

Dimensionamento de uma parede de contenção não ancorada

Programa:	Projeto de Contenções
-----------	-----------------------

Arquivo: Demo_manual_04.gp1

Neste capítulo, é descrito o dimensionamento de uma parede de contenção não ancorada, para cargas permanentes e acidentais (inundação).

Tarefa

Dimensione uma parede de contenção não ancorada executada em estacas-prancha *VL 601*, segundo a Norma EN 1997-1 (EC 7-1, DA3), em camadas geológicas não homogéneas. O material das estacas-prancha é aço *S 240 GP*. A profundidade da escavação é 2.75 m. O nível freático está a 1.0 m de profundidade. Analise, também, a estrutura para o caso de ocorrência de inundações, quando a água atinge uma altura de 1.0 m acima do topo da parede (devem ser instaladas barreiras móveis e anti-inundações).

Esquema de uma parede de estacas-prancha não ancorada - tarefa

Resolução:

Para resolver este problema, vamos utilizar o programa GEO5 "Projeto de Contenções". Neste texto, vamos explicar todos os passos para a resolução deste exemplo:

- 1ª etapa de construção: situação de projeto permanente
- 2ª etapa de construção: situação de projeto acidental
- Dimensionamento da secção transversal
- Verificação da estabilidade
- Resultados da análise e conclusão

Etapa de construção 1

Na janela "Configurações", clique em "Selecionar" e escolha a opção No. 5 – "Norma – EN 1997 – DA3".

Número	Nome	Válido para	
1	Norma - fatores de segurança	Tudo	
2	Norma - estados limites	Tudo	
3	Norma - EN 1997 - DA1	Tudo	
4	Norma - EN 1997 - DA2	Tudo	
5	Norma - EN 1997 - DA3	Tudo	
6	Norma - LRFD 2003	Tudo	
7	Norma - sem redução dos parâmetros	Tudo	
8	República Checa - Normas antigas CSN (73 1001, 73 1002, 73 0037)	Tudo	
9	Eslováquia - Normas antigas CSN (73 1001, 73 1002, 73 0037)	Tudo	
10	Eslováquia - EN 1997	Tudo	
60	Suiça - SIA 260 (267) - STR, GEO - Norma	Tudo	
09		Tudo	

Caixa de diálogo "Lista de configurações"

Comece por abrir a janela "Perfil" e adicione duas novas interfaces, utilizando o botão "Adicionar". Uma estará à profundidade de 1.5 m e a outra à profundidade de 2.5 m.

1	No.	Espessura da camada t [m]	Profundidade z [m]	🕂 📰 Adicionar	— Informação da posição Elevação do terreno : [m]
	1	1,50	0,00 1,50	_	Coordenadar GDS
	2	1,00	1,50 2,50	_	Visualizar
	3	-	2,50∞		GPS : (não especificado) no mapa
Perfil					

Janela "Perfile" – Adicionar umma nova interface

Depois, abra a janela "Solos" e adicione novos solos, através do botão "Adicionar", definindo os parâmetros dos solos de acordo com a tabela e imagens seguintes e atribua-os ao perfil geológico. O estado de tensão é considerado como **efetivo**, a pressão em repouso é calculada para solos **não coesivos** e a determinação do impulso é selecionada como **standard** para cada solo. Não vamos considerar alterações no peso volúmico devido à saturação.

Solo (Classificação do solo)	Perfil [<i>m</i>]	Peso volúmico $\gamma \left[kN/m^3 ight]$		Coesão do solo c _{ef} [kPa]	Ângulo de atrito estrutura – solo $\delta = [\circ]$
S-F — Areia com partículas finas, solo mediamente denso	0.0 – 1.5	17.5	29.5	0.0	14.0
SC – Areia argilosa, solo mediamente denso	1.5 – 2.5	18.5	27.0	8.0	14.0
CL, CI – Argila com plasticidade média ou reduzida, consistência firme	a partir de 2.5	21.0	19.0	12.0	14.0

