

Análise da capacidade de suporte horizontal de uma estaca isolada

Programa: Estaca

Arquivo: Demo_manual_16.gpi

O objetivo deste manual de engenharia é explicar como utilizar o programa GEO5 Estaca para a análise da capacidade de suporte horizontal de uma estaca isolada.

Definição do problema

A definição geral do problema está descrita em um dos capítulos anteriores (12. Fundações por estacas – introdução). Agora, vamos realizar a análise da capacidade de suporte horizontal de uma estaca isolada, como continuação do problema de outro dos capítulos apresentados previamente (13. Análise da capacidade de suporte vertical de uma estaca isolada). As componentes resultantes do carregamento $N_1, M_{y,1}, H_{x,1}$ atuam ao nível da cabeça da estaca. Calcule as dimensões da estaca de acordo com a Norma EN 1992-1.

Esquema do problema – estaca isolada

Resolução

Para resolver este problema, vamos utilizar o programa GEO5 Estaca. No texto abaixo vamos descrever como resolver este problema passo-a-passo.

A estaca carregada horizontalmente é analisada através do Método dos Elementos Finitos, como uma viga assente num meio elástico de Winkler (*Subsolo elástico – método p-y*). Os parâmetros dos solos ao longo da extensão da estaca são caracterizados pelo módulo de reação horizontal do subsolo.

O programa contém outras possibilidades para determinar o módulo de reação do subsolo. Os métodos lineares (Linear, Matlock e Reese) são adequados para solos não coesivos, enquanto que os métodos constantes (Constante, Vesic) são mais adequados para solos coesivos. O método de cálculo do módulo k_h , de acordo com a Norma CSN 73 1004, é válido para ambos os métodos.

Na primeira parte deste capítulo, vamos realizar a análise utilizando o módulo de reação do subsolo constante; na segunda parte, vamos comparar as diferenças verificadas para a utilização de outros métodos.

Definições específicas

No programa "Estaca", abra o ficheiro relativo ao Manual No. 13. Primeiro, na janela "Configurações", clique no botão "Editar" e selecione a opção para definir o método de análise da capacidade de carga horizontal como "Subsolo elástico (método p-y)".

Nota: Para a análise da capacidade de suporte vertical de uma estaca em solo homogéneo, também é possível utilizar o <u>método de Broms</u> (mais detalhes na Ajuda – F1).

Editar configurações atuais : Estaca	×
Materiais e Normas Estaca	_
Análise para condições drenadas : NAVFAC DM 7.2	
Análise para condições não drenadas : Tomlinson	
Curva carga-assentamento : linear (Poulos)	
Capacidade de carga horizontal : Subsolo elástico (método p-y)	
Metodologia de verificação : de acordo com EN 1997 🔹	
Abordagem do projeto : 2 - redução das ações e resistências 🔹	
Churry and the state of the sta	
Situação permanente do projeto Situação transitoria do projeto Situação acidental do projeto Situação sismica do projeto	1
Fatores parciais sobre as ações (A)	
Ações permanentes : $\gamma_{G} = \begin{bmatrix} 1.35 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ 1.00 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix}$	
- Fatores parciais para resistências (R)	
Estacas escavadas Estacas cravadas Estacas CFA	
Fator parcial sobre a resistência do eixo : $\gamma_{s} =$ 1.10 [-]	
Fator parcial sobre a resistência de base : $\gamma_b = 1.10$ [-]	
Fator parcial sobre a resistência da tensão : $\gamma_{st} = 1.15$ [-]	
	🗸 ОК
	🗙 Cancelar

Caixa de diálogo "Editar configurações atuais"

As configurações gerais da análise, valores definidos para as cargas e o perfil geológico, incluindo os parâmetros relacionados com a resistência dos solos, permanecem iguais.

Na janela "Configurações", é, ainda, necessário remover a seleção da opção "Não calcular a capacidade de carga horizontal".

'	Configurações de análises : (apenas para a tarefa atual)	ões de análises : (apenas para a tarefa atual)		 Método de análise 		
	Estruturas de concreto :	EN 1992-1-1 (EC2)	configurações	Análise da capacidade de suporte vertical :	solução analítica	-
	Coeficientes EN 1992-1-1 :	Norma	Administrador de	Tipo de análise :	análise para condições drenadas	•
	Estruturas em aço :	Estruturas em aço : EN 1993-1-1 (EC3)	configurações			
	Fator parcial da cap. de carga da secção transversal em a	ço: γ _{M0} = 1.00	Adicionar ao			
	Estruturas em madeira :	EN 1995-1-1 (EC5)	Administrador	Não calcular a capacidade de carga horiz	ontal	
	Fator parcial para as propriedades da madeira :	γ _M = 1.30				
	Coet. da influência da carga e da humidade :	k _{mod} = 0.50				
	Coef. da espessura da secção em corte :	k _{cr} = 0.67				
	Análise para condições drenadas : NAVFAC DM 7.2					
s	Curva carga-assentamento : linear (Poulos)					
Čů.	Capacidade de carga horizontal : Subsolo elástico (mét	odo p-y)				
and	Metodologia de verificação : de acordo com EN 19	97				
nfig	Abordagem do projeto : 2 - redução das ações	e resistencias	🗲 Editar			

Janela "Configurações"

De seguida, passamos à janela "Módulo Kh", onde vamos selecionar a opção "constante".

I	Coeficiente reação horizontal do solo :	constante 💌
ulo Kh		
Mód		

Janela "Módulo k_h "

Nota: O módulo de reação horizontal do subsolo constante depende do módulo de deformação do solo E_{def} [MPa] e da largura reduzida da estaca r [m] (mais detalhes na Ajuda – F1).

Seguidamente, na janela "Solos", é necessário definir os parâmetros dos solos – o valor do ângulo de dispersão β [–], dentro do intervalo $\frac{\varphi_{ef}}{4} - \varphi_{ef}$. Este coeficiente depende do ângulo de atrito interno do solo (mais detalhes na Ajuda – F1).

Solo (Classificação do solo)	Peso volúmico $\gamma \left[kN/m^3 \right]$	Ângulo de atrito interno $arphi_{e\!f}$ [°]	Ângulo de dispersão β [°]	Tipo de solo
CS – Argila arenosa, consistência firme	18.5	24.5	10.0	Coesivo
S-F – Areia com partículas finas, solo mediamente denso	17.5	29.5	15.0	Não coesivo

Tabela com os parâmetros do solo – Capacidade de suporte horizontal de uma estaca isolada

Agora, vamos passar à janela "Capacidade horizontal", onde vamos determinar o valor da deformação horizontal máxima na cabeça da estaca, a distribuição das forças internas ao longo da estaca e os resultados do dimensionamento da estaca para a verificação do concreto armado, na direção do efeito máximo.

Janela "Capacidade de carga horizontal"– Verificação da distribuição constante do módulo k_h

Nota: A condição de fronteira de uma estaca fixada na base é modelada para os casos em que a extremidade da estaca está assente em maciços duros (não é o caso). As condições de fronteira na cabeça da estaca são aplicadas quando a carga de deformação é utilizada, onde apenas são definidas a rotação angular e a deformação na cabeça da estaca, sem definir a carga (mais detalhes na Ajuda – F1).

Nesta janela, vamos realizar o dimensionamento da armadura da estaca. Vamos dimensionar a armadura longitudinal estrutural – **18 barras Ø 16 mm** e o concreto mínimo de recobrimento de **60 mm**, correspondente à exposição ambiental de classe XC1.

Janela "Capacidade de carga horizontal" – Dimensionamento

Neste caso vamos considerar um rácio de armadura para a estaca carregada horizontalmente de acosto com a Norma *CSN EN 1536: Execution of special geotechnical works - Bored piles* (Table 4 – Minimum reinforcement of bored piles). Esta opção é definida na secção "Estaca" do programa.

Área da secção transversal da estaca: $A_c \left[m^2 ight]$	Área da armadura longitudinal: $A_s \left[m^2 ight]$
$A_c \leq 0.5 \ m^2$	$A_s \ge 0.5 \% \cdot A_c$
$0.5 \ m^2 < A_c \le 1.0 \ m^2$	$A_s \ge 0.0025 m^2$
$A_c > 1.0 m^2$	$A_s \ge 0.25 \% \cdot A_c$

"EN 1536: Table 4 – Minimum reinforcement of bored piles"

Nota: Para elementos comprimidos, é mais adequado utilizar o rácio de armadura como se fosse para um "pilar", enquanto que uma "viga" é melhor para estacas sujeitas à flexão. Para uma combinação de cargas verticais e horizontais, a Norma CSN EN 1536 define que o rácio de armadura mínimo para estacas escavadas corresponde à proporção entre a área de armadura da secção e a área de concreto (mais detalhes em Ajuda – F1).

Nos resultados do dimensionamento da estaca, é possível observar a secção transversal da estaca sujeita à flexão e a condição para o rácio de armadura mínima (através do botão "Em detalhe").

Caixa de diálogo "Verificação (em detalhe)"

Resultados da análise

Na análise de uma estaca isolada carregada horizontalmente, interessa conhecer a distribuição das forças internas ao longo da estaca, as deformações máximas e a utilização da secção transversal da estaca. Para uma **distribuição constante** do módulo de reação do subsolo k_h , os resultados são os seguintes:

—	Deformação máxima da estaca:	$u_{\rm max} = 4.2 \ mm$	п
_	Força de cisalhamento máxima:	$Q_{\rm max} = 85.0 \ k$	×Ν
_	Momento fletor máximo:	$M_{\rm max} = 120.0$	kNm
_	Capacidade de carga da estaca (flexão + compressão):	16.3 %	SATISFAZ
_	Capacidade de carga da estaca (cisalhamento):	20.2 %	SATISFAZ
_	Rácio de armadura da estaca:	69.1 %	SATISFAZ

Comparação entre resultados de vários métodos de determinação do módulo de reação do subsolo

Os valores e a distribuição do módulo de reação horizontal do subsolo k_h variam consoante o método de análise utilizado e os parâmetros do solo introduzidos. Para cada método de análise, os diferentes parâmetros do solo que têm influência nos resultados são os seguintes:

_	CONSTANTE:	ângulo de dispersão $eta\left[- ight]$
_	LINEAR (Bowles):	ângulo de dispersão $eta\left[- ight]$
		coeficiente $k \left[M N / m^3 ight]$ de acordo com o tipo de solo
_	De acordo com CSN 73 1004:	solo coesivo ou não coesivo
		módulo de compressibilidade horizontal $n_h \left[M\!N/m^3 ight]$
_	De acordo com VESIC:	módulo de elasticidade $E\left[MPa ight]$

Ao alterar o método de análise utilizado para calcular o módulo de reação horizontal do subsolo, é necessário introduzir no programa os parâmetros do solo correspondentes (mais informações na Ajuda – F1), da seguinte forma:

Módulo de reação do subsolo $k_h \left[MN/m^3 ight]$	Ângulo de dispersão β [–]	Coeficiente $k \left[MN/m^3 \right]$	Módulo de elasticidade E [MPa]	Módulo de compressibilidade horizontal $n_h \left[MN/m^3 \right]$
CONSTANTE	10 – CS 15 – S-F			
LINEAR (Bowles)	10 – CS 15 – S-F	60 – CS 150 – S-F		
CSN 73 1004	Solo coesivo – CS, consistência firme			
	Solo não coesivo – S-F, mediamente denso			4.5
VESIC			5.0 – CS 15.5 – S-F	

Tabela com sumário dos parâmetros do solo para a capacidade de suporte horizontal de uma estaca

isolada

Agora, vamos voltar à janela "Módulo Kh" para alterar as configurações. Vamos alterar o método de cálculo do módulo de reação do subsolo e adicionar os parâmetros do solo necessários para cada método. Vamos realizar este procedimento para os métodos seguintes:

- linear (segundo Bowles),
- de acordo com a Norma CSN 73 1004,
- de acordo com Vesic.

