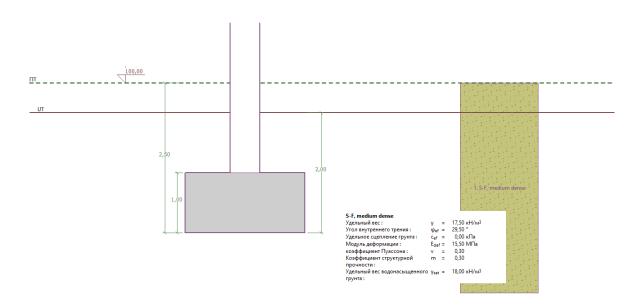
Обновлено: 01/2020

Расчет осадки и крена отдельного фундамента


Программа: Отдельные фундаменты

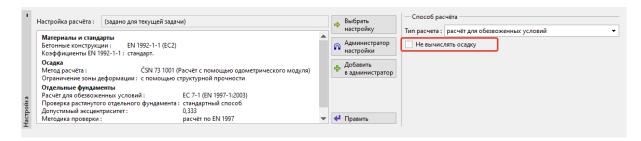
Файл: Demo_manual_10.gpa

В данном инженерном руководстве описано, как выполняется расчет осадки и крена отдельного фундамента.

Задача

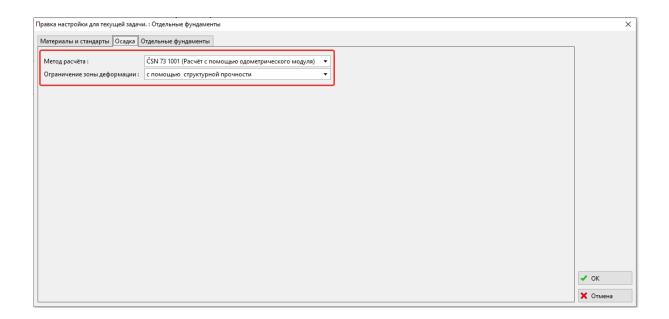
Требуется рассчитать осадку центрально нагруженного фундамента, запроектированного в предыдущем примере (№9 - Проектирование отдельного фундамента). Геометрия конструкции, нагрузка, геологический профиль и грунты такие же, как в предыдущем примере. Представить расчет осадки с использованием одометрического модуля деформации и с учетом структурной прочности грунта. Рассчитать работоспособность фундамента по предельным состояниям. Для неопределенной бетонной конструкции, частью которой является отдельный фундамент, предельная осадка составляет $s_{m, \rm lim} = 60,0$ мм.

Расчетная схема – расчет осадки отдельного фундамента


Решение

Для решения этой задачи воспользуемся программой GEO5 Отдельные фундаменты. За основу возьмем наш расчет из предыдущей задачи, где почти все необходимые данные были введены.

Проектирование отдельного фундамента в последней задаче представлено с использованием стандарта EN 1997, DA1. Еврокоды не регламентируют, какую теорию расчета осадки мы должны использовать, поэтому может быть использована любая общая теория. В настройках по умолчанию выбрана наиболее широко используемая теория.



Прежде всего отключим опцию «Не вычислять осадку» во вкладке «Настройка».

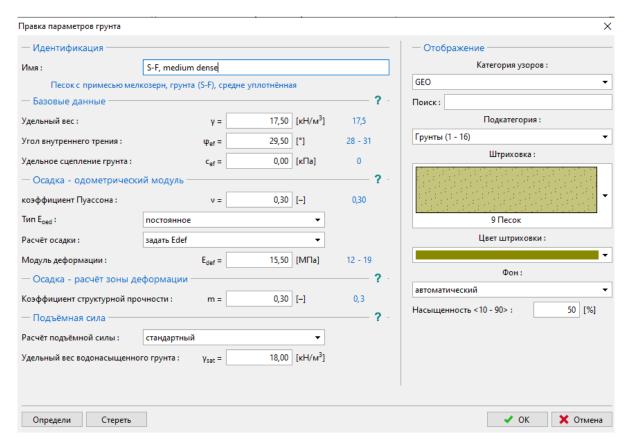
Вкладка «Настройка»

Далее проверим настройки нажатием кнопки «Править». В строке «Осадка» выберем метод «Расчет с помощью одометрического модуля» и зададим способ Ограничения зоны деформации – «с помощью структурной прочности».

Диалоговое окно «Правка настройки для текущей задачи»

Примечание: Структурная прочность представляет собой устойчивость грунта к деформациям от нагрузки. Она используется только в Чехии и Словакии. В других странах ограничение зоны влияния описывется процентом от начального бытового давления. Рекомендованное значение структурной прочности есть в стандарте CSN 73 1001 (Грунты основания под фундаментом).

