

Updated: 01/2020

Расчёт вертикальной несущей способности и осадки свай проанализированный на основе тестов СРТ (испытание погружением конуса)

Программа: Свая СРТ

File: Demo_manual_15.gpn

Целью данного технического руководства является объяснение использования программы GEO 5 – Свая СРТ.

Постановка задачи

Общая постановка задачи была описана в предыдущей главе (12. Свайные фундаменты - Введение). Расчёт несущей способности и осадки одиночной сваи и куста свай согласно EN 1997-2.

Диаграмма постановки задачи – исследование одиночной сваи на основе тестов СРТ

Решение

Для расчёта этой задачи мы будем использовать программу GEO 5 — PILE CPT. В тексте ниже пошагово опишем решение задачи.

Во вкладке «Настройка» нажать кнопку «Выбрать настройку» (посередине нижней части экрана). В появившемся диалоговом окне «Перечень настроек расчёта» выбрать настройки анализа «Стандарт – EN 1997». Метод расчёта не важен. Расчёт проводится в соответствии со стандартом EN 1997-2: Геотехническое проектирование – Часть 2: Исследования и испытания грунта.

Файл Правки Ввод задания Расчет Выводы Настройка Справка							
5 🗋 🎒 • 📳 • 🛃 🦘 - 🔶 - 5 🗮 Haseanne stance	11						
						Режимы -	
20						🗑 Проект	
S						Настройка	
						Испытания СРТ	
↔						📻 У.Г.В.	
+	Перечень настроен	расчёта			×	Классификация грунтов	•
Q						🗄 Профиль	
	1 Crawsanz	или зара	a Bre	Срок действия		Грунты	
* *	2 Стандарт	- предельные состояния	Bce			Н привязка	
	3 Стандарт	- EN 1997 - DA1	Bce			🔛 Конструкция	
	4 Стандарт	- EN 1997 - DA2	Bce			Геометрия	
	8 University	ныя - без редукции Республика - полжине ст	Bice autantiu ČSN (73.100 Bice			🛔 Несущая способность	
	47 Россия		Bce			📉 Осадка	
					✓ OK		
					🗙 Отмена		
	L						
a0a							
Настройка расчёта : Стандарт EN 1997 - DA2		🛶 Выбрать	Расчёт из испытаний :	CPT •			
Ceare CPT		настройку	Учесть отрица трение на бок.пог	ерхности сваи			
Методика проверки : расчёт по EN 1997-2		Администратор настройки	 Выполнить классификацию груп 	108		Выводы .	1
Tun pacvera: EN 1997-2		. Acteurs				В* Добавить рис.	
		в администратор	Коэффициент неопределённости ма	дели: _{Уса} = 1,00 [-]		Проект :	0
			Коэффициенты ξ ₃ , ξ ₂ :	стандартная 💌		Bcero :	0
			Редукция коэффициента ξ ₃ , ξ ₄ (ж	ёсткая конструкция)		В" Список рисунков	
						m cause and	
						ше список приложений	
odu		d Denne					
2		4. Change				пе копировать вид	

Вкладка «Настройка»

В первом расчёте будем оценивать одиночную сваю. Поэтому не указываем понижение коэффициентов корреляции ξ_3, ξ_4 . Не будем учитывать влияние отрицательного поверхностного трения. Также можно указать *частный фактор неопределенности модели,* который используется для уменьшения общей расчётной несущей способности сваи – но мы будем использовать стандартное значение 1,0.

Также поставить галочку «Выполнить классификацию грунтов». Это гарантирует, что все параметры грунтов будут автоматически назначаться во всей задаче в соответствии с выполненными тестами СРТ.

Примечание: Коэффициенты корреляции ξ_3 , ξ_4 , и общая несущая способность сваи зависят от количества завершенных тестов СРТ. Когда будет выполнено большее количество завершенных тестов СРТ, коэффициенты корреляции будут ниже. В нашем случае для двух завершенных статических тестов на испытание проникающей способности значения $\xi_3 = 1.35$, $\xi_4 = 1.27$ в соответствии с **Таблицей А.10** - <u>Коэффициенты корреляции</u> для получения характеристики значения несущей способности свай, полученные в результате наземных испытаний представлены в EN 1997-1 (часть А.3.3.3).

Теперь перейдем к вкладке «СРТ». Здесь мы будем импортировать завершенные тесты в программу, используя кнопку «Импорт», а затем кнопку «Ок».