Método linear (segundo Bowles)

Primeiro, vamos à janela "Módulo Kh" alterar as configurações para "linear".

Janela "Módulo Kh"

Depois, na janela "Solos", vamos selecionar o solo "CS – Areia argilosa" e clicar no botão "Editar". Vamos, ainda, alterar o coeficiente k para 60 MN/m³ e clicar em "OK".

Editar parâmetros do solo				X
— Identificação ————				— Desenhar ———
Nome :	CS – Argila arenosa			Categoria de padrão :
Argila arenosa (C	S), consistência firme			GEO
— Dados base ———			— ? ·	Procurar :
Peso volúmico :	γ = 18.50	[kN/m ³]	18.5	Subcategoria :
Coeficiente de Poisson :	ν = 0.35	[-]	0.35	Solos (1 - 16)
— Metodo NAVFAC ———			— ? ·	Padrão :
Tipo de solo :	coesivo	•		
Coesão do solo :	c _u = 50.00	[kPa]	50	un un un un un un un un un un un un un un un un un
Fator de adesão :	α = 0.60	[-]		
				5 Argila arenosa
				Cor:
				`
— Características da deform	nação		— ? ·	Fundo :
Análise de assentamento :	inserir Eoed			
Módulo edométrico :	E _{oed} = 8.00	[MPa]	5 - 10	Saturação < 10 - 90> : 50 [%]
— Computação de empuxo	s		— ? ·	
Cálculo da pressão hidrostática :	padrão			
Peso volúmico saturado :	γ _{sat} = 20.50	[kN/m ³]		
— Determinação do módulo	o de reação do subso	lo ———	— ? ·	
Coeficiente :	k = 60.00	[MN/m ³]		
Ângulo de dispersão :	β = 10.00	[°]		
Classificar Limpar				OK + 🕹 🗸 OK 🗙 Cancelar

Janela "Solos" – Editar parâmetros do solo (solo CS)

Repita o mesmo procedimento para o solo "S-F – Areia com partículas finas". Desta vez, defina o coeficiente k como 150 MN/m³.

Editar parâmetros do solo X				
— Identificação ———			— Desenhar ————	
Nome :	S-F – Areia com partículas finas		Categoria de padrão :	
Areia com finos (S	5-F), densidade média		GEO	
— Dados base ———		?	Procurar :	
Peso volúmico :	$\gamma = 17.50 [kN/m^3]$	17.5	Subcategoria :	
Coeficiente de Poisson :	v = 0.30 [-]	0.30	Solos (1 - 16)	
— Metodo NAVFAC ———		?	Padrão :	
Tipo de solo :	não coesivo 💌			
Ângulo de atrito interno :	φef = 29.50 [°]	28 - 31	, a boah bah bah bah bah bah bah bah bah bah b	
Fricção na estaca :	calcular 💌			
			9 Areia	
Coeficiente de tensão lateral :	calcular 💌		Cor :	
			•	
— Características da deform	nação	?	Fundo :	
Análise de assentamento :	inserir Eoed 💌		automatico	
Módulo edométrico :	E _{oed} = 21.00 [MPa]	16 - 26	Saturação <10 - 90> : 50 [%]	
— Computação de empuxo	os	? -		
Cálculo da pressão hidrostática :	padrão 💌			
Peso volúmico saturado :	γ _{sat} = 19.50 [kN/m ³]			
- Determinação do módul	o de reação do subsolo	? -		
e Coeficiente :	k = 150.00 [MN/m ³]			
Ângulo de dispersão :	β = 15.00 [°]			
ç				
Classificar Limpar		OK + 🛧	🖌 OK 🛛 🗶 Cancelar	
Empar		JIC .		

