

Assentamento da fundação de um silo circular

Programa: MEF

Arquivo: Demo_manual_22.gmk

O objetivo deste manual é descrever a resolução da análise de assentamento da fundação de um silo circular, com recurso ao Método dos Elementos Finitos e ao módulo de Simetria Axial.

Definição do problema

Determine o assentamento da fundação de um silo circular (espessura 0.5 m e diâmetro 20.0 m) induzido pelo enchimento total do silo, isto é, por uma sobrecarga $q = 150 \ kPa$. Determine, também, o assentamento total do silo após este sere esvaziado. O perfil geológico, e os parâmetros do solo respetivos, é idêntico ao da tarefa anterior (capítulo *21. Análise de assentamento do terreno*). Aplique a **simetria axial** a este caso particular. A fundação do silo circular é realizada em concreto armado maturado, classe C 20/25.

Esboço do problema – fundação de um silo circular

Neste caso, os valores da deformação total, isto é, do assentamento $d_z [mm]$, apenas serão obtidos através do modelo material de Mohr-Coulomb. A comparação entre modelos materiais com diferentes densidades de malhas foi realizada no capítulo anterior 21. Análise de assentamento do terreno.

Resolução

A análise será realizada através do programa GEO5 MEF. Os parágrafos seguintes apresentam a resolução passo-a-passo da análise:

- Topologia: definição e modelação do problema (pontos livres)
- Etapa de construção 1: tensão geostática primária
- Etapa de construção 2: modelação e carregamento em elementos viga, análise de assentamento
- Etapa de construção 3: análise do assentamento (deformação) da superfície do terreno após relaxamento, forças internas
- Resultados da análise: comparação, conclusão

Nota: Para resolver este problema, é necessário representar a fundação do silo realizada em concreto armado por elementos de viga, sem elementos de contacto, assumindo uma ligação perfeita entre a fundação e o solo. Os elementos de contacto serão analisados com mais detalhe no capítulo 24. Análise numérica de uma parede de contenção.

Topologia: configuração do problema

Vamos selecionar a opção "Simetria axial" para o Tipo de projeto, na janela "Configurações". Não alteramos os restantes dados.

1	— Parâmetros do projeto ——		— Design padrão ————		— Opções avançadas do programa ————		
	Tipo de projeto :	Simetria axial	Estruturas de concreto :	EN 1992-1-1 (EC2)	Parâmetros avançados da geração de malhas		
	Tipo de análise :	Tensão	 Cálculo de tensão geostática 	a (1° etapa)	Parâmetros avançados de solos		
	Permitir a introdução de á	gua como resultado da análise de fluxo de água constante	Método de análise :	Tensão geostática 💌	Modelos de solos avançados		
					Resultados detalhados		
ções							
figura							
Con							
	Janela "Configurações"						

GEO5

Nota: A **simetria axial** é adequada para resolver problemas circulares simétricos. Esta hipótese deve estar em concordância com a geometria da estrutura e com o carregamento. A resolução deste problema – fundação circular de um silo – é um exemplo adequado.

A análise é realizada para 1 rad do arco de raio x(r). O eixo de simetria representa sempre a coordenada de origem x(r). As componentes transversais de deformação na direção da rotação podem ser desprezadas. O desenvolvimento de uma componente normal circunferencial da tensão e da deformação (arco de tensão e deformação) também é considerado, juntamente com as componentes da tensão e da deformação no plano da secção transversal (mais detalhes na Ajuda – F1).

Na janela "Interface", vamos começar por definir as novas coordenadas globais. De seguida, vamos definir as coordenadas do primeiro ponto da interface como [10, 0]. O ponto seguinte da interface (na extremidade) será adicionado automaticamente pelo programa.

Janela "Interface" – caixa de diálogo "Coordenadas globais"

Seguidamente, vamos definir os parâmetros dos solos e atribuí-los à região No. 1 da interface. Neste caso, não são considerados corpos rígidos nem tipos de contacto.