Следующим шагом определим характеристики грунта для расчета осадки во вкладке «Грунты». Необходимо отредактировать существующий грунт и добавить значения

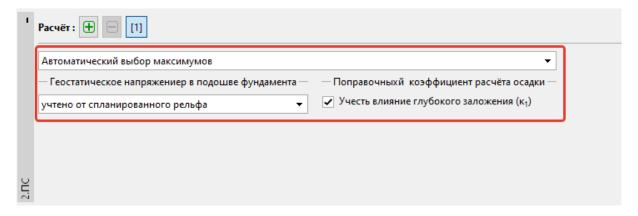


коэффициента Пуассона, коэффициента структурной прочности и одометрического модуля (модуля деформации).

Таблица характеристик грунта

Грунт, порода (Классификация)	Удельный вес γ [кН/м ³]	Угол внутреннего трения $arphi_{e\!f}\left[^{\circ} ight]$	Коэффициент структурной прочности m [-]	Модуль деформации $E_{def}\;[M\Pi a]$	Коэффициент Пуассона $ u\left[- ight]$
S-F, medium dense – Песок пылеватый, средней плотности	17,5	29,5	0,3	15,5	0,3

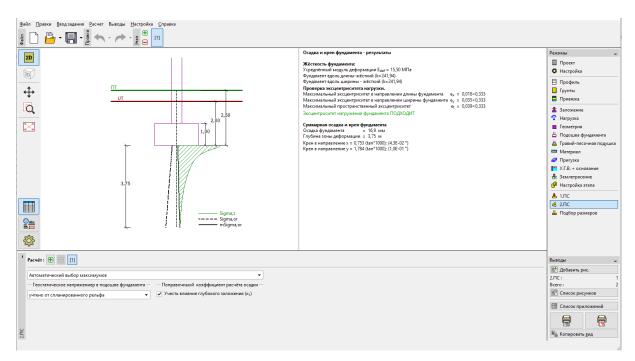
Примечание: Коэффициент структурной прочности зависит от типа грунта (больше информации в Справке - F1).


Диалоговое окно «Правка параметров грунта»

Анализ

Теперь запустим расчет во вкладке «2ПС». Осадка всегда анализируется для **полезной** (рабочей) нагрузки (*Ped.* – для нагрузок, соответствующих 2 группе предельных состояний). Предварительно зададим некоторые параметры в левой нижней части экрана:

- начальное бытовое давление под подошвой фундамента рассматривается от отметки окончательной планировки
- в части **Поправочный коэффициент расчета осадки** выберем опцию «Учесть влияние глубокого заложения (κ_1)».



Вкладка «2ПС» – расчет осадки

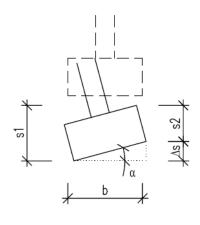
Примечание: Величина напряжений у подошвы фундамента по месту влияет на осадку и глубину сжимаемой толщи — большее начальное напряжение означает меньшую осадку. Выбор напряжения, действующего в уровне подошвы, зависит от того, как долго котлован был открытым. Если котлован открыт длительное время, грунт будет уплотнен в меньшей степени и рассматривать в расчете осадки исходное напряженное состояние нельзя.

Примечание: Коэффициент " k_1 " учитывает влияние глубины заложения фундамента и дает более реалистичные результаты расчета. При использовании этого коэффициента используется так называемое замещающее значение глубины под дном основания z_r .

Вкладка "2ПС" – анализ результатов

Результаты расчета

Окончательная осадка конструкции составила 16,9 мм. Используя для анализа эксплуатационной пригодности расчет методом предельных состояний, мы можем сравнить значения расчетной осадки с предельными значениями, которые допустимы для данного сооружения.


Примечание: Жесткость сооружения (грунтового основания) оказывает большое влияние на осадку. Эта жесткость описывается коэффициентом k — если k больше 1, фундамент рассматривается как жесткий и осадка вычисляется **под характерными точкми** (они расположены на расстоянии 0.37l или 0.37b от центра фундамента, где l и b — размеры фундамента в плане). Если k меньше 1, осадка рассчитывается **под центром фундамента**.

— Расчетная жесткость фундамента в продольном направлении k=241,94. Таким образом осадка вычислена под характерной точкой фундамента.

Примечание: Справочные значения допустимых значений осадки для разных типов сооружений можно найти в различных стандартах, например, в CSN EN 1997-1 (2006) "Проектирование геотехнических сооружений".

В программе Отдельные фундаменты также можно видеть результаты расчета крена фундамента, которые получены из анализа разницы осадок центральных точек каждого края.

$$\Delta s = s_1 - s_2$$

$$rotation = \frac{\Delta s}{b} \left(\tan^* 1000 \right)$$

$$\alpha = \arctan \frac{\Delta s}{b} \left[\circ \right]$$

Крен фундамента – принцип расчета

– Крен в направлении x: 0,753 · (tan · 1000) = 0,043°

– Крен в направлении y: 1,784 · (tan · 1000) = 0,1°

Примечание: Крен очень важен при расчете конструкций особых сооружений — опор мостов, высоких колонн, пилонов и т.д.

Заключение

Данный отдельный фундамент соответствует критериям оценки, касающихся осадки.

Осадка: $s_{m,\lim} = 60.0 \ge s = 16.9$ [мм].