Janela "Solos" – Editar parâmetros do solo (solo S-F)

Agora, vamos à janela "Capacidade de carga horizontal", para visualizar os resultados da análise.

Janela "Capacidade de carga horizontal" — Distribuição linear do módulo de reação horizontal do subsolo k_h , deformação e forças internas

Segundo a Norma CSN 73 1004

Agora, voltamos à janela "Módulo Kh" para alterar o método de análise para "segundo CSN 73 1004".

I	Coeficiente reação horizontal do solo :	de acordo com CSN 73 1004	•
_			
ulo Kh			
Mód			

Janela "Módulo Kh"

Na janela "Solos", é necessário definir o módulo de compressão horizontal para o solo não coesivo "S-F – Areia com partículas finas". Clique no botão "Editar" e defina o valor do módulo como 4.5 MN/m³.

Editar parâmetros do solo			×
— Identificação ———			— Desenhar ————
Nome :	S-F – Areia com partículas finas		Categoria de padrão :
Areia com fir	ios (S-F), densidade média		GEO
— Dados base ———		?	Procurar :
Peso volúmico :	$\gamma = 17.50 [kN/m^3]$	17.5	Subcategoria :
Coeficiente de Poisson :	v = 0.30 [-]	0.30	Solos (1 - 16)
- Metodo NAVFAC		? ·	Padrão :
Tipo de solo :	não coesivo 💌		
Ângulo de atrito interno :	φef = 29.50 [°]	28 - 31	n an tha
Fricção na estaca :	calcular		
			9 Areia
Coeficiente de tensão lateral :	calcular		Cor :
			•
— Características da deform	nação	? -	Fundo :
Análise de assentamento :	inserir Eoed		automático
Módulo edométrico :	E _{oed} = 21.00 [MPa]	16 - 26	Saturação <10 - 90> : 50 [%]
— Computação de empuxo	DS	? -	
Cálculo da pressão hidrostática	padrão 🔻		
Peso volúmico saturado :	γ _{sat} = 19.50 [kN/m ³]		
— Determinação do módu	lo de reação do subsolo	? -	
Tipo de solo :	não coesivo 💌		
Módulo de compressibilidade h	orizontal : n _h = 4.50 [MN/m ³]		
Classificar Limpar		OK + 🕆	V OK X Cancelar

Janela "Solos" – Editar parâmetros do solo (solo S-F)

Agora, é possível visualizar os resultados na janela "Capacidade de carga horizontal".

Janela "Capacidade de carga horizontal" – Distribuição do módulo de reação horizontal do subsolo

 k_h segundo a Norma CSN 73 1004, deformação e forças internas

Segundo Vesic

Mais uma vez, vamos voltar à janela "Módulo Kh" e alterar as configurações para "segundo Vesic".

I	Coeficiente reação horizontal do solo :	de acordo com Vesic 💌	
q			
dulo K			
Mó			

Janela "Módulo Kh"

Na janela "Solos", é necessário definir o módulo de elasticidade E para ambos os solos. No caso do solo "CS – Areia argilosa", o seu valor deve ser definido como 5 MPa.