Файл Правки Ввод задания Расчет Выводы Настройка Справ	Ka						
5 🗋 💾 - 🗐 - 🚪 🐆 - 🔶 - 🖉 🖽 Hassanus ara	nos [1]						
			-T				Режимы _
			"()				Проект
			÷ ~				Ф Настройка
							Испытания СРТ
↔							Классификация грунтов
O Vise	порт (СРТ)				×		🗄 Профиль
-Ti	ипы импорта	 Список импортированных испытани 	ñ.				🚺 Грунты
<u>ка</u> ка	CPT	Nº - Файл Наименован	применимость	Способ обработки	Комментарии		📃 Привязка
G	eoDelft CPT Gouda Geo CPT	 C:\Users\andre\One 01 инструкции\Мануа 	создание модели, СРТи	добавить испытание	 Испытание будет добавлено. 		Конструкция
Ger	otech AB CPT Hogentogler CPT	2 C:\Users\andre\One 02	создание модели, СРТи	добавить испытание	 Испытание будет 		Геометрия
4	Формат GEF Формат AGS	инструкции (мануа			, doore news.		Несущая способность
GE	EPRODO SPE Øopmat GRU						Содка
	Текстовый формат, таблицы						
		(і) Считанные данные были полносты	ю обработаны.				
	 Будет добавлено 2 испытаний 				✓ ОК Х Отмена		
sA2							
200							
1 := + 10 Muner			Информация	×		• В Колировать	
	Factoria Machan	tunar .	A	~		▶ все испытания	
NY - Наименование испытания Вертикальное перемещени d, [м]	ие начала Тлубина Изображ d _w [м] испыта	енное	Импорт				
1 cpt_test1	0,00 29,91		Файл C:\Users\andre\On	eDrive\Документы\/TEO5			Выводы _
2 cpt_test2	0,00 29,91		Memorykuni (manyan 13	<u>sept test i get</u>			В Добавить рис.
			(і) Испытание "01" загру	жено успешно.			Boeto: 0
			Файл C:\Users\andre\On	eDrive\Документы\ГЕО5			П Список рисунков
			инструкции (Мануал 15	<u>icpt testaget</u>			m c
101			(і) Испытание "02" загру	жено успешно.			ш список приложений
INCLUSION						dab.	
(crac				<u>✓ 0</u> K		eofy	Ва Копировать вид
2						L	

Вкладка «Испытания СРТ»

Примечание. Файлы для импорта (cpt_test1.gef, cpt_test2.gef) включены в установку GEO5 и находятся в папке FINE в документах с общим доступом.

Примечание. Тесты СРТ можно импортировать в нескольких форматах; в нашем примере мы будем использовать тесты в голландском формате GEF. Для получения дополнительной информации см. справку программы – F1 или <u>онлайн</u>.

Примечание. Также можно ввести тесты СРТ вручную с помощью кнопки «Добавить СРТ». Поскольку количество измеренных точек обычно велико, вместо этого часто используется импорт.

По нажатию кнопки «ОК» тесты загружаются в программу, а на экран выводятся графики измеренного сопротивления конуса и местного трения.

Вкладка «Испытания СРТ» – импортированные тесты

Примечание. Тесты СРТ можно разделить на два типа. Стандартные тесты СРТ измеряют сопротивление конуса (q_c) и поверхностное трение (f_s). Второй тип — это более подробный тест, называемый СРТи, который также измеряет поровое давление. Тест СРТи более сложен с финансовой и технической точек зрения. Однако знание порового давления (u) необходимо для правильной классификации грунтов на основе испытаний СРТ. Если мы знаем уровень грунтовых вод, мы можем позволить программе автоматически рассчитывать поровое давление. Это объясняется далее по тексту.

Выбрать «cpt_test1» и нажать на кнопку «Редактировать №1». После нажатия кнопки «Редактировать» появляется диалоговое окно с подробными результатами выбранного теста.

