

Actualización: 1/2025

Edición de plantilla en el programa Laboratorio

Programa: Laboratorio Archivo: Demo_manual_52.gsg

Este manual describe el trabajo avanzado con fórmulas y gráficos en plantillas utilizando el ejemplo de edición de Shear Box Test. El trabajo de fórmula básica se explica en el Manual de Ingeniería Nro. 51. Este manual requiere los conocimientos cubiertos en el Manual Nro. 51.

Nuestro objetivo es determinar los valores del ángulo de fricción interna $arphi_p$ y de cohesión c_p at en

En nuestro caso consideraremos $x_n = 8 mm$.

El procedimiento de cálculo es el mismo que para la resistencia máxima estándar. Del gráfico de tensión de los ensayos individuales, leemos los valores de tensión en el punto x_{i} .

Luego ajustamos una línea recta a través de los puntos obtenidos y calculamos los valores φ_n y c_n .

Nota: Generalmente buscamos el valor indicado de los parámetros de corte en la parte de la prueba más allá de su pico en un intento de encontrar parámetros de resistencia al corte residual. Sin embargo, dado que el ensayo de caja de corte no es adecuado para determinar los parámetros residuales reales, presentamos los parámetros de corte derivados para la deformación seleccionada.

El informe de salida del ensayo de caja de corte del conjunto de plantillas "Laboratorio - Estándar EN" tiene el siguiente formato:

GE05		Shear Box Te	st				
Proje	ct: Apartment building "Moor	nlighting" - Survey for	building permit				
Test ID: Shear b	Shear box test Project ID: 2022/3548						
Supplier: GEO5 L	aboratory Ltd.	Custor	ner: Survey ABC Ltd.				
Date of measurement: 27.03.2	023	Performed	by: John Young				
Sample							
Field test: BH5		Sample ty	/pe: undisturbed				
Sample index: VA1/12	54	Geotechnical ty	/pe: GT2				
Depth from: 7,00 m		Description:					
Depth to: 7,80 m		Clay with low plast	city, stiff, gray-blue co	lor			
Specimen							
Specimen ID: VA1/1254	-12	Consolidation time:	24,0 hour				
Depth: 7,35 m		Shear rate:	0,001 mm/min				
	Before test	Specimen Nr. 1	Specimen Nr. 2	Specimen Nr. 3			
Dimensions (width/height) [mm]	-	60,00 / 21,00	60,00 / 21,00	60,00 / 21,00			
Moisture content [%]	22,45	24,40	24,30	22,10			
Consolidation (before test) [mm] -	0,210	0,550	1,170			
Vertical stress [kPa]	Vertical stress [kPa] -			200			
Max. shear stress [kPa]	ax. shear stress [kPa] -		71,3	107,2			
Wet unit weight [kg/m ³]	Wet unit weight [kg/m ³] 1802,0		1921,0	1967,0			
Dry unit mass [kg/m ³]	1472,2	1485,5	1545,4	1610,9			
Displacement at failure [mm]	-	1,530	2,061	3,080			

Notes		
Specimens were flooded with water during test specimens is after the end of the test EN ISO 17892-01). Specimen supplied by the customer, test equipment: hydraulic shear device. Test p 17892-10.	g the test. Moisture content indicated for the (moisture content determined according to results refer to the sample as received. Test erformed in accordance with EN ISO	
Verified by: Peter Filmer	Date of issue: 28.03.2023	Stamp and signature

[GEO5 - Laboratory (32 bit) | version 5.2024.19.0 | hardware key 7288 / 3 | Ondřej Laurin | Copyright © 2024 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu]

La forma requerida del protocolo es la siguiente:

GE05	Shear Box Test							
Laboratory	Project: Apa	rtment building "Moo	nlighting" - Survey for	building permit				
Test ID:	Shear box test		Project	ID: 2022/3548				
Supplier:	GEO5 Laborato	ry Ltd.	Custor	ner: Survey ABC Ltd.				
Date of measurement:	27.03.2023 Performed by: John Young							
Sample								
Field test	BH5		Sample t	ne: undisturbed				
Sample index:	VA1/1254		Geotechnical ty	ne: GT2				
Denth from:	7.00 m		Description:	p0. 012				
Depth from Depth to:	7,00 m		Clay with low plasti	city stiff gray-blue co	lor			
Doptilito	7,00 m		p	, g,				
Specimen								
Specimen ID: \	/A1/1254-12		Consolidation time:	24,0 hour				
Depth: 7	7,35 m		Shear rate:	0,001 mm/min				
		Before test	Specimen Nr. 1	Specimen Nr. 2	Specimen Nr. 3			
Dimensions (width/hei	ght) [mm]	-	60,00 / 21,00	60,00 / 21,00	60,00 / 21,00			
Moisture content [%]		22,45	24,40	24,30	22,10			
Consolidation (before	test) [mm]	-	0,210	0,550	1,170			
Vertical stress [kPa]		-	50	100	200			
Max. shear stress [kPa	1]	-	31,7	71,3	107,2			
Wet unit weight [kg/m ³]	1802,0	1848,0	1921,0	1967,0			
Dry unit mass [kg/m ³]		1472,2	1485,5	1545,4	1610,9			
Displacement at failure	e [mm]	-	1,530	2,061	3,080			
	_		1	I	1			
Measured values and results								
120,0 105,0 90,0 Ee 45,0 Ee 40			E 0,10 T	Horizontal displace	0 9 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
່ວັ 💦 🕹 🖓	🗸 da 64 o 64		1001 b 1					

lest results:	Angle of internal friction ϕ_{ef}	Conesion c _{ef} [kPa]
Peak values	25,8	13,8
Post peak values at displacement 8,0 mm	22,1	8,5

Notes		
Specimens were flooded with water during test specimens is after the end of the test EN ISO 17892-01). Specimen supplied by the customer, test equipment: hydraulic shear device. Test p 17892-10.	g the test. Moisture content indicated for the (moisture content determined according to results refer to the sample as received. Test erformed in accordance with EN ISO	
Verified by: Peter Filmer	Date of issue: 28.03.2023	Stamp and signature

[GEO5 - Laboratory (32 bit) | version 5.2024.19.0 | hardware key 7288 / 3 | Ondřej Laurin | Copyright © 2024 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu]

Solución:

Edite la plantilla con el archivo demo: Demo01.gla, que puede encontrar en Ejemplos online de Fine. Asigne un nombre al conjunto de plantillas recién creado EM52 y guárdelo en el Administrador de plantillas para su uso posterior. Introducimos el término "Parámetros posteriores al pico" para los parámetros requeridos dentro de la solución de este manual.

Dividiremos la solución del problema en varias partes.:

- 1. Definir el tipo de datos "Desplazamiento para la resistencia máxima posterior" y completar su valor.
- 2. Definir otros tipos de datos necesarios para el cálculo y el trazado en el gráfico.
- 3. Ingresar las fórmulas para cálculos automáticos.
- 4. Editar el registro de salida y la vista previa del escritorio para incluir los nuevos datos

Parte 1

Primero, abra el archivo Demo01.gla, que contiene los datos con los que trabajaremos. En el cuadro Plantillas, verifique si hemos configurado el conjunto de plantillas que queremos editar: "Laboratorio - Estándar EN". Presione el botón "Editar copia del conjunto de plantillas actual y agréguelo al Administrador" para abrir la ventana de edición del conjunto de plantillas.

Asigne un nombre al conjunto de plantillas creado y guárdelo en el administrador como plantilla de usuario.

Abra la plantilla para el ensayo de caja de corte y agregue un nuevo tipo de datos local en el grupo "Datos básicos", asigne el nombre "Desplazamiento para la resistencia máxima posterior" y asigne los siguientes parámetros:

- Tipo: número
- Tipo de unidad: longitud
- Nombre: Desplazamiento para la resistencia máxima posterior
- Símbolo: -
- Texto vacío: -
- Unidad métrica: mm, 1 decimal
- Unidad imperial: pulgadas, 3 decimales

Edit data type					;
Parameters of data type					
pe : Group 👻					
ame : 🚯 Basic data 💌 🛪 EN Comment :		▼ ³ A	Identifier :		
rameters					
anteers			-	-	
o. Name	Identifier	Type	Parameters	Comment	+ Add (to the end)
Date of measurement		Date and time	Date		(to the end)
Verified by		String			
Date of icrue 6		Date and time	Date		
Notes		String	Multiline string		
Displacement for post peak strength		Number	8,9 mm		
			8,889 in		
				-	Гър. Сору
				-	Copy All
					Copy All Poste
nges					Copy All Paste
nges					Copy All Paste
ngesmula_mula					Copy Al Poste
nges mula pe connet be colculated Conditional input					Copy All P3 Paste
nges mula pe connet be colculated Conditional input stare enumeration : (unspecified) ~ No enumeration	ns defined for using a	s master.			Copy All È Pase

Nota: La creación de tipos de datos locales y el trabajo básico con plantillas se describe en detalle en el Manual de Ingeniería 51.

Guarde la plantilla editada y continúe con el cuadro "Ensayo de caja de corte" y abra la prueba ya ingresada.

En la ventana, vemos un nuevo campo para el tipo de datos que creamos, "Desplazamiento para la resistencia máxima posterior". Rellenaremos 8 mm según las especificaciones. Luego usaremos este valor en cálculos adicionales.

Nota: al tener este valor ya ingresado veremos vistas previas de cálculos específicos al crear fórmulas. Esto facilitará nuestro trabajo.

👪 Editar ensayo: Ensayo de caja de cor	te	_		×
Ensayo ID : Shear box test				
Índice de muestra : VA1/1254		Seleccior	iar mues	tra 🔻
Datos básicos Ejemplar Ejemplar Nro	o. 1 Ejemplar Nro. 2 Ejemplar Nro. 3 Resultados Cálculos Archivos adjuntos			
Fecha de medición :	27/03/2023			
Realizado por :	John Young			
Verificado por :	Peter Filmer			
Fecha de emisión :	28/03/2023			
Notas :	Specimens were flooded with water during the test. Moisture content indicated for after the end of the test (moisture content determined according to EN ISO 17892-0 Specimen supplied by the customer, test results refer to the sample as received. Test hydraulic shear device. Test performed in accordance with EN ISO 17892-10.	the test spe)1). :t equipmer	ecimens nt:	is
Displacement for post peak strength :	8,0 [mm]			

Parte 2

Ahora regrese a la modificación de la plantilla y al grupo "Muestra Nro. 1" agregue otro tipo de datos local "Esfuerzo cortante posterior al pico" con los siguientes parámetros:

- Tipo: número
- Tipo de unidad: presión
- Nombre: Esfuerzo cortante posterior al pico
- Símbolo: τ_{pp}
- Texto vacío: -
- Unidad métrica: kPa, 1 decimal
- Unidad imperial: psi, 3 decimales

Este tipo de dato no será introducido por el usuario, sino que le asignaremos una fórmula para su cálculo automático.

Necesitamos el mismo tipo de datos en el grupo para las muestras 2 y 3. Para ahorrarnos el trabajo, ahora podemos copiar el elemento creado y presionar el botón "OK + flecha hacia abajo" para ir directamente al "Núm. de muestra". Grupo 2", donde simplemente pegamos el elemento.

🛃 Edit data type			— 🗆 X
- Parameters of data type			
Type : Group 👻			
Name : 🌆 Specimen Nr. 1 🔹 🛪 EN Comme	ent : 🗈 🔽 🔻	Identifier :	
Parameters			
No. Name	Identifier Type	Parameters Comment	_ Add
4 Dry unit mass	Number	8,9 kg/m ³ 8,89 lb/ft ³	(to the end)
5 Moisture content	Number	8,89 % 8,89 %	E (before 11)
6 Vertical stress	Number	9 kPa 8,889 psi	Edit (number 11)
7 Consolidation (before test) 6	Number	8,889 mm 8,8889 in	Remove
8 Displacement at failure	Number	8,889 mm 8,8889 in	
9 Shear - measurement 6 Horizontal displacement 6 Vertical displacement 6 Shear stress 6 Mobilized friction angle 6	Table Number Number Number Number	General Number of elements 4	
10 Max. shear stress 6	Number	Symbol: T _{max} 8,9 kPa 8,889 psi	Move upwards (number 11)
11 Post peak shear stress	Number	Symbol: τ _{pp} 8,9 kPa 8,889 psi	(number 11) ▼ Paste
Ranges			
Formula			
Time cannot be calculated			Edit
- Conditional input			eart
Master enumeration : (unspecified)	ations defined for using as master		
	ations demied for using as master.	V	
Local data type		OK + ↑ OK + ↓	✓ OK X Cancel

Continúe pegándolo también en el grupo "Muestra N° 3".

A continuación, continuamos creando tipos de datos para los cálculos y los registros de salida. En el grupo "Resultados", ya tenemos dos tipos de datos para los resultados de los valores pico. Ahora podemos copiar y pegar estos dos tipos de datos en el mismo grupo. El programa nos avisará de que los mismos tipos de datos ya están en el grupo, pero seleccionamos pegarlos de nuevo.

🔁 E	Edit data type							– 🗆 ×
— Pa	Parameters of data type							
Туре	e : Group 🔻							
Nam	me : 🌆 Results 🔽 🛪 EN Com	nment : 🗈		▼ X _A	Identifier :			
Para	ameters							
No.	Name	Identifier		Туре	Parameters	Comm	ent	+ Add
1	Angle of internal friction	6	Numbe	er	Symbol: φ _{ef} 8,9 ° 8,9 °			(to the end)
2	Cohesion	6	Numbe	er	Symbol: c _{ef} 8,9 kPa 8,889 psi			
	Paste data types							×
	Paste data types Name Angle of internal friction	Type Number	Paste	Replace San	Note ne as existing data type No. 1 "A	ungle of internal		×
	Paste data types Name Angle of internal friction Cohesion	Type Number Number	Paste	Replace San frict San pas	Note ne as existing data type No. 1 "A tion". Will be pasted as a new dr ne as existing data type No. 2 "C sted as a new data type	angle of internal ata type. iohesion". Will be		Х
	Paste data types Name Angle of internal friction Cohesion	Type Number Number	Paste	Replace San frict San pas	Note me as existing data type No. 1 "A tion". Will be pasted as a new da me as existing data type No. 2 "C sted as a new data type.	ingle of internal ta type. ohesion". Will be		X py .te
Ranç	Paste data types Name Angle of internal friction Cohesion	Type Number Number	Paste	Replace San frict San pas	Note me as existing data type No. 1 *A tion". Will be pasted as a new da me as existing data type No. 2 *C sted as a new data type.	angle of internal ata type. ohesion". Will be		Py te
Ranç	Paste data types Name Angle of internal friction Cohesion 1ges	Type Number Number	Paste	Replace San frict San pas	Note me as existing data type No. 1 * Å tion". Will be pasted as a new då me as existing data type No. 2 *C ted as a new data type.	angle of internal ata type. iohesion". Will be	¥ Pas	X Py ite
Ranç	Paste data types Name Angle of internal friction Cohesion	Type Number Number	Paste	Replace San frict San pas	Note me as existing data type No. 1 *A tion". Will be pasted as a new da me as existing data type No. 2 *C ted as a new data type.	angle of internal ata type. iohesion". Will be	۶ Pas ۲ Close	x py .te
Ranç	Paste data types Name Angle of internal friction Cohesion Iges	Type Number Number	Paste	Replace San frict San pas	Note me as existing data type No. 1 * A tion". Will be pasted as a new da e as existing data type No. 2 * C sted as a new data type.	ungle of internal ata type. iohesion". Will be	۴ Pas ۲ Close	X py ite
Rang	Paste data types Name Angle of internal friction Cohesion nges mula pe cannot be calculated	Type Number Number	Paste	Replace San frict San pas	Note me as existing data type No. 1 *A tion". Will be pasted as a new da me as existing data type No. 2 *C sted as a new data type.	ingle of internal ta type. iohesion". Will be	₹ Pas ★ Close	x py ite
Rang Form Type	Paste data types Name Angle of internal friction Cohesion nges mula e cannot be calculated Conditional input	Type Number Number	Paste	Replace San frict San pas	Note me as existing data type No. 1 *A tion". Will be pasted as a new da me as existing data type No. 2 *C sted as a new data type.	ingle of internal ta type. iohesion". Will be	₹ Pas ★ Close	x py .te t
Rang Type Co Mast	Paste data types Name Angle of internal friction Cohesion Iges mula be cannot be calculated Conditional input Ster enumeration : (unspecified) Vo enum	Type Number Number	Paste	Replace San frict San pas	Note me as existing data type No. 1 "A tion". Will be pasted as a new da ne as existing data type No. 2 "C ted as a new data type.	ingle of internal ata type. iohesion". Will be	♥ Pas ★ Close Edi	x py te t

Ahora simplemente abra los elