

Aktualizacja: 1/2024

Projektowanie nie kotwionej (wspornikowej) obudowy wykopu

Plik powiązany: Demo_manual_04.gp1

Niniejszy przewodnik inżyniera przedstawia problematykę projektowania nie kotwionej (wspornikowej) obudowy wykopu w trwałej oraz wyjątkowej sytuacji obliczeniowej (powódź).

Zadanie:

Zaprojektować obudowę wykopu w postaci nie kotwionej ściany szczelnej z grodzic stalowych *VL 601* zgodnie z podejściem obliczeniowym DA3 według normy EN 1997-1 w uwarstwionym podłożu gruntowym. Ściana wykonana jest ze stali *S 240 GP*. Głębokość wykopu wynosi 2,75 m. Poziom zwierciadła wody gruntowej znajduje się 1,0 m poniżej poziomu terenu. Przeprowadź dodatkowo analizę obudowy z uwagi na stan powodziowy, w którym poziom wody znajduje się 1,0 m powyżej korony ściany szczelnej i zastosowano mobilne systemy ochrony przeciwpowodziowej.

Schemat projektowanej wspornikowej obudowy wykopu z grodzic stalowych – przyporządkowanie

Rozwiązanie:

W celu wykonania zadania skorzystaj z programu GEO5 Ściana projekt. Przewodnik przedstawia kolejne kroki wykonania niniejszego przykładu:

- Faza 1: trwała sytuacja obliczeniowa
- Faza 2: wyjątkowa sytuacja obliczeniowa
- Wymiarowanie przekroju ściany z grodzic stalowych
- Sprawdzenie stateczności
- Wyniki obliczeń i podsumowanie

Faza 1

W ramce "Ustawienia" naciśnij przycisk "Wybierz ustawienia", a następnie wybierz z listy dostępnych ustawień obliczeń numer 5 – "Standardowe – EN 1997 – DA3".

賃 Lista ustawie	ń obliczeń		×
Numer	Nazwa	Ważne dla	
1	Standardowe - współczynniki bezpieczeństwa	Wszystkie	
2	Standardowe - stany graniczne	Wszystkie	
3	Standardowe - EN 1997 - DA1	Wszystkie	
4	Standardowe - EN 1997 - DA2	Wszystkie	
5	Standardowe - EN 1997 - DA3	Wszystkie	
7	Standardowe - bez redukcji parametrów	Wszystkie	
8	Republika Czeska (EN1997, CSN 73 1004)	Wszystkie	
12	Polska - EN 1997	Wszystkie	
13	Polska - EN 1997, ciężar wody=1.0	Wszystkie	
14	Polska - współczynniki bezpieczeństwa	Wszystkie	
77	Rumunia - EN 1997 - budynki (SR EN 1990:2004/NA:2006)	Wszystkie	
78	Rumunia - EN 1997 - mosty (SR EN 1990:2004/A1:2006/NA:20	Wszystkie	
			🗸 ОК
			🗙 Anuluj

Okno dialogowe "Lista ustawień obliczeń"

Najpierw przejdź do ramki "Profil" i korzystając z przycisku "Dodaj" dodaj dwie nowe warstwy gruntu do profilu. Pierwszą na głębokości 1,5 m, a drugą na głębokości 2,5 m.

Nr	Miąższość warstwy	Głębokość	🕂 🚎 Dodaj	— Informacja o lokalizacji ———	
	t [m]	z [m]	:= -	Rzedna terenu :	[m]
1	1,50	0,00 1,50			1
2	1,00	1,50 2,50		Współrzędne GPS	Pokaż
3	-	2,50 ∞		GPS : (nie zdefiniowano)	na mapie
			1		

Ramka "Profil" - Dodawanie nowych warstw gruntu

Następnie przejdź do ramki "Grunty" i kliknij przycisk "Dodaj", aby dodać nowe grunty oraz zdefiniować ich parametry zgodnie z poniższą tabelą i rysunkami, a następnie przypisać je do profilu. Stan naprężenia przyjmiemy jako **efektywny**, parcie spoczynkowe wyznaczane jest dla gruntów **niespoistych**. Ponadto, dla każdego gruntu obliczenia wyporu należy wybrać jako **standardowe**. Nie będziemy brać pod uwagę zmiany masy jednostkowej spowodowanej nasyceniem.