🔡 Pej	актировани	ие параметров испытания (СРТ)						_
— Пар	метры исп	ытания				Лобовое сопротивление пол конис	ти Сопротуплении токнико по боковой повержиости	Поровое давление
Наиме	ювание исг	пытания : cpt_test1				0,00	0,00	0,00
Вертик	альное пер	емещение начала : d ₄ = 0.00) [m]			1,50-	1,50-	1,50-
06		4 - 20.01				3,00-	3,00-5	3,00
Оощая	ГЛубина :	u _{tot} = 29,9	i [m]			4,50-	4,50-2	4,50-
Табли	ца СРТ					6,00	6,00-	6,00-
Табл	ца СРТ :					7,50-	7,50-	7,50-
Nº -	Глубина	Лобовое сопротивление под конусом	Сопротивление трению по боковой поверхни	сти Поровое давление + Добавить		9,00-	9,00-	9,00
	d [M]	q _c (МПа)	f _s [кПа]	u ₂ (xПа)		10,50-	10,50	10,50
1	0,00	0,00		Грунтовая вода	×	12,00	12,00-	12,00
2	0,91	0,18				Ξ 13,50- Z	13,50- J	<u>3</u> 13,50-
3	0,93	0,30		Воды нет		¥15,00-	£15,00-	g 15,00-
4	0,94	0,39		Глубина УГВ от 1-й точки испытания :	4,50 [M]	216.50	E16.50	£16.50
5	0,96	0,39				18.00	18:00- 5	18.00-
0	0,98	0,38		🗸 ОК	🗙 Отмена	10,00 8	10,00	10,00
1	1,00	0,59		27.00 0.00		19,50	19,50	19,50
0	1,02	0,40		26.00 0.00		21,00-	21,00	21,00
10	1.06	0,55		24.00 0.00		22,50-	22,50-	22,50
11	1.08	0.37		23.00 0.00		24,00-	24,00-	24,00-
12	1,10	0,37		22,00 0,00		25,50-	25,50	25,50-
13	1,12	0,38		22,00 0,00		27.00-	27.00	27.00-
14	1,15	0,37		22,00 0,00		20,00	20,00	20,00
15	1,17	0,37		22,00 0,00		20,50	20,50	20,50
16	1,19	0,37		22,00 0,00		29,91 0,0 7,5 15,0 22,5	30,0 0 150 300 450 600	29,91 0 75 150 225 300
17	1.23	0.33		17.00 0.00 • := •		q, [M∏a]	f, [кПа]	u ₂ [кПа]
	-							
🕒 И	мпорт	Расчёт и ₂					OK + 🦊	🗸 ОК 🗙 Отмена

Вкладка «СРТ» – расчет порового давления

В этом диалоговом окне нажать кнопку «Рассчитать u2» в нижней левой части экрана и ввести предполагаемый уровень грунтовых вод на отметке 4,50 м.

Выполнить, таким образом, расчет порового давления для обоих тестов.

В рамку «У.Г.В.» также необходимо ввести уровень грунтовых вод.

Вкладка «У.Г.В.»

Теперь перейти к вкладке «Классификация грунтов». Выбрать классификацию по Робертсону (2010). Коэффициент чистой площади пенетрометра имеет стандартное значение 0,75. Выбрать опцию «Рассчитать», чтобы рассчитать удельный вес с помощью тестов СРТ. Установить минимальную толщину слоя 0,50 м, чтобы получить более четкое представление о геологическом профиле. Для получения дополнительной информации см. справку программы – F1 или онлайн.

Вкладка «Классификация грунтов»

Примечание: Классификация грунта всегда выполняется только для одного теста СРТ – это необходимо указать в поле «Ресурсное полевое испытание».

Вкладки «Профиль», «Грунты» и «Привязка» можно пропустить — все вводится автоматически на основе значений тестов СРТ.

Во вкладке «Строительство» выбрать вариант «одиночная свая». Затем ввести максимальную величину вертикальной нагрузки, действующей на сваю, как показано на рисунке ниже. Расчётная нагрузка используется для анализа несущей способности сваи, а эксплуатационная нагрузка используется для анализа осадки сваи.

Файл Правки Ввод задания Расчет Выводы Настройка Справка		
20		Режимы _
	100	🖩 Проект
		Настройка
ath	4,50	Испытания СРТ У.Г.В.
т. Т.		Классификация грунтов
Ö	12,00	🗏 Профиль
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		[] Грунты
K X K X		🚍 Привязка
		Конструкция
		Геометрия
		🛉 Несущая способность
		📉 Осадка
<b>\$</b>		
<ul> <li>Тип конструкции : одиночная свая •</li> </ul>		
Проектная нагрузка : Fs _d = 700,00 [кH]		
Полезная нагрузка: Fs = 300,00 [кH]		Выводы _
		В ⁺ Добавить рис.
		Конструкция: 0
		Boero: 0
		В список рисунков
		Ш Список приложений
		🖶 👼
CH CO		Копировать вид

Вкладка «Строительство»

Во вкладку «Геометрия» ввести материал сваи и поперечное сечение, указать основные размеры, то есть диаметр сваи и ее длину в грунте. В дальнейшем определить технологию производства работ. В данном конкретном случае у нас есть буронабивные сваи с необсаженным стволом или укреплённые с помощью бурового раствора.

Коэффициент несущей способности основания сваи  $\alpha_{_p}$  рассчитывается автоматически.

١	Сечение сваи :		круглое	▼ N	Латериал сваи :	бетон 🝷	
	Тип сваи :		буровые без к	репления или закреплённы	е глиняной суспензие	й 🔫	<u> </u>
	Коэффициент несущей способности	пяты сваи α _p :	посчитать	•			
	— Геометрия —————			— Свая круглого сечени:	я ———		· •
	Длина сваи в грунте :	l =	12,00 [м]	Диаметр сваи :	d =	1,00 [м]	-
e.	Вылет сваи :	v =	0,00 [м]				
етрия	Глубина спланир.территории :	h =	0,00 [M]				
Leom							

Вкладка «Геометрия»



Далее перейти к проверке одиночной сваи во вкладке «Несущая способность». Эта вкладка показывает нам результаты расчета.



