

Posouzení tížné zdi

Program: Tížná zeď

Soubor: Demo_manual_03.gtz

V tomto inženýrském manuálu je provedeno posouzení stávající tížné zdi na trvalou a mimořádnou návrhovou situaci. Je zde také popsána práce s fázemi budování.

Zadání úlohy:

Podle EN 1997-1 (EC 7-1, NP2) posuďte stávající zárubní zeď z hlediska stability na překlopení a posunutí v základové spáře. Na zeď působí nově přitížení od silniční dopravy o velikost 10 kPa. Dále se uvažuje zřízení svodidla na koruně zdi, mimořádné zatížení od nárazu vozidla je uvažováno hodnotou 50 kN/m a působí vodorovně ve výšce 1,0 m. Rozměry a tvar zdi z masivního betonu jsou patrné z následujícího schématu. Sklon terénu za konstrukcí je $\beta = 10^{\circ}$, základovou půdu tvoří písčitá hlína (třída F3, tuhá konzistence). Úhel tření mezi zeminou a rubem zdi je uvažován $\delta = 18^{\circ}$.

Stanovení únosnosti základové půdy a dimenzování zdi není předmětem řešení této úlohy. Ve výpočtu uvažujte efektivní hodnoty parametrů zemin.

Schéma tížné zdi – zadání úlohy

Řešení:

K výpočtu této úlohy použijeme program GEO5 – Tížná zeď. V následujícím textu postupně popíšeme kroky řešeného příkladu v jednotlivých fázích:

GE05

- fáze budování 1: posouzení stávající zdi od přitížení silniční dopravou.
- fáze budování 2: náraz automobilu do svodidla ukotveného ve vrcholu zdi.

Fáze budování 1

V rámu "Nastavení" klikneme na tlačítko "Vybrat nastavení" (v levé spodní části obrazovky) a poté zvolíme nastavení výpočtu jako "Standardní – EN 1997, DA2".

Číslo	Název	Platnost	
1	Standardní - stupně bezpečnosti	Všechny	
2	Standardní - mezní stavy	Všechny	
3	Standardní - EN 1997 - DA1	Všechny	
4	Standardní - EN 1997 - DA2	Všechny	
5	Standardní - EN 1997 - DA3	Všechny	
6	Standardní - LRFD 2003	Všechny	
7	Standardní - bez redukce	Všechny	
8	Česká republika - původní normy ČSN (73 1001, 73 1002, 73 0037)	Všechny	
9	Slovensko - původní normy ČSN (73 1001, 73 1002, 73 0037)	Všechny	
10	Slovensko - EN 1997	Všechny	
69	Švýcarsko - SIA 260 (267) - STR, GEO - standard	Všechny	
70	Švýcarsko - SIA 260 (267) - STR, EQU - standard	Všechny	

Dialogové okno "Seznam nastavení výpočtu"

Poté v rámu "Geometrie" vybereme požadovaný tvar tížné zdi a zadáme její rozměry.

'	JJL							L		?	Generovat obecný tvar
	Schéma geometrie zdi:	- Geometrie	zdi ———								
	<mark>K₁</mark>	k1:	0,70	[m]	k ₆ :		[m]	s ₁ :	5,00	[m]	
		k2:	6,00	[m]	k7:		[m]	s ₂ :	0,00	[m]	
	k ₂ s ₁ :1	k3:	1,00	[m]	k ₈ :		[m]	s3:	0,00	[m]	
	K 5	k4 :	1,90	[m]	kg:		[m]				
	k ₃	k5:	0,60	[m]							
eometri	1:s ₂	Pozn.: Hodn	ota k ₄ (šířka	a spodni	části dříku)	dopočtena	automatick	у.			

Rám "Geometrie"

V dalším kroku přejdeme do rámu "Materiál", kde zadáme materiál zdi. Nejprve zadáme objemovou tíhu $\gamma = 24 \text{ kN/m}^3$ a poté pomocí tlačítka "Katalog" vybereme třídu betonu C 12/15 a ocel B500.

GEO5

ľ	Objemová tíha zdi : γ = 24,00	[kN/m ³] Materiál konstrukce : beton
	Beton	– Výztuž podélná –
	<u>K</u> atalog <u>V</u> lastní	K <u>a</u> talog V <u>l</u> astní
	C 12/15 f _{ck} = 12,00 MPa f _{ctm} = 1,60 MPa	B500 f _{yk} = 500,00 MPa
Materiál		

Rám "Materiál" – zadání materiálu zdi

Následně definujeme příslušné parametry zeminy podle tabulky a přiřadíme ji do geologického profilu.

Zemina (specifikace, zatřídění)	Profil [<i>m</i>]	Objemová tíha $\gamma \left[kN/m^{3} ight]$	Úhel vnitřního tření φ_{ef} [°]	Soudržnost zeminy c _{ef} [kPa]	Třecí úhel kce – zemina $\delta = [\circ]$
F3, tuhá konzistence		18,0	26,5	12,0	18,0

Přidání nových zemin							×
- Identifikace -					— Zobi	razení ———	
Název :	F3, tuhá k	onzistence				Kategorie vzor	kū :
					GEO		-
— Základní data				?	Hledat :		
Objemová tíha :	γ =	18,00	[kN/m ³]			Podkategori	e :
Napjatost :	efektivní		•		Zeminy (1 - 16)	•
Úhel vnitřního tření :	φ _{ef} =	26,50	[°]			Vzorek :	
Soudržnost zeminy :	c _{ef} =	12,00	[kPa]				
Třecí úhel kce-zemina	: δ =	18,00	[°]				-
— Tlak v klidu –				?		HANNA AND	
Zemina :	soudržná		•			2 Hlína písčitá	
Del vil	300012110	0.05				Barva :	
Poissonovo číslo :	ν =	0,35	[-]				•
— Vztlak ———				~ ? ·		Pozadí :	
Způsob výp.vztlaku :	standardn	í	•		automat	ické	-
Obj.tíha sat.zeminy :	$\gamma_{sat} =$	20,00	[kN/m ³]		Sytost <1	0 - 90> :	50 [%]
Zatřiď	Vymaž					🕂 Přidej	🗙 Storno

V rámu "Zeminy" přidáme novou zeminu pomocí tlačítka "Přidat".

Dialogové okno "Přidání nových zemin"

Poznámka: Velikost aktivního tlaku závisí také na tření mezi zeminou a konstrukcí popsaném úhlem $\delta \approx \left(\frac{1}{3} \div \frac{2}{3}\right) \cdot \varphi_{ef}$ (více viz Help – F1). V našem případě uvažujeme při výpočtu zemních tlaků vliv tření mezi zeminou a rubem konstrukce hodnotou $\frac{2}{3} \cdot \varphi_{ef}$ neboli $\delta = 18^{\circ}$.

V rámu "Terén" zvolíme tvar terénu za zdí. Určíme jeho parametry, v našem případě tedy úhel sklonu " β " a délku náspu.

-							
	• • • • • •	Hloubka terénu pod	l horní h	ranou konstrukce	: h =	0,00 [m]	
		 Parametry terénu 	J I				
	5	Délka náspu :	d =	3,00	[m]		
		🔵 Výška náspu :	V =	0,53	[m]		
		O Sklon :	1:s =	5,67	[-]		
Terén) Úhel sklonu :	β =	10,00	[°]		

Rám "Terén"

V dalším rámu definujeme "Přitížení". Pomocí tlačítka "Přidat" zadáme přitížení od silničního provozu jako pásové, proměnné s umístěním na povrchu.

Nové přitížení	×
Název : Přitížení č. 1	- Silniční doprava
– Charakteristiky přitíže	ení
Тур:	Pásové 🔻
Typ působení :	proměnné 🗨
Umístění :	na povrchu 💌
Počátek : x =	3,00 [m]
Délka : I =	10,00 [m]
	ā., , //////////////////////////////////
— Velikost přitížení ——	
Velikost : q =	10,00 [kN/m ²]
	🕂 Přidej 🗙 Storno

Dialogové okno "Nové přitížení"

Rám "Odpor na líci" přeskočíme, protože tvar terénu před zdí je vodorovný.