Grunt (Klasyfikacia gruptu)	Profil	Ciężar objętościowy	Efektywny kąt tarcia wewnętrznego	Efektywna spójność gruntu	Kąt tarcia konstrukcja - grunt
	[<i>m</i>]	$\gamma \left[kN/m^{3} \right]$	$arphi_{_{e\!f}}\left[^{\circ} ight]$	c_{ef} [kPa]	$\delta = [\circ]$
FSa - piasek drobny, średniozagęszczony	0,0 - 1,5	17,5	29,5	0,0	14,0
clSa - piasek ilasty, średniozagęszczony	1,5 – 2,5	18,5	27,0	8,0	14,0
Cl - ił o niskiej lub średniej plastyczności, konsystencja - twardo- plastyczny,	> 2,5	21,0	19,0	12,0	14,0

Tabela z parametrami gruntu

— Identyfikacja ——			— Pokazuj ————		
Nazwa : FSa - piasek drobny			Kategoria szrafury :		
Pia	sek drobny, średniozagęszczony		GEO 👻		
- Dane podstawowe		? ·	Wyszukiwanie :		
Ciężar objętościowy :	γ = 17,50 [kN/m	³] 17,5	Podkategoria :		
Stan naprężeń :	efektywne	•	Grunty (1 - 16) 👻		
Kąt tarcia wewnętrznego :	φ _{ef} = 29,50 [°]	28 - 31	Szrafura :		
Spójność gruntu :	c _{ef} = 0,00 [kPa]	0			
Kąt tarcia konstrukcja-grum	t: δ = 14,00 [°]				
- Parcie spoczynkowe	9	? -	9 Piasek		
Grunt :	niespoisty	•	Kolor :		
			·		
— Wypór ———		? -	Tło :		
Sposób obliczania wyporu :	domyślny	•	automatyczne 👻		
Ciężar gruntu nawodn. :	γ _{sat} = 17,50 [kN/m	3]	Stopień wilgotności <10 - 90> : 50 [%]		
Klasyfikuj Wyczy	yść I Dane IFC		OK + 🦊 🗸 OK 🗙 Anuluj		

Okno dialogowe "Dodaj nowy grunt" – piasek drobny

— Identyfikacja ———				– Pokazuj – – – – – – – – – – – – – – – – – – –	
Nazwa : clSa - piasek ilasty				Kategoria szrafury :	
	Piasek ilasty			GEO 👻	
- Dane podstawowe -			~~?	Wyszukiwanie :	
Ciężar objętościowy :	γ = 18	3,50 [kN/m ³]	18,5	Podkategoria :	
Stan naprężeń :	efektywne	-		Grunty (1 - 16) 🔹	
Kąt tarcia wewnętrznego :	φ _{ef} = 2	7,00 [°]	26 - 28	Szrafura :	
Spójność gruntu :	c _{ef} =	4 - 12			
Kąt tarcia konstrukcja-grunt	: δ = 14	4,00 [°]			
 Parcie spoczynkowe 			~~?	11 Piasek ilasty	
Grunt :	niespoisty	•		Kolor :	
				·	
— Wypór ———			~~?	Tło :	
Sposób obliczania wyporu :	domyślny	•		automatyczne 💌	
Ciężar gruntu nawodn. : γ _{sat} = 18,50 [kN/m ³] Stopień wilgotności <10 - 90> : 50 [%]					
Klasyfikuj Wyczys	ść 🔠 Dane IFC		OK + 🕇	OK + 🦊 🗸 OK 🗙 Anuluj	

Okno dialogowe "Dodaj nowy grunt" – piasek ilasty

— Identyfikacja ———						— Pokazuj ————	
Nazwa :	Nazwa : CI - ił o niskiej plastyczności				Kategoria szrafury :		
Ił o niskiej lub średniej plastyczności, konsystencja twardoplastyczna						GEO 👻	
- Dane podstawowe -					? -	Wyszukiwanie :	
Ciężar objętościowy :	γ =	21,00	[kN/m ³]	21,0		Podkategoria :	
Stan naprężeń :	efektywne		•			Grunty (1 - 16) 👻	
Kąt tarcia wewnętrznego :	φ _{ef} =	19,00	[°]	17 - 21		Szrafura :	
Spójność gruntu :	c _{ef} =	12,00	[kPa]	8 - 16			
Kąt tarcia konstrukcja-grunt	: δ =	14,00	[°]				
- Parcie spoczynkowe					? -	4 lł	
Grunt :	niespoisty		•			Kolor:	
						·	
— Wypór ———					? -	Tło :	
Sposób obliczania wyporu :	domyślny		•			automatyczne 👻	
Ciężar gruntu nawodn. :	γ _{sat} =	21,00	[kN/m ³]			Stopień wilgotności <10 - 90> : 50 [%]	
Klasyfikuj Wyczy	ść 🔠 Dane	IFC		OK + 🕇		V OK X Anuluj	

Okno dialogowe "Dodaj nowy grunt" – ił o niskiej plastyczności

Następnie w ramce "Przyporządkowanie" przypisz grunty do warstw, jak pokazano na poniższym obrazku.

Ramka "Przyporządkowanie" – przyporządkowanie gruntów do warstw profilu

Przejdź do ramki "Geometria" i wybierz kształt dna wykopu oraz zdefiniuj głębokość wykopu (2.75m). Następnie kliknij przycisk "Edycja" w celu wyboru rodzaju przekroju. W naszym przykładzie będzie to ściana z grodzic stalowych VL 601.

Ramka "Geometria"

W ramce "Materiał" wybieramy odpowiedni rodzaj stali - S 240 GP (stal grodzic stalowych).

١.	— Stal konstrukcyjna: —		Katalog materiałów - Stal konstrukcyjna								
	Ka <u>t</u> alog	Uż <u>y</u> tkownika	- Wybierz z katalogu materiałów								
	EN 10248-1 : S 240 GP		Stal konstrukcyjna EN	EN 10248-1 : S 240 GP							
	f _y = 240,00 MPa		Stal grodzic EN	EN 10248-1 : S 270 GP							
	E = 210000,00 MPa		Żeliwo EN	EN 10248-1 : S 320 GP							
	G = 81000,00 MPa			EN 10248-1 : S 355 GP							
				EN 10248-1 : S 390 GP							
				EN 10248-1 : S 430 GP							
eria											
Mat				✓ ОК 🗙	Anuluj						

Przykład nie wymaga wykorzystania ramek "Kotwy", "Rozpory", "Podpory", "Obciążenie" oraz "Zdefiniowane siły". Ramka "Obciążenie sejsmiczne" również nie ma zastosowania w tym przypadku, ponieważ konstrukcja nie znajduje się na obszarze aktywnym sejsmicznie. W ramce "Teren" profil terenu za obudową pozostaw poziomy.

W kolejnym kroku, przechodzimy do ramki "Definicja parcia". W ramce tej wybieramy dostępną opcję "Uwzględnij minimalne parcie do wymiarowania".

Uwaga: Wiele norm zaleca w przypadku gruntów spoistych uwzględnianie do wymiarowania minimalnego parcia działającego na konstrukcję. Domyślnie przyjęta w programie wartość współczynnika minimalnego parcia do wymiarowania wynosi Ka = 0.2. Oznacza to, że wartość obliczonego parcia gruntu wywieranego na konstrukcję nie będzie niższa niż 20% wartości naprężenia geostatycznego (pierwotnego).

Uwaga: Podczas analizy ścian kotwionych lub rozpieranych zaleca się stosowanie redystrybucji parcia czynnego ze względu na podparcie. Jeśli chcemy zmniejszyć deformację ściany można także, w tej samej ramce, zwiększyć parcie oddziałujące na ścianę (zwiększone parcie czynne, bierne). Obydwie możliwości opisane są dokładnie w pomocy programu (F1) lub w kolejnym Przewodniku Inżyniera <u>Nr 5 – Projektowanie kotwionej obudowy wykopu</u>.

W ramce "Woda" wybierz typ zwierciadła gruntowego za konstrukcją oraz wprowadź jego głębokość jako 1,0 m poniżej poziomu terenu.

'		ody gr	untowej (ZWG) ——	
	ZWG za konstrukcją :	h ₁ =	1,00	[m]
	ZWG przed konstrukcją :	h ₂ =		[m]
	 Spękanie tensyjne			
	 Głębokość strefy spękanej :	h _t =		[m]
Woda				

Ramka "Woda" – 1. faza budowy

Następnie, przejdź do ramki "Ustawienia fazy" i wybierz trwałą sytuację obliczeniową.

'	Sytuacja obliczeniowa :	trwała	
fazy			
stawienia			

Ramka "Ustawienia fazy" – faza 1

Teraz przejdź do ramki "Obliczenia". W ramce tej program automatycznie przeprowadza obliczenia analizowanej obudowy wykopu, wyznacza siły wewnętrzne oraz określa niezbędne zagłębienie konstrukcji w gruncie poniżej dna wykopu.

Ramka "Obliczenia"

Szczegółowe wyniki można wyświetlić korzystając z przycisku "Szczegółowo".