Adicionar novos solos					X
— Identificação ———		— Modelo Mohr - Coulomb ———		?	— Desenhar ———
Nome :	Solo No. 1	Modulo descarga/recarga :	Eur = 45.0	[MPa]	Categoria de padrão :
		Ângulo de atrito interno :	φef = 29.0	0 [°]	GEO
— Modelo material ———	?	Coesão do solo :	Cef = 8.0	[kPa]	Procurar :
Modelo material :	Mohr - Coulomb	Ângulo de dilatação :	ψ = 0.0	0 [°]	Subcategoria :
— Dados base ———	?				Solos (1 - 16)
Peso volúmico :	$\gamma = 19.00 [kN/m^3]$				Padrão :
Módulo de Young :	E = 15.00 [MPa]				
Rigidez de acordo com a prof. :	constante				- · ·
					1 Silte
Coeficiente de Poisson :	v = 0.35 [-]				Cor :
— Computação de empuxo	?				-
Cálculo da pressão hidrostática	padrão				Eundo :
Peso volúmico saturado :	$\gamma_{sat} = 21.00 [kN/m^3]$				automático
					Saturação <10 - 90> : 50 [%]
Classificar Limpar					🕆 Adicionar 🗙 Cancelar

Caixa de diálogo "Adicionar novos solos"

Para gerar a malha, vamos definir o comprimento das extremidades dos elementos como 2.0 m.

Janela "Geração da malha" – malha triangular com as extremidades dos elementos com 2.0 m de comprimento

Após examinar a malha gerada, é possível concluir que esta é demasiado grosseira para o problema em análise. Assim, vamos alterar o comprimento das extremidades dos elementos para 1.0 m.

Janela "Geração da malha" – malha triangular com as extremidades dos elementos com 1.0 m de comprimento

Nota: É razoável refinar a densidade da malha através de uma linha de refinamento para a área sob a fundação do silo circular em análise (mais detalhes na Ajuda – F1). Vamos descrever esta função com mais detalhe no capítulo seguinte 23. Análise do revestimento de um coletor.

Etapa de construção 1: tensão geostática primária

Após gerar a malha de EF, vamos passar à etapa de construção 1 e realizar a análise da tensão geostática primária. Vamos manter a configuração da análise como "Padrão" (mais detalhes na Ajuda – F1).

Janela "Análises" – Etapa de construção 1

Etapa de construção 2: modelação e carregamento dos elementos viga

O passo seguinte é adicionar a etapa de construção 2. De seguida, na janela "Vigas", vamos definir os parâmetros seguintes: localização da viga, material e classe do concreto, altura da secção transversal (0.5 m) e apoios das extremidades da viga (mais detalhes na Ajuda – F1).

	po] [1] [2]	
	20 10 20 10 40 50 60 740 800 910 100	s
*	ly = 1.04E-02 m ⁴ /m; A = 5.00E-01 m ² /m; E = 30000.00 MPa; G = 12500.00 MPa Contatos Introduzir contato esquerdo Introduzir contato direito Tipo de contato : ↓ Adicionar ★ Cancelar	ados

Etapa de construção 2 – caixa de diálogo "Novas vigas"

Seguidamente, vamos passar à janela "Cargas na viga", onde vamos definir uma carga $f = 100 \ kN/m$; vamos considerar o peso das paredes do silo circular a atuar na fundação.

Arquivo		Ten - 🥓 - 🏷 Edit - 💾 - 🛃	(Topo) [1] [2]							
_ 1		-12.00 -10.00 -8.00 -6.00 -4.00 -2.00	0.00 2.00 4.00 6.00 8.00	10.00 12.00 14.00 1	16.00 18.00 20.00 :	22.00 24.00 26.0	00 28.00 30	00 32.00 34	00 36.00 38.00 40.00 42 [m]	Modos _
÷	1		I							Atividade
C				004						Atribuir
	• ₈ 3									Wivel freático
\geq	2			Novas cargas na viga			×	\triangleleft		💻 Vigas
	8			— Viga carregada —				41		# Contatos
	14			Posição : Viga No	.1	-				X Ponto de apoio
	89			- Características da carg	a					🖍 Linha de apoios
	1			Tipo de carga : força co	ncentrada	•		<11		K Ancoragem
	909			Direção : perpend	licular a viga	-	×	<1		T Suportes
	8		2	Ångulo :	a = 00	0 m				🔎 Reforços
	8			Parta da antiancia :			X +f			📥 Sobrecarga
	8			Ponto de aplicação :	x = 10.0	o [m]				📇 Cargas na viga
	12									Regiões elásticas
	14 B			— Valor da carga —				\triangleleft		The Analise
-0	- 13			Valor :	f = 100.0	0 [kN/m]	-			Monitores
- <u>{</u>	}		:							Cráfico
	-			-		Adicionar	X Cancelar			-
	1 🔊 🕈	dicionar graficamente 4 Adicionar via texto		L						Resultados _
	No.	Carga da viga Viga	Tipo de carga	Direção	Ângulo Origem	Comprimento	Val	or		E* Adicionar imagem
- H		novo alterar			α. [*] x [m]	I [m] f,	, m, q, q1	q ₂ unidade		Cargas na viga : 0
										Total : 0
										B ^{III} Lista de imagens
viga										
s na										
Carge									v	Copiar figura

Caixa de diálogo "Novas cargas na viga" – cargas devido às paredes, atuantes na fundação circular

Vamos, ainda, definir o valor da carga continua uniforme como $q = 150 kN/m^2$, que representa o enchimento do silo circular e atua na base do silo, ou na parte superior da fundação.