Tabela com os parâmetros do solo

Janela "Perfil" – adicionar nova interface

Adicionar novos solos					×
— Identificação ————					— Desenhar ———
Nome :	Areia com	partículas finas			Categoria de padrão :
					GEO
— Dados base ———				~ ?	Procurar :
Peso volúmico :	γ =	17.50	[kN/m ³]		Subcategoria :
Estado de tensão :	efetivo		-		Solos (1 - 16)
Ângulo de atrito interno :	φ _{ef} =	29.50	[°]		Padrão :
Coesão do solo :	c _{ef} =	0.00	[kPa]		
Ângulo de atrito estrusolo :	δ =	14.00	[°]		
— Empuxo em repouso —				?	
Solo :	não coesiv	D	-		9 Areia
					Cor :
— Computação de empuxo	s				▼
Cálculo da pressão hidrostática :	padrão		-		Fundo :
Peso volúmico saturado :	Veet =	17 50	[kN/m ³]		automático
reso volumico saturado .	/sat -	11.50			Saturação <10 - 90> : 50 [%]
Classificar Limpar					🕂 Adicionar 🗙 Cancelar

Caixa de diálogo "Adicionar novos solos" – Areia com partículas finas

Adicionar novos solos				×
— Identificação ———				— Desenhar ———
Nome :	Areia argilosa			Categoria de padrão :
				GEO
— Dados base ———			? -	Procurar :
Peso volúmico :	γ = 18	8.50 [kN/m ³]		Subcategoria :
Estado de tensão :	efetivo	-		Solos (1 - 16)
Ângulo de atrito interno :	φ _{ef} = 27	.00 [°]		Padrão :
Coesão do solo :	c _{ef} = 8	.00 [kPa]		
Ângulo de atrito estrusolo :	δ = 14	.00 [°]		이는 것은 것은 것은 것은 것은 것을 가지 않는다. 같은 것은 것은 것은 것은 것은 것은 것은 것을 통해 있는다.
— Empuxo em repouso —			? -	
Solo :	não coesivo			
				Cor :
— Computação de empuxo	os		? -	
Cálculo da pressão hidrostática :	padrão	-		Fundo :
Peso volúmico saturado :	γ _{sat} = 18	8.50 [kN/m ³]		
				Saturação <10 - 90> : 50 [%]
Classificar Limpar			Ť.	🕂 Adicionar 🗙 Cancelar

Caixa de diálogo "Adicionar novos solos" – Areia argilosa

Adicionar novos solos		×
— Identificação ———		——————————————————————————————————————
Nome :	Argila com plasticidade média o	u reduzida Categoria de padrão :
		GEO
— Dados base ———		Procurar :
Peso volúmico :	γ = 21.00 [kN/	m ³] Subcategoria :
Estado de tensão :	efetivo	▼ Solos (1 - 16) ▼
Ângulo de atrito interno :	φ _{ef} = 19.00 [°]	Padrão :
Coesão do solo :	c _{ef} = 12.00 [kPa]	
Ângulo de atrito estrusolo :	δ = 14.00 [°]	
— Empuxo em repouso —		?·
Solo :	não coesivo	▼ 4 Argila
		Cor :
— Computação de empuxo)S	~ ? -
Cálculo da pressão hidrostática :	padrão	Fundo :
	24.00 // 11/	automático 🔽
Peso volúmico saturado :	γsat = 21.00 [kN/	m ³] Saturação <10 - 90> : 50 [%]
Classificar Limpar		🕂 Adicionar 🗙 Cancelar

Caixa de diálogo "Adicionar novos solos" – Argila com plasticidade reduzida

Na janela "Atribuir", atribua os solos às camadas respetivas, conforme mostra a imagem abaixo.

Janela "Atribuir" – atribuir solos

Na janela "Geometria", selecione a forma da base da escavação e introduza a sua profundidade. De seguida, clique em "Editar" para selecionar o tipo de secção transversal. Para este exemplo, considere estacas-prancha VL 601.

Janela "Geometria"

Na janela "Material", definimos o tipo de aço desejado S 240 GP (aço para a estaca-prancha).

Janela "Material"

Neste caso, não utilizamos as janelas "Ancoragem", "Suportes", "Apoios", "Sobrecarga" nem "Forças aplicadas". A janela "Sismo" também não é importante para esta análise, porque a estrutura não se encontra numa área de atividade sísmica. Na janela "Terreno", a configuração mantém-se horizontal.

De seguida passamos à janela "Determinação da pressão". Nesta janela escolhemos a possibilidade de "considerar a pressão mínima para dimensionamento".

Janela "Determinação da pressão"

Nota: Para solos coesivos, algumas Normas recomendam a utilização da pressão mínima para dimensionamento atuante na parede de contenção. O valor comum para o coeficiente da pressão mínima de dimensionamento é Ka = 0.2. Isto significa que a pressão mínima na estrutura é pelo menos 20 % da tensão geostática – nunca inferior.

Nota: No caso de paredes de contenção ancoradas, é recomendável utilizar a redistribuição da pressão atuante, devido à ancoragem. Se for desejado reduzir a deformação das estacas-prancha, também é possível aumentar a pressão atuante na estrutura (ativa aumentada, em repouso) na mesma janela. Ambas as possibilidades são descritas na Ajuda do programa (F1) ou no próximo manual de engenharia <u>No. 5 – Dimensionamento de uma parede de contenção ancorada</u>.

Na janela "Nível freático", introduza o nível freático a 1.0 m de profundidade.

I					
	h ₁	 Parâmetros do nível freático 			
		Nível freático atrás da estrutura :	h1 =	1.00	[m]
		Nível freático à frente da estrutura :	h2 =		[m]
		Junta de dilatação			
atico		Profundidade da junta de dilatação :	ht =		[m]
el freå					
Níve					

Janela "Nível freático" – 1ª etapa de construção

Seguidamente, na janela "Configurações da etapa", selecione a situação de projeto permanente.

I	Situação do projeto :	permanente 💌	
Configurações da etapa			

Janela "Configurações da etapa (1)"

Agora, abra a janela "Análises". Nesta janela, o programa calcula automaticamente as forças internas e a profundidade necessária para a estrutura.

Janela "Análises"

Todos os resultados podem ser visualizados através do botão "Em detalhe".

Janela "Análises" – etapa de construção 1 – caixa de diálogo "Em detalhe"

Na etapa seguinte, vamos mostrar como analisar a profundidade mínima da estrutura e as forças internas no solo, para uma situação de projeto acidental – inundações.

Introdução de dados - Etapa de construção 2

Agora, adicione uma nova etapa de construção na barra de ferramentas "Etapas de construção", na parte superior esquerda do ecrã.

. E			
Etap	[1]	[2]	

Barra de ferramentas "Etapas de construção"

Na janela "Nível freático", altera a posição do nível freático atrás da estrutura para -1.0 m. Não vamos considerar a existência de água à frente da estrutura.

1					
	h ₁	 Parâmetros do nível freático 			
		Nível freático atrás da estrutura : Nível freático à frente da estrutura : - Junta de dilatação	h1 = h2 =	-1.00	[m] [m]
Nível freático		Profundidade da junta de dilatação :	ht =		[m]

Janela "Nível freático"

Seguidamente, na janela "Configurações da etapa", defina a situação de projeto como "acidental".

Janela "Configurações da etapa (2)"

GEO5

Todos os restantes parâmetros permanecem iguais aos da 1ª etapa de construção, não sendo necessário alterar nenhum outro dado em qualquer outra janela. Assim, passamos diretamente para a janela "Análises" para observar os resultados detalhados.

Janela "Análises"

🕼 Verificação		_		×
Valor máx. de força de cisalhamento Valor máx. do momento Profundidade requerida da estrutura no solo Comprimento total da estrutura	=	215.82 178.81 4.46 7.21	kN/m kNm/m m	
			X <u>F</u> ech	nar

Janela "Análises" – etapa de construção 2 – Caixa de diálogo "Em detalhe"

Agora, é necessário verificar a secção transversal das estacas-prancha para flexão + compressão e cisalhamento.

Verificação da secção transversal

Passe à janela "Dimensionamento".

Janela "Dimensionamento"

I	Análise : 🕕 🕞 [1]	
	Etapa : (envolventes de todas as etapas) Editar Geometria : Estacas-prancha : VL 601 Informação	 ✓ Verificar secção transversal Coef. de redução da capacidade de suporte : 1.00 [-] Influência da força normal : força normal – não considerar ▼
mensionamento	Esforço transverso máx. por 1m = 215.82 kN/m Momento máx. por 1m = 178.81 kNm/m	Resultados FLEXÃO + COMPR. : NÃO SATISFAZ (100.4%) CORTANTE : SATISFAZ (37.5%)

Janela "Dimensionamento" – verificação de resultados

Nota: Os valores máximos das forças internas, de todas as etapas, são exibidos na janela "Dimensionamento". Se desejar visualizar os resultados de uma etapa de construção específica, deve selecionar a etapa através do botão "Editar".

