".

1	Análise : 🛨 😑 [1]		
Escolher valores máximos automaticamente			
	- Tensão inicial local na sapata -		
	desde a superfície final Considerar a espessura efetiva da fundação (κ ₁)		
nto			
itame			
Asser			

Janela "Assentamento" – configurar a análise

Nota: O valor da tensão inicial local da base da sapata influencia o assentamento e a profundidade da zona de influência – quanto maior a tensão inicial local, menor será o assentamento. A opção da influência da tensão local atuante na base da sapata depende da duração que a sapata está aberta. Se a sapata estiver aberta durante um longo período de tempo, a compactação do solo será menor e não é possível considerar as condições da tensão original do solo.

Nota: O coeficiente " κ_1 " reflete a influência da profundidade da fundação e permite resultados mais realistas para o assentamento. Ao utilizar este coeficiente, recorre-se ao valor da profundidade equivalente abaixo da base da sapata z_r .

GE05

Janela "Assentamento" – resultados da análise

Resultados da análise

O assentamento final da estrutura é 16.9 mm. Na análise dos estados limite de serviço, comparamos os valores do assentamento obtidos através da análise com os valores limite, que são permitidos para a estrutura.

Nota: A rigidez da estrutura (solo de fundação) tem uma grande influência no assentamento. Esta rigidez é descrita através do coeficiente k – se k for superior a 1, a fundação é considerada como rígida e o assentamento é calculado para um **ponto característico** (localizado a 0.37l ou 0,37b a partir do centro da fundação, em que l e b são as dimensões da fundação). Se o coeficiente k for inferior a 1, o assentamento é calculado para o **centro da fundação**.

– A rigidez obtida para a fundação é k = 241,94. Assim, o assentamento é calculado para um ponto característico da fundação.

Nota: Podem ser encontrados valores de referência para os assentamentos permitidos em diferentes tipos de estruturas em várias Normas – por exemplo, na Norma CSN EN 1997-1 (2006) "Dimensionamento de estruturas geotécnicas".

O programa Sapata também fornece resultados para a rotação da fundação, que é analisada a partir das diferenças de assentamentos nas extremidades da fundação.

Rotação da sapata – princípio da análise

- Rotação na direção x: 0,753 · (tan · 1000) = 0,043°
- Rotação na direção y: 1,784 · (tan · 1000) = 0,1°

Nota: A rotação da fundação é extremamente importante na análise de fundações de estruturas especiais – ex.: encontros de pontes, pilares de grandes dimensões, chaminés, postes de alta tensão, etc.

Conclusão

Esta sapata satisfaz o critério de avaliação de assentamento.

Assentamento:
$$s_{m,\lim} = 60, 0 \ge s = 16,9$$
 [mm].