Poznámka: V tomto případě typ odporu na líci neuvažujeme, tudíž výsledky budou konzervativní. Odpor na líci se zavádí podle kvality a míry zhutnění zeminy před konstrukcí a také v závislosti na dovolené deformaci konstrukce. Tlak v klidu je uvažován pro původní, resp. dobře zhutněnou zeminu. Pasivní tlak je možné uvažovat pouze v případě, kdy je umožněna příslušná deformace konstrukce (více viz Help – F1).

V rámu "Nastavení fáze" zvolíme typ "Návrhové situace". V **první fázi** budování uvažujeme *trvalou návrhovou situaci*.

Rám "Nastavení fáze"

Nyní se přesuneme do rámu "Posouzení", kde spočítáme využití zárubní zdi na překlopení a posunutí.

Rám "Posouzení" – fáze budování 1

Poznámka: Tlačítko "Podrobně" v pravé části desktopu otevírá dialogové okno, které obsahuje

detailní výpis výsledků posouzení.

Spočtené síly působící na konstrukci	E.	D [®] L ^{**} t [×]	F	Dån all itt i	K = = f	V = = f	K = = f
Nazev	Fhor	Pusobiste	Fvert	Pusobiste	Koef.	Koef.	Koef.
	[kN/m]	z [m]	[kN/m]	x [m]	překl.	posun.	napětí
Tíh zeď	0,00	-2,80	247,20	1,67	1,000	1,000	1,350
Aktivní tlak	84,17	-1,73	27,35	2,50	1,350	1,350	1,350
Přitížení č.1 - Silniční doprava	16,36	-2,72	6,05	2,50	1,500	1,500	1,500
Posouzení celé zdi							
Posouzení na překlopení							
Moment vzdorující M _{res} = 376,91 kNm/m							
Moment klopící M _{ovr} = 263,73 kNm/m							
Zeď na překlopení VYHOVUJE							
Posouzení na posunutí							
Vodor. síla vzdorující H _{res} = 152,53 kN/m							
Vodor. síla posunující H _{act} = 138,17 kN/m							
Zeď na posunutí VYHOVUJE							
Celkové posouzení - ZEĎ VYHOVUJE							
Maximální napětí v základové spáře : 176,53 kP	a						

"Dialogové okno – Posouzení (podrobně)"

Poznámka: Pro různá posouzení (na posunutí, překlopení aj.) se uvažuje, zda síly působí příznivě nebo nepříznivě. Každá tato síla je vynásobena příslušným výpočtovým koeficientem, což je následně zobrazeno ve výstupech.

Poté přejdeme do rámu "Stabilita", kde posoudíme celkovou stabilitu zdi. Kliknutí na rám stabilita otevře program "Stabilita svahu", kde přejdeme do rámu "Výpočet". V našem případě vybereme nejběžnější metodu výpočtu: *"Bishop*". Provedeme výpočet s **optimalizací kruhové smykové plochy**, který potvrdíme tlačítkem "Počítej". Po provedení výpočtu vše potvrdíme tlačítkem "Ukončit a předat" v pravé dolní části obrazovky. Výsledky, resp. zadané obrázky se přenesou do protokolu u výpočtu v programu "Tížná zed".

🥝 Stabilita svahu - Tižná zed	×
Soubor Úpravy Zadávání Výstupy Nastavení Nápověda	
Upravy	
1000 -1600 -1400 -1200 -400 -200 0.00 200 400 600 1000 1200 1400 1600 1800 200.0 ml 1 Image: State of the state of	Režimy
	Zemětřesení Nastavení fáze
	🤣 Výpočet
	Výstupy –
	Přidat obrázek
¹ Výpočet: ⊕ ⊖ [1]	Výpočet : 0
Smyková plodna: kruhová 🔻 💭 🕐 Nahradit graficky 🖌 Upravit textově 🗙 Odstranit 🖒 Převěst na polygon 🕴 Podrobné výsledky	Celkem: 0
Počitej Parametry výpočtu – Kruhová smyková plocha Metoda : <u>Bishop</u> Střed : $x = -3.39$ [m] $z = 0.75$ [m] Typ výpočtu : Optimalizace – Poloměr : $R = 8.45$ [m] Optimálizace – Poloměr : $R = 23.46$ [m] Moment sesouvající : $M_a = 4259,05$ kNm/m	Seznam obrázků