🗊 Analiza			-			×
Max. wartość siły tnącej Max. wartość momentu Wymagane zagłębienie konstrukcji w gruncie Całkowita długość konstrukcji	= = =	73,09 40,86 2,79 5,54	kN/m kNm/r m m	m		
					X <u>Z</u> ak	ończ

Ramka "Obliczenia" – faza 1 – okno dialogowe "Analiza"

Kolejna faza budowy pozwoli na przedstawienie sposobu obliczania minimalnego zagłębienia obudowy w gruncie i wyznaczania sił wewnętrznych w przypadku wyjątkowej sytuacji obliczeniowej – powodzi.

Dane podstawowe - Faza 2

Dodaj nową fazę budowy korzystając z paska narzędzi "Faza budowy" znajdującego się w lewym górnym rogu ekranu.

a	🛨 T 🖃 T	[1]	[2]	
Faz	🔳 Nazwy faz	111	[4]	

Pasek narzędzi "Faza budowy"

W ramce "Woda" zmień poziom zwierciadła wody gruntowej (ZWG) na -1,0m. Biorąc pod uwagę zastosowanie barier przeciwpowodziowych nie będziemy uwzględniać wody wewnątrz wykopu.

1	Parametry zwierciadła wody gruptowej (ZWG)					
	ht	ZWG za konstrukcją :	h ₁ =	-1,00	[m]	
		ZWG przed konstrukcją :	h ₂ =		[m]	
		- Spękanie tensyjne				
		Głębokość strefy spękanej :	h _t =		[m]	
Woda						

Ramka "Woda"

Następnie, w ramce "Ustawienia fazy" wybierz wyjątkową sytuację obliczeniową.

'	Sytuacja obliczeniowa :	wyjątkowa	
a fazy			
Ustawieni			

Ramka "Ustawienia fazy" – faza 2

Wszystkie pozostałe dane są takie same jak w 1. fazie budowy, więc nie musimy wprowadzać zmian w pozostałych ramkach. Przejdź bezpośrednio do ramki "Obliczenia" i zobacz wyniki obliczeń.

Ramka "Obliczenia"

📔 Analiza		-	-		×	
Max. wartość siły tnącej Max. wartość momentu Wymagane zagłębienie konstrukcji w gruncie Całkowita długość konstrukcji	= = =	215,82 178,81 4,46 7,21	kN/r kNm m m	n ı/m		
				X <u>Z</u> al	kończ	

Ramka "Obliczenia" – faza 2 – okno dialogowe "Szczegółowo"

Teraz należy wykonać sprawdzenie przekroju ściany z grodzic na zginanie ze ściskaniem oraz ścinanie.

Wymiarowanie przekroju

Przechodzimy do ramki "Wymiarowanie".

•	Obliczenia : 🛨 📄 [1] - cała konstr					
	Nazwa :		Analiza : cała konstrukcja 👻	✓ Sprawdzaj przekrój ─ Wyniki		
	Geometria konstrukcji : Ściana z grodzic stalowych : VL 601		Wpływ siły normalnej : siły normalne - nie uwzględniaj 🔻	ZGINANIE : NIE SPEŁNIA WYMAGAŃ (1	100,4%)	
	Faza :	(obwiednie z wszystkich faz)		ŚCINANIE : SPEŁNIA WYMAGANIA	(37,5%)	
	Obliczeniowy współczynnik obciążenia :	1,00 [-]				
Wymiarowanie	Maks. siła tnąca na 1m ściany = 215,82 kN/m Maks. moment na 1m ściany = 178,81 kNm/m					

Uwaga: W ramce "Wymiarowanie" wyświetlone są maksymalne wartości sił wewnętrznych z wszystkich faz budowy. Jeśli chcemy zastosować do wymiarowania wartości z konkretnych faz obliczeniowych, należy najpierw dokonać wyboru odpowiednich faz stosując przycisk "Edytuj".

Widzimy, że przekrój nie spełnia wymagań na "Zginanie + ściskanie", wykorzystanie przekroju wynosi ponad 100%. Szczegółowe wyniki można wyświetlić korzystając z przycisku "Szczegółowo".

GEO5

Ramka "Wymiarowanie" – przycisk "Szczegółowo"

Ponieważ przekrój nie spełnia wymagań, musimy przeprowadzić analizę ponownie wracając do pierwszej fazy budowy i, w ramce "Geometria", zmieniając przekrój grodzicy na większy – *VL 602*.

Ramka "Geometria" – zmiana grodzicy

Uwaga: Geometrię grodzic stalowych można zmienić wyłącznie w 1. fazie budowy.

