

Análise de assentamento do terreno

Programa:	MEF
-----------	-----

Arquivo: Demo_manual_21.gmk

Este exemplo contém a análise do assentamento do terreno sob o carregamento de uma sobrecarga, através do Método dos Elementos Finitos.

Definição do problema

Determine o assentamento do terreno induzido pelo carregamento de uma sobrecarga contínua q = 250 kPa ao longo de 4.0 m e o assentamento total após relaxamento da carga. O perfil geológico é homogéneo; os parâmetros do solo são os seguintes:

_	Peso volúmico do solo:	$\gamma = 19.0 k N / m^3$
_	Módulo de elasticidade:	<i>E</i> = 15.0 <i>MPa</i>
_	Módulo de relaxamento:	$E_{ur} = 45.0 MPa$
_	Coeficiente de Poisson:	<i>v</i> = 0.35
_	Coesão do solo:	$c_{ef} = 8.0 \ kPa$
_	Ângulo de atrito interno:	$\varphi_{e\!f}=29.0~^{\circ}$
_	Peso volúmico do solo saturado:	$\gamma_{sat} = 21.0 kN / m^3$

Quanto ao modelo elástico modificado, os parâmetros do solo considerados são:

_	Módulo de deformação do solo:	$E_{def} = 15.0 MPa$
_	Módulo de relaxamento:	$E_{ur} = 45.0 MPa$

Compare a análise de assentamento ou o valor da deformação vertical total $d_z [mm]$ com outros modelos materiais (não vamos considerar os modelos Clam-Clay e Hipostático para argilas porque o solo é formado por um solo não coesivo).

Nota: Os modelos de Mohr-Coulomb e de Drucker Prager são utilizados na prática da engenharia mesmo para solos coesivos, porque estes modelos baseiam-se na rotura de cisalhamento e utilizam os parâmetros comuns dos solos e rochas (φ , c).

Resolução

Para esta análise, vamos utilizar o programa GEO5 MEF. Neste texto, vamos descrever a resolução deste problema passo-a-passo:

- Topologia: configuração e modelação do problema,
- Etapa de construção 1: análise da tensão geostática,
- Etapa de construção 2: introdução do carregamento da sobrecarga, análise de assentamento,
- Etapa de construção 3: relaxamento da sobrecarga aplicada na superfície do terreno, análise de assentamento do terreno,
- Avaliação dos resultados (conclusão).

Topologia: configuração e modelação do problema

Primeiro, vamos configurar o problema, onde caracterizamos o tipo de problema, o tipo de análise e o método de análise da tensão primária.

I	— Parâmetros do projeto ——			— — Design padrão ————		- — Opções avançadas do programa ————					
	Tipo de projeto :	Plano de deformação	▼	Estruturas de concreto :	EN 1992-1-1 (EC2)	-	Parâmetros avançados da geração de malhas				
	Tipo de análise :	Tensão	•	- Cálculo de tensão geostátio	a (1° etapa)		Parâmetros avançados de solos				
	Túneis			Método de análise :	Tensão geostática	-	Modelos de solos avançados				
	Permitir a introdução de á	igua como resultado da ar	nálise de fluxo de água constant	e			Resultados detalhados				
rações											
onfigu											
0		~ .					. ~				

Configuração do problema – Características do problema; análise da tensão primária

Não vamos ativar as opções "Túneis" e "Introdução de dados avançada e resultados detalhados" – estas opções destinam-se a usuários experientes na utilização dos elementos finitos ou a um tipo de problemas diferente. A descrição destas opções não está incluída nos temas abordados e propósito deste manual.

Nota: Os **problemas planares (assumidas condições do plano de deformação)** são adequados para análises de estruturas lineares (túneis, aterros, escavações, barragens, etc.), para os quais se considera que a dimensão longitudinal da estrutura em análise é superior às dimensões laterais – são assumidas deformações nulas na direção do eixo y. A análise é realizada assumindo um plano de deformação (mais detalhes na Ajuda – F1). Nos capítulos seguintes são resolvidos outros tipos de problemas (simetria axial).

Nota: O tipo de análise de **tensão** considera as tensões e deformações dentro da área em análise. Consiste no tipo de análise base; os restantes tipos de análise e opções (fluxo, estabilidade de taludes) são descritos à parte, em outros capítulos.

Nota: Estão disponíveis duas opções para a análise de **tensão primária** (para a etapa de construção 1):

- **Tensão geostática**: É o método standard para a análise da tensão geostática, considerando o peso morto dos solos e tensões horizontais de acordo com a teoria de elasticidade. O coeficiente de pressão lateral é dado por $K_0 = \frac{V}{1-V}$.
- **Método** K_0 (segundo Jáky, para solos sobreconsolidados, etc.).