Rám "Stabilita" – fáze budování 1

Výsledky výpočtu: fáze budování 1

V rámci posouzení MSÚ sledujeme hodnoty překlopení a posunutí zdi v základové spáře. Dále nás zajímá její celková stabilita. V našem případě je tedy využití opěrné zdi:

—	Překlopení: 70,0 %	$M_{res} = 376,91 > M_{ovr} = 263,73 \text{ [kNm/m]}$	VYHOVÍ
_	Posunutí: 90,6 %	$H_{res} = 152,53 > H_{act} = 138,17$ [kN/m]	VYHOVÍ
_	Celková stabilita: 87,4 %	Metoda – Bishop (optimalizace)	VYHOVÍ

Fáze budování 2

Nyní přejdeme k zadávání 2. fáze budování pomocí nástrojové lišty v horní části obrazovky.

Nástrojová lišta "Fáze budování"

V této fázi definujeme vnější zatížení od nárazu vozidla do svodidla pomocí rámu "Zadané síly". Zatížení působí jako mimořádné. Pomocí tlačítka "Přidat" zadáme novou sílu dle obrázku.

Rám "Zadané síly" – přidání nové síly

Nová síla				×
Název : Síla č. 1 - ná	iraz vo	ozidla		
Тур		přímkové	•	[0,0] +X
Působení :		mimořádné	▼	
Působiště :	x =	-0,35	[m]	+Z
Působiště :	z =	-1,00	[m]	
Velikost síly :	F _x =	-50,00	[kN/m]	
Velikost síly :	F _z =	0,00	[kN/m]	
Velikost momentu :	M =	0,00	[kNm/m]	
		4	Přidej	🗙 Storno

Dialogové okno "Nová síla" – fáze budování 2 (mimořádné zatížení)

Poté v rámu "Nastavení fáze" změníme návrhovou situaci na možnost: "mimořádná". Program k této návrhové situaci automaticky přiřadí hodnoty dílčích koeficientů pro příslušné posouzení konstrukce.

Rám "Nastavení fáze (2)"

Ostatní rámy týkající se zadávání vstupních údajů zůstávají v této fázi již beze změn. Následně provedeme opětovné posouzení zdi na překlopení a posunutí v rámu "Posouzení".

Rám "Posouzení" – fáze budování 2

GE05

Výsledky výpočtu: fáze budování 2

Z výsledků výpočtu je patrné, že stávající tížná zeď vlivem nárazu vozidla do svodidla nevyhovuje. V našem případě je využití zdi:

—	Překlopení: 116,3 %	$M_{res} = 488,62 < M_{ovr} = 568,13 \text{ [kNm/m]}$	Nevyhovuje
_	Posunutí: 102,9 %	$H_{res} = 138,39 < H_{act} = 142,35 \text{ [kN/m]}$	Nevyhovuje

Závěr:

Stávající tížná zeď z hlediska mezního stavu únosnosti vyhovuje pouze pro první fázi budování, kde působí samotné přitížení od silniční dopravy. Pro druhou fázi, kterou reprezentuje vnější mimořádná síla od nárazu vozidla do svodidla ukotveného ve vrcholu zdi, je tato opěrná konstrukce nevyhovující.

Jako vhodné opatření ke zvýšení únosnosti na posunutí a překlopení zdi lze navrhnout zajištění zdi předepnutím pomocí kotevních prvků. Jako další alternativa by bylo umístění svodidla na okraj vozovky, aby zeď nebyla zatížena přídavnou silou od nárazu vozidla.