### Вкладка «Несущая способность»

Нажав на кнопку «Подробно», мы можем увидеть промежуточные результаты анализа вертикальной несущей способности сваи.

🔡 Проверка		-			×
Расчёт вертикальной несущей способности сваи	-про	меж.	резу	ультаты	
Диаметр сваи	d _e	a = 1	i,00	м	
Диаметр сваи в пяте	d _{s,}	eq = 1	1,00	м	
Площадь сваи в пяте	Ab	,	),79	M ²	
Коэффициент редукции несущей способности пять	iαp	= (	0,50		
Коэффициент влияния формы сваи	s	= 1	1,00		
Коэффициент влияния уширенной пяты	β	= 1	1,00		
Расчёт вертикальной несущей способности сваи	-pea	ульта	ты		
Расчёт выполнен для всех испытаний.					
Минимальное сопротивление сваи в сжатии R _{c,min}	=	1359,2	29 к	ťΗ	
Коэффициент ξ4	=	1,2	27		
Среднее сопротивление сваи при сжатии R _{c,mea}	in =	1548,9	98 k	ťΗ	
Коэффициент ξ3	=	1,3	35		
Характер.нес.способность сваи R _c	=	1070,3	31 к	Ή	
Проектная несущая способность сваи Вса	=	1070.3	31 к	:H	
Проектная нагрузка F _{s.d}	=	700,0	00 к	:H	
R _{cd} = 1070,31 κH > F _{sd} = 700,00 κH					
Проверка сваи на несущую способность ПОДХОДИ	1T				
				🗙 <u>В</u> ыхо	А



Диалоговое окно «Проверка (подробно)» – Расчёт вертикальной несущей способности

Примечание. Расчёт несущей способности можно проводить как для одного конкретного испытания, так и для всех испытаний.

Вертикальная несущая способность сваи  $R_{c,d}$  представляет собой сумму поверхностного трения и сопротивления основания сваи (подробнее в справке программы — F1). Для выполнения условия надежности его значение должно быть выше чем величина действующей расчетной нагрузки  $F_{s,d}$ .

– EN 1997-2:  $R_{c,d} = 1070,31 \, kN > F_{s,d} = 700,0 \, kN$  подходит

Затем перейти к вкладке «Осадка», где отображаются кривая предельного нагружения сваи и результаты расчета осадки сваи. Суммарная осадка сваи  $w_{1,d} = 15,6 \ mm$  для эксплуатационной нагрузки  $F_s = 300 \ kN$ .



Вкладка «Осадка» – кривая предельного нагружения (рабочая диаграмма) сваи



Подробные результаты доступны по нажатию кнопки «Подробно».

🔡 Проверка		-			×
Расчёт осадки: Полезная нагрузка Несущая способность на боковой поверхности Несушая способность по пяте Осадка пяты сваи Упругая деформация сваи Общая осадка	F _s R _s R _b Wbase Wel,d W1,d	 300,00 119,11 180,89 15,4 0,2 15,6	кН кН мм мм		
Расчёт осадки сваи-результаты При нагрузке Fs = 300,00 кН осадка сваи - = 15,6	мм	 	×	<u>В</u> ых од	

Диалоговое окно «Проверка (подробно)» – Осадка

### Куст свай

Теперь проведем оценку куста свай. Во вкладке «Настройка» мы выберем опцию «Редукция коэффициента  $\xi_3, \xi_4$  (жесткая конструкция)».



Вкладка «Настройка»



Затем перейти к форме «Конструкция», где определить параметры, необходимые для расчета куста свай. Будем считать свайный фундамент (свайный ростверк) **жесткой** конструкцией, где предполагается, что все сваи оседают одинаково. Кроме того, мы установим количество свай равным 4.



Вкладка «Строительство»



Остальные вкладки останутся без изменений.

Теперь вернуться к вкладке «Несущая способность», где отображаются оценочные результаты.



Диалоговое окно «Проверка (подробно)» – Расчёт вертикальной несущей способности

– EN 1997-2:  $R_{c,d} = 4709.37 \ kN > F_{s,d} = 2800.0 \ kN$  подходит

### Заключение

Вертикальная несущая способность оцениваемой сваи или куста свай удовлетворительная. Главный Преимуществом анализа на основе тестов СРТ является его скорость и наглядность. Эта процедура точно определено в *EN 1997-2: Геотехническое проектирование – Часть 2:* Исследования и испытания грунта и поэтому зачастую не требуется двоякое определение прочностных параметров.