Vamos definir as coordenadas globais (a dimensão do modelo numérico em análise) e a interface do terreno na janela "Interface". Vamos definir as coordenadas globais de modo a que os resultados não sejam afetados pelas condições de fronteira. Para o nosso problema em particular, vamos definir os limites do modelo como $\langle -15 m; 15 m \rangle$ e definir a espessura da camada a verificar como 15.0 m. Vamos definir as coordenadas da superfície do terreno (x, z) como: [-15, 0]; [15, 0].

Janela "Interface"

Nota: Na Ajuda, são apresentados, e descritos em detalhe, valores de referência para definir os limites do modelo, de acordo com os diferentes problemas (mais detalhes na Ajuda – F1).

Quanto à presente análise, vamos escolher o modelo do solo de **Mohr-Coulomb** (no final deste exemplo é apresentada a comparação de vários modelos) e definir os parâmetros do solo específicos. Este modelo não linear permite o desenvolvimento de deformações plásticas e a distribuição de potenciais zonas de rotura.

Adicionar novos solos					×
— Identificação ———		— Modelo Mohr - Coulomb		- ?	— Desenhar ———
Nome :	Solo No. 1	Modulo descarga/recarga :	E _{ur} = 45.00 [MPa]		Categoria de padrão :
		Ângulo de atrito interno :	φ _{ef} = 29.00 [°]		GEO
— Modelo material ———		Coesão do solo :	c _{ef} = 8.00 [kPa]		Procurar :
Modelo material :	Mohr - Coulomb	Ângulo de dilatação :	ψ = 0.00 [°]		Subcategoria :
— Dados base ———		? -			Solos (1 - 16)
Peso volúmico :	$\gamma =$ 19.00 [kN/m ³]				Padrão :
Módulo de Young :	E = 15.00 [MPa]				
Rigidez de acordo com a prof. :	constante				
					1 Silta
Coeficiente de Poisson :	v = 0.35 [-]				Coru
— Computação de empuxo	os *	? -			cor.
Cálculo da pressão hidrostática :	padrão				
Peso volúmico saturado :	γsat = 21.00 [kN/m ³]				automático
					Saturação (10, 00) (50, 19/1
					Saturação < 10 - 502 , 50 [/6]
Classificar Limpar					🕂 Adicionar 🗙 Cancelar

Definição dos parâmetros do solo

Nota: O modelo elástico assume um comportamento do solo de acordo com a lei de Hooke (material idealmente elástico). A principal vantagem deste modelo é que a análise é sempre executada até ao fim. A desvantagem é que o solo apenas assume este comportamento para um carregamento reduzido – não é adequado para estruturas reais. Por outro lado, é adequado para modelação de áreas em que a rotura plástica do material não é excedida (ex.: muros gabião, superfícies finais rígidas, etc.) ou para a verificação de modelos numéricos básicos.

Seguidamente, vamos atribuir um solo à área criada.

Janela "Atribuir"

Não vamos utilizar as janelas para a definição dos tipos de contacto, pontos livres e linhas livres; estas não têm influencia no nosso problema.

O passo seguinte é gerar a malha de Elementos Finitos (EF). Para os parâmetros de geração da malha, vamos definir um comprimento de 1.0 m para as extremidades dos elementos (o comprimento da extremidade é escolhido de acordo com as dimensões do problema). Vamos selecionar a opção "Suavizar malha" e clicar no botão **Gerar**. O programa irá gerar e suavizar a malha de EF automaticamente. Vamos verificar se a densidade da malha está adequada às dimensões do problema.

Gerar malha de elementos finitos – Topologia (malha triangular)

GEO5

Nota: A malha triangular standard com elementos de seis nós é adequada à maioria de elementos geotécnicos. No caso do modo de introdução de dados avançado, o programa também permite gerar outros tipos de malhas (mistas, triangulares) – destinado a usuários experientes do MEF.

Nota: Uma malha de elementos finitos gerada corretamente é a condição básica para obter resultados que representem o comportamento real da estrutura de forma razoável. A malha EF influencia significativamente os valores obtidos, uma vez que a análise através do MEF começa por determiner os valores dos deslocamentos dos nós. As variáveis restantes (tensões, deformações) são derivadas a partir destes valores.

Infelizmente, é impossível formular uma regra geral para a densidade da malha correta, dado que cada problema é único. Para iniciantes em análises através do MEF, é recomendável a escolha de uma malha grosseira inicialmente, executar a análise e, posteriormente, ajustar a malha através de várias opções, que englobam a suavização da malha ou de algumas zonas da malha (também é possível refinar a densidade da malha à volta de pontos ou de linhas – podem ser encontrados mais detalhes em outros capítulos acerca do MEF). Em geral, quanto mais grosseira for a malha, mais rígido é o comportamento do modelo (o valor do assentamento resultante é menor).