Po dokonaniu edycji i zmiany geometrii przekroju (profilu grodzicy) powracamy do ramki "Wymiarowanie". Nowy przekrój spełnia wymagania dla obydwu sprawdzanych warunków.

Ramka "Wymiarowanie" – sprawdzenie nowego przekroju

1	Obliczenia : 🛨 📄 [1] - cała konstr	rukcja			
	Nazwa :		Analiza : cała konstrukcja 💌 🦳	Sprawdzaj przekrój Wyniki	
	Geometria konstrukcji : Ściana z grodzic	stalowych : VL 602	Wpływ siły normalnej : siły normalne - nie uwzględniaj 🔻 ZGI	INANIE : SPEŁNIA WYMAGANIA	(88,5%)
	Faza :	(obwiednie z wszystkich faz)	Ścił	INANIE: SPEŁNIA WYMAGANIA	(33,2%)
	Obliczeniowy współczynnik obciążenia :	1,00 [-]			
Wymiarowanie	Maks. siła tnąca na 1m ściany = 215,8 Maks. moment na 1m ściany = 178,8	12 kN/m 11 kNm/m			

Ramka "Wymiarowanie" – sprawdzenie nowego przekroju

Uwaga: Zmiana przekroju grodzicy nie ma wpływu na wynik analizy sił wewnętrznych. Sztywność konstrukcji ma wpływ na uzyskiwane wyniki w programie "<u>Ściana analiza</u>".

Sprawdzenie stateczności

Na zakończenie należy przeprowadzić analizę stateczności globalnej konstrukcji. Sprawdzenie to wykonywane jest w ramce "Stateczność".

W ramce tej program pokazuje minimalną długość konstrukcji w gruncie. Analiza stateczności powinna być przeprowadzona w każdej fazie budowy osobno.

Minimalne zagłębienie konstrukcji w gruncie (wyznaczone w obliczeniach w drugiej fazie budowy) wynosi 4.46 m. Zaprojektujemy wobec tego ścianę zagłębioną 4.5 m poniżej dna wykopu.

W pierwszej kolejności wykonamy obliczenia w 1. fazie budowy.

Ramka "Stateczność" – faza 1

Po przyciśnięciu przycisku "Stateczność zbocza" uruchamiany jest program "Stateczność zbocza" i wszystkie dane wejściowe przekazywane są do tego programu automatycznie. W programie przejdź do ramki "Obliczenia". Wybierz metodę "Bishopa" z optymalizacją kołowej powierzchni poślizgu, jak pokazano na poniższym obrazku i kliknij przycisk "Oblicz".

Program "Stateczność zbocza" – ramka "Obliczenia" (faza 1)

Po zakończeniu analizy stateczności w pierwszej fazie budowy kliknij przycisk "Zakończ i przekaż dane" znajdujący się z prawej strony ekranu.

Analogiczne obliczenia przeprowadzimy w 2. fazie budowy.

Program "Stateczność zbocza" – ramka "Obliczenia" (faza 2)

Wyniki obliczeń i podsumowanie:

Celem niniejszego zadania było zaprojektowanie obudowy wykopu o głębokości 2.75 m.

Projektując nie kotwioną obudowę wykopu uzyskujemy wartości sił wewnętrznych działających w konstrukcji oraz minimalną wartość zagłębienia konstrukcji w gruncie. Całkowite zagłębienie ściany w gruncie należy przyjąć jako wartość maksymalną z wszystkich analizowanych faz budowy.

_	Minimalne zagłębienie konstrukcji w gruncie w 1. fazie budowy:	2,79 m
---	--	--------

Minimalne zagłębienie konstrukcji w gruncie w 2. fazie budowy: 4,46 m

W tym przypadku zaprojektujemy obudowę zagłębioną 4.5 m poniżej dna wykopu, a więc o całkowitej wysokości wynoszącej 7.25m (4.5m + 2.75m).

W ten sposób zaprojektowana konstrukcja spełnia również warunek stateczności globalnej. Maksymalne wykorzystanie przekroju nie przekracza 60%.

Grodzica typu *VL 601,* pierwotnie przyjęta do obliczeń nie spełniała wymagań na zginanie. Z tego względu zastąpiona została większą grodzicą typu VL 602, która spełnia wszystkie wymagania.

Zaprojektowana obudowa wykopu wykonana z grodzic VL 602 ze stali S240 GP o długości całkowitej 7,25 m spełnia wszystkie analizowane wymagania.