Editar parâmetros do solo				×		
— Identificação ———				- Desenhar		
Nome :	CS – Argila arenos	a		Categoria de padrão :		
Argila arenosa (C	S), consistência firme	e		GEO		
— Dados base ———			~ ?	Procurar :		
Peso volúmico :	γ =	18.50 [kN/m ³]	18.5	Subcategoria :		
Coeficiente de Poisson :	ν =	0.35 [-]	0.35	Solos (1 - 16)		
— Metodo NAVFAC ——			~~?	Padrão :		
Tipo de solo :	coesivo	•				
Coesão do solo :	c _u =	50.00 [kPa]	50			
Fator de adesão :	α =	0.60 [-]		E Anglia and a		
				5 Argita arenosa		
				Cor:		
				Eurodo :		
— Características da deforr	nação		?	- automático		
Análise de assentamento :	inserir Eoed	•		Saturação <10 - 90 > : 50 [%]		
Módulo edométrico :	E _{oed} =	8.00 [MPa]	6 - 10	Saturação < 10 - 50 > . 50 [/6]		
— Computação de empuxo	os		?			
Cálculo da pressão hidrostática	: padrão	•				
Peso volúmico saturado :	γ _{sat} =	20.50 [kN/m ³]				
— Determinação do módulo de reação do subsolo ———— ?						
Módulo de young :	E =	5.00 [MPa]				
Classificar Limpar				OK + 🦊 🗸 OK 🗙 Cancelar		

Janela "Solos" – Editar parâmetros do solo (solo CS)

Defina, também, o módulo de elasticidade E para o solo "S-F – Areia com partículas finas". Neste caso, o seu valor é 15.5 MPa.

Editar parâmetros do solo X							
— Identificação — — — — — — — — — — — — — — — — — — —							
Nome :	S-F – Areia com partículas finas	Categoria de padrão :					
Areia com finos (S	GEO						
— Dados base ———		?	Procurar :				
Peso volúmico :	$\gamma = 17.50 [kN/m^3]$	17.5	Subcategoria :				
Coeficiente de Poisson :	v = 0.30 [-]	0.30	Solos (1 - 16)				
— Metodo NAVFAC ——		? ·	Padrão :				
Tipo de solo :	não coesivo 💌						
Ângulo de atrito interno :	φ _{ef} = 29.50 [°]	28 - 31	lan an a				
Fricção na estaca :	calcular						
			9 Areia				
Coeficiente de tensão lateral :	calcular 💌		Cor:				
			•				
— Características da deform	nação	? -	Fundo :				
Análise de assentamento :	inserir Eoed		automático				
Módulo edométrico :	E _{oed} = 21.00 [MPa]	16 - 26	Saturação <10 - 90> : 50 [%]				
— Computação de empuxo	DS	?					
Cálculo da pressão hidrostática	padrão						
Peso volúmico saturado :	γ _{sat} = 19.50 [kN/m ³]						
— Determinação do módulo de reação do subsolo ————— ?							
Módulo de young :	E = 15.50 [MPa]						
	11						
Classificar Limpar		OK + 🎷	VK 🗶 Cancelar				

Janela "Solos" – Editar parâmetros do solo (solo S-F)

Agora, é possível visualizar os resultados na janela "Capacidade de carga horizontal".

Janela "Capacidade de carga horizontal" – Distribuição do módulo de reação horizontal do subsolo k_h segundo Vesic, deformação e forças internas

Resultados da análise da capacidade de suporte horizontal de uma estaca isolada:

Os resultados da análise da capacidade de suporte horizontal de uma estaca isolada, para cada método utilizado para calcular o módulo de reação horizontal do subsolo k_h , são apresentados na tabela seguinte:

Módulo de reação do subsolo $k_h \left[M N / m^3 ight]$	Deslocamento máximo da estaca $u_{ m max} \; [mm]$	Momento fletor máximo M _{max} [kNm]	Capacidade de suporte da estaca ^[%]
CONSTANTE	4.2	120.0	16.3
LINEAR (Bowles)	6.4	174.44	18.2
CSN 73 1004	5.6	149.87	17.3
VESIC	9.3	120.0	16.3

Sumário dos resultados - Capacidade de suporte horizontal e dimensionamento de uma estaca

isolada

Conclusão

A partir dos resultados da análise, é possível verificar que os valores obtidos para as forças internas ao longo da estaca e para as deformações máximas na cabeça da estaca diferem ligeiramente, mas a influência do método escolhido para calcular o módulo de reação horizontal do subsolo não é crucial.