Etapa de construção 1: análise da tensão primária

Quando a geração da malha de EF estiver concluída, passamos à Etapa 1 (através da barra de ferramentas na parte superior do ecrã) e executamos a análise da tensão geostática, ao clicar no botão "**Analisar**". Seguidamente, vamos examinar os resultados para a tensão geostática $\sigma_{z,eff} [kPa]$.

Análise da etapa de construção 1 – tensão geostática primária

Etapa de construção 2: introdução do carregamento da sobrecarga

O passo seguinte é adicionar a etapa de construção 2. De seguida, vamos definir uma sobrecarga atuante na superfície do terreno e definir as características relevantes. O botão "Adicionar" serve para confirmar os dados introduzidos.

Arquivo		- 🖪 -	Editar	Etapa	[Topo] [1] [2]								
4	30	0 -26.00 -24.00	-22.00 -20.00 -18.00	-16.00 -14.00	-12.00 -10.00 -8.00 -6.00	-4.00 -2.00 0.00	2.00 4.00	6.00 8.00 10.00	12.00 14.00	16.00 18.00	20.00 22.00	24.00 26.00 [m]	Modos _
·†,	1			1						1			tividade
Q	8										_		Atribuir
	8						Novas sobreca	argas			×		Wivel freático
\geq	2						Nome : So	brecarga No. 1					🞮 Vigas
	8						- Propriedad	ies da sobrecarga			-		# Contatos
	14						Tipo :	contínua	-				X Ponto de apoio
	8-						Posição :	no terreno	-				Linha de apoios
	1			ID.			Origem :	x = -2.0	0 [m]	a 17m			🔊 Ancoragem
	89			IN			Compriment	a: 1= 40	0 (m)				T Suportes
							Taluda		0 (9)				🔎 Reforços
	101-1						raiude :	α = 0.0	0 [1]				📩 Sobrecarga
	8												🐺 Regiões elásticas
	P7												🗮 Análise
	8						- Valor da so	obrecarga			_		Monitores
	14						Valor:	q = 250.0	0 [kN/m ²]				Cráfico
- 2 2 3	00.92												A Estabilidade
									de Ar	dicionar Y Cancel	ar		
1	🛋 Adi	icionar via texto							11. 0	Concer			Paralita dan
	No.	Sobrecarga	Nome	Tipo	Posição / Ponto 1	Origem / Ponto	Comprimento	/ Ponto 2 Largura / Ponto 2	Talude	Valor			Adicionar imagom
		novo mudança			z [m] / x1 [m]	x [m] / z ₁ [m]	l [m] / x ₂	[m] b [m] / z ₂ [m]	α[°]	q, q1, f, F q	2 unidade		Cohressee
												^	Total: 6
													B ^{III} Lista de imagens
ecarga													
Sobi												Y	Copiar figura

Definir novas sobrecargas

Nesta etapa de construção, vamos voltar a executar a análise e a examinar os resultados, começando pela tensão normal vertical $\sigma_{r,eff}$ [kPa].

Análise da etapa de construção 2 – tensão normal vertical $\sigma_{z,e\!f\!f} \left[kPa
ight]$

De seguida, vamos passar à visualização do esboço do assentamento vertical $d_z [mm]$. A partir da figura, é possível verificar que a deformação vertical máxima assume um valor de 102.9 mm.

Arqui	🔓 - 🗐 - 🛓 🗸	· · · · · · · · · · · · · · · · · · ·						
	Valores : total	 Variável : Deslocamento d_z 	Resultados detalhados Surpefície : isosuperfície	 Malha: (não visualizar) indeformada 		-	>	Modos _
Ŧ	34,00 -32,00 -30,00 -28,00	-28,00 -24,00 -22,00 -20,00 -18,00 -16,00 -14,00 -12,00 -10,00 -8,00	-6,00 -4,00 -2,00 0,00 2,00 4,00 6,00 8,00 10,00 12,00	14,00 16,00 18,00 20,00 22,00 24,00 26,00 28,00 30,00	32,00 [m]			The Atividade
0	12						0,0	Atribuir
	2,00						9,5	Nível freático
\geq	8.		$\psi \psi \psi \psi \psi$				78.5	💻 Vigas
	-	15		4			38,0	## Contatos
							47,5	📓 Ponto de apoio
	8-						57,0	Linha de apoios
							76,0	🗲 Ancoragem
	8.						85,5	🗯 Grampos
	0.1						95,0	□ Suportes
	* - -	IP					102,9	J ⊂ Reforços
	00- -							📇 Sobrecarga
								🗱 Regiões elásticas
					U	niforme	-	🗮 Análise
<u></u>	0.4.	15				۶ 🔸	1	Monitores
रु	8°00				<-	3,5 mm 10:	2.9 mm>	Cráfico
					1 Dec 1		c, 2 mm	- 🤣 Estabilidade
	R	Análise de tensão completa com sucesso. Aiuste de análise : padrão			 Copia Niém 	r Lleathing and	-line de	Describedes
	Analisar	carregamento atingido = 100,00 %			P INIVE	meatico ana	alizado	Resultados _
7 Co	onfigurações							Adicionar imagem
4 De	senvolvimento da análise							Total: 6
7.00								Ett Lista de imagens
					ard			
e.					Clipbo			
Anál					Geo(B ¹ _B Copiar figura
						-		· -

Análise da etapa de construção 2 – deformação vertical devido à sobrecarga $d_z \ [mm]$

Na análise de um problema de EF, um parâmetro importante que é obtido é a deformação plástica equivalente (em modelos não lineares). As deformações plásticas equivalentes representam os locais onde a condição de cedência foi excedida, isto é, o solo está num estado de deformação plástica, exibindo deformações plásticas permanentes.

Análise da etapa de construção 2 – rácio de deformação plástica equivalente $\mathcal{E}_{eq.,pl.}$ [%]

Etapa de construção 3: relaxamento da sobrecarga na superfície do terreno

O passo seguinte é adicionar a etapa de construção 3. Nesta etapa de construção, não vamos considerar a sobrecarga do terreno (vamos removê-la). Vamos voltar a executar a análise e determinar os valores das tensões e das deformações. O assentamento total após o relaxamento da superfície do terreno atinge um valor de 24.1 mm (para uma malha de EF triangular).

Análise da etapa de construção 3 – deformação vertical devido à sobrecarga d_{τ} [mm]

Isto conclui a análise base. Vamos, ainda, executar outras análises para comparar diferentes densidades da malha (com o comprimento das extremidades dos elementos finitos de 1.5 m e 2.0 m) e outros modelos materiais.

Avaliação dos resultados

A tabela seguinte apresenta os resultados do assentamento total $d_z [nm]$ para o mesmo problema, mas utilizando os diferentes modelos materiais disponíveis no programa GEO5 MEF.

Modelo material / programa	Espaçamento da malha [<i>m</i>]	Etapa 2 d _z [nm]	Etapa 3 d _z [nvn]	Nota
Elástico	1.0	88.3	0	
ELM	1.0	88.2	58.8	
DP	1.0	114.1	84.8	
МС	1.0	102.9	73.3	
МСМ	1.0	93.5	64.0	
Assentamento		73.7		CSN 73 1001

Resultados do assentamento total - sumário

Nota: Para a análise analítica no programa **GEO5 Recalque**, considerámos a análise de assentamento de acordo com o módulo edométrico (de acordo com a Norma CSN 73 1001), com uma zona de influência restringida a 10% do estado de tensão geostática inicial. Definimos o modulo de deformação como $E_{def} = 15.0 MPa$.

De acordo com o demonstrado acima, os modelos do GEO5 MEF permitem inserir o módulo para o carregamento primário, definido como E, e o módulo para o relaxamento e carregamento secundário, definido como E_{ur} . Dado que recorremos ao GEO5 Recalque para calcular o carregamento primário, devemos utilizar o mesmo valor para E no GEO5 MEF.

Tanto a análise no GEO5 MEF, para um modelo elástico, como a solução analítica no GEO5 Recalque baseiam-se na teoria da elasticidade linear. Assim, ambos os modelos devem obter resultados semelhantes. No entanto, existem diferenças inevitáveis que se devem:

 à zona influência no GEO5 MEF ser fixa, de acordo com a geometria do modelo, enquanto que a zona de influência do GEO5 Recalque depende do carregamento e de outros parâmetros.

- b) No GEO5 MEF a tensão é calculada para o estado de equilíbrio e respeita as direções vertical e horizontal da deformação. No GEO5 Recalque o campo de tensão é calculado à priori sem correlação com o campo de tensão existente.
- c) No GEO5 MEF o solo sob a fundação pode deformar transversalmente e verificam-se deslocamentos horizontais. A solução analítica do GEO5 Recalque utiliza o módulo edométrico e assume-se que o solo restringido horizontalmente.

Conclusão

É possível deduzir várias conclusões a partir da tabela sumário do assentamento total:

- O modelo de Drucker-Prager é, para este caso particular, mais adequado que os modelos de Mohr-Coulomb ou de Mohr-Coulomb Modificado.
- O assentamento computado através de modelos elasto-plásticos é superior ao valor obtido através do modelo linear.
- O assentamento calculado analiticamente através do GEO5 Recalque é aproximadamente igual ao valor computado através do método dos elementos finitos para um modelo elástico linear. A pequena diferença verificada nos valores obtidos pode ser explicada pelas diferentes premissas que ambos os métodos adotam.