Arquivo	(Topo) [1] [2]								
-12.00 -10.00 -8.00 -6.00 -4.00 -2.00	0.00 2.00 4.00 6.00 8.00	10.00 12.00 14.00	16.00 18.00 20	100 22.00 24.00	26.00 28.00	30.00 32.00	34.00 36.00	38.00 40.00 42 [m	Modos _
TT -									The Atividade
	000000000000000000000000000000000000000	000				-			Atribuir
a.						\triangleleft			Wivel freático
		Novas cargas na viga			×				💻 Vigas
88		— Viga carregada —							🗯 Contatos
14		Posição : Viga No	5.1	•					🎽 Ponto de apoio
8-		- Características da care	ja	human					Linha de apoios
		Tipo de carga : distr. un	iforme em toda a v	riga 💌					🗲 Ancoragem
8-	12	Direção : perpen	dicular a viga	•	~				Suportes
8		Ângulo :	<i>a</i> -	0.00	Contraction of the second				JE Reforços
		Angulo .	u -	0.00 []	- The start of				- Sobrecarga
8									📇 Cargas na viga
22									3 Regiões elásticas
8		— Valor da carga —							🛱 Análise
		Valor :	q =	150.00 [kN/m ²]		4			Monitores
	;	-							Cráfico
		-		Adicionar	X Cancelar	-			-
+ Adicionar graficamente					-				Perultador
No. Carga da viga Viga	Tipo de carga	Direção	Ângulo C	rigem Comprimento	1	Valor			Adicionar imagem
novo alterar	farca cancantra da	norecedicular a vice	α [°]	x [m] [m]	f, m, q, q1	q ₂ unic	iade		Cargas pa viga : 0
Viga wo. 1	lorça concentrada	perpendicular a viga	0.00	10.00	100.00	[KIN/			Total: 0
									B ^{III} Lista de imagens
ida									
as na v									
Carg							T		🛅 Copiar figura

Caixa de diálogo "Novas cargas na viga" – cargas devido ao enchimento do silo

Nesta etapa, vamos voltar a realizar a análise e vamos avaliar os resultados do assentamento $d_z \ [mm]$. A partir da imagem, é possível verificar que o deslocamento vertical máximo é 102.0 mm. Para uma melhor compreensão do comportamento da estrutura, vamos visualizar a malha deformada (botão na parte superior do ecrã).

Acquivo	[Торо] [1] [2]			
Valores: total Variavel: Assentamento of total E00 3000 400 400 -200 0.02 200 40 Image: 1 total Imag	z Surpeficie: Isotupeficie: Malha: (não visualizar) • deformado pela ma 600 600 1000 2.00 M.00 5.00 10.00 2.00 3.00 3.00 2.00 3.00 2.00 3.00 2.00 3.00 2.00 3.00	pnitude ▼ 1.00 ♥ _ (m) 000 2200 3400 5600 3800 4000 7	Image: 1 -3.0 0.0 0.3 19.0 -3.0 38.0 -3.5 37.0 -3.0 65.5 -3.0 10.0 -3.0 10.0 -3.0 10.0 -3.0 10.0 -3.0 10.0 -3.0 10.0 -3.0 10.0 -3.0 10.17 -3.0	Modos _
Anlise Cor cheia Variáveis da viga Strutura não deformada Valores na gretha Valores na gretha Vigas deformadas Vigas deformadas Vigas deformadas Vigas	Depressio Simbolos dos pontos ⊂ Coordenadas dos pontos ✔ Valores	Area de Trabalho ▼ escala de circas veninho comhu comh	and the second secon	Addicionar imagem Análise: 2 Total: 2 E' Lista de imagem
Config		N	× Fechar	Et Copiar figura

Janela "Análise" – Etapa de construção 2 (deformação vertical d_z e depressão)

Vamos clicar no botão "Configurações" e selecionar as opções "Depressão" e "Valores", na secção "Depressão" (mais detalhes em Ajuda – F1).

Etapa de construção 3: assentamento após relaxamento da superfície do terreno, forças internas

O passo seguinte é adicionar a etapa de construção 3. Nesta etapa de construção vamos remover a carga contínua uniforme. Vamos, ainda, considerar apenas o carregamento da viga devido às paredes do silo circular, que é idêntica à determinada na etapa de construção anterior, isto é, $f = 100 \ kN/m$.

Etapa de construção 3 – janela "Cargas na viga"

De seguida, vamos repetir a análise e determinar os valores dos deslocamentos. O valor do assentamento total d_z após o relaxamento da carga da superfície do terreno é 69.6 mm.

Janela "Análise" – Etapa de construção 3 (deformação vertical d_z e depressão)

Agora, vamos examinar os diagramas de momentos radiais $M_r [kNm/m]$ para as etapas de construção 2 e 3 (através do botão "Configurações", secção "Distribuições") e vamos verificar os valores dos extremos locais numa tabela. A armadura estrutural principal da fundação do silo circular pode ser dimensionada e avaliada para estes valores num programa de análise estática (ex.: FIN EC – CONCRETE 2D).

Janela "Análise" – Etapa de construção 2 (variação do momento radial M_{r})

Arquivo		[Topo] [1] [2] [3]						
٠t.	Valores : total Variável : Assentamento d	z • Surpefície : (não visualizar) • Malha : (não visualizar)	 indeformada 	-			Modos	-
Ŧ	18.00 -16.00 -14.00 -12.00 -10.00 -8.00 -6.00 -4.00 -2.00 0.00 2	0 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.	00 26,00 28,00 30,00 32,00	34,00 36,00 38,00 40,00 42,00 44	.00 46.00 [m]		늘 Atividad	te
0							🗮 Atribuir	
Q	- ⁹ -	800 8					Nível fre	eático
53	5						Vigas	
<u>** '\$</u>	8. 60000						Contato	ve
							V Bonto d	
		\vee					Linha de	e annios
	8. 10 4						2- child of	apoios
							Ancorac	em
			<1				Suporte	3
	8		41				J= Ketorço	3
	-						Sobreca	rga
							Cargas	la viga
	8. ID						🗱 Regiões	elásticas
							🚰 Análise	
5						< 31 mm	Monitor	es
रु	8-					<-2.1 mm	Legenda	
				-			M _r [kNm/m]	
1 -	Análise	Variáveis da viga Descrições e preenchimentos		Área de Trabalho •	Figuras gua	ardadas		
8 co	r cheia 👻 🗸 Variáveis da viga	Momento radial (Mr)		escala de cinzas 💌	<nenhum></nenhum>	Ψ.	Resultados	-
Ináli	Valores na grelha	Força radial normal - compressão (Nr+)		 Definindo escala 	Salvar	📧 Configurações	Adicion	ar imagem
A: 20	Secções inclinadas	Força radial normal - tensão (Nr+)		Escala horizontal	· / i		Análise :	2
enho	Vetores	Força de cisalhamento (qr)		Escala vertical			Total :	2
e de:	Depressão	Forca de aro normal - compressão (ne-)					🔠 Lista de	imagens
p og	adas es aiutas de secultados são constamente exilidas	Força de aro normal - tensão (n ₀ +)				Padrão		0
nraç	ouos os ajustes de resultados são corretamente exibidos.	Deformação perpendicular (D)				configurações		
onfig				N		× Fechar	B1 Copiar t	ligura
0		~					Bookier	

Janela "Análise" – Etapa de construção 3 (variação do momento radial M_{r})

Análise de resultados

A tabela seguinte apresenta os resultados para a assentamento total $d_z [mm]$ e momentos radiais $M_r [kNm/m]$ para as etapas de construção 2 e 3, em que modelámos o carregamento e relaxamento da fundação de um silo circular. Realizámos a análise através do modelo material de Mohr-Coulomb com uma malha de elementos triangulares, com extremidades de 1.0 m de comprimento.

Modelo material	Etapa 2 $d_{_{z}}\left[mm ight]$	Etapa 3 $d_z \left[mm ight]$	Etapa 2 M _r [kNm/m	Etapa 3 a] M _r [kNm/m
Mohr-Coulomb	101.7	69.6	+ 169.0	+ 66.0
(1.0 m)			- 31.2	- 80.9

Conclusão

É possível formular várias conclusões a partir dos resultados obtidos:

- Quando o silo está cheio (carregado por uma carga contínua uniforme), verifica-se um momento fletor positivo ao longo da viga, onde as fibras inferiores se encontram tracionadas.
- Após esvaziar o silo (relaxamento da carga), a fundação circular apenas fica carregada pelas paredes do silo e verifica-se um momento fletor negativo ao longo da viga, onde as fibras superiores se encontram tracionadas.