Como podemos verificar, a secção transversal não está satisfatória para a verificação da "flexão + compressão", dado que a utilização é superior a 100 %. Os resultados detalhados podem ser visualizados através do botão "Em detalhe".

GEO5

Resultados detalhados

Uma vez que a verificação da secção transversal não é satisfatória, é necessário voltar à primeira etapa de construção e, na janela "Geometria", selecionar uma estaca-prancha maior – *VL 602*.

Janela "Geometria" – alterar a secção transversal

Após alterar a secção transversal, regresse à janela "Dimensionamento". A verificação da nova, e maior, secção transversal é satisfatória.

Janela "Dimensionamento" – verificação da nova secção transversal

GEO5

ľ	Análise : 🛨 🕞 [1]	
	Etapa : (envolventes de todas as etapas) Editar Geometria : Estacas-prancha : VL 602 — Informação	✓ Verificar secção transversal Coef. de redução da capacidade de suporte : 1.00 [-] Influência da força normal : força normal – não considerar ▼
ensionamento	Esforço transverso máx. por 1m = 215.82 kN/m Momento máx. por 1m = 178.81 kNm/m	Resultados FLEXÃO + COMPR.: SATISFAZ (88.2%) CORTANTE : SATISFAZ (30.4%)
Dime		

Janela "Dimensionamento" – nova verificação de resultados

Nota: A alteração da secção transversal não tem influência na análise das forças internas. A rigidez da estrutura apenas tem influência na análise do programa "<u>Verificação de Contenções</u>", que pode ser utilizado para analisar estruturas ancoradas mais complexas.

Verificação da estabilidade

Agora é necessário verificar a estabilidade global da estrutura. Esta verificação é realizada na janela "Estabilidade".

Nesta janela, o programa mostra a profundidade mínima da estrutura no solo. A análise de estabilidade deve ser realizada para cada etapa de construção.

A profundidade mínima da estrutura (com base na análise da 2ª etapa de construção) é 4.46 m. Como tal, vamos dimensionar uma cortina de estacas-prancha com 4.5 m de profundidade.

Primeiro, realizamos a análise para a 1ª etapa de construção.

Janela "Estabilidade" – etapa de construção 1

O botão "Estabilidade de taludes" inicia o programa "Estabilidade de Taludes". Todos os parâmetros são transferidos automaticamente para o programa. Aqui, abra a janela "Análises". Selecione o método de "Bishop" com otimização da superfície de deslizamento circular, conforme mostra a imagem abaixo, e clique no botão "Analisar".

Programa "Estabilidade de Taludes" – janela "Análises" (etapa de construção 1)

Após concluir a análise para a 1ª etapa, clique em "Guardar e sair", na parte direita do ecrã. De seguida, realize a mesma análise para a 2ª etapa de construção.

Programa "Estabilidade de Taludes" – janela "Análises" (etapa de construção 2)

Resultados da análise e conclusão

O objetivo desta tarefa é dimensionar uma cortina de estacas-prancha para um poço de fundação a 2.75 m de profundidade.

Ao dimensionar uma parede de contenção não ancorada, obtivemos valores para a profundidade mínima da estrutura no solo. Esta profundidade é determinada como o valor máximo de todas as etapas de construção:

- Profundidade mínima para a primeira etapa de construção: 2.79 m
- Profundidade mínima para a segunda etapa de construção:
 4.46 m

Assim, o dimensionamos a cortina de estacas-prancha com 4.5 m de profundidade, com uma altura total de 7.25 m (4.5 m + 2.75 m).

A estabilidade global desta estrutura é satisfatória. A utilização máxima da estrutura não excede 60 %.

A secção transversal dimensionada originalmente, com estacas-prancha tipo VL 601, não era satisfatória para a verificação de flexão. Assim, foi necessário substituir esta secção transversal por uma maior, do tipo VL 602, que já é satisfatória.

A cortina de estacas-prancha (secção transversal tipo *VL 602*, aço *S 240 GP*) com uma altura total de 7.25 m, é satisfatória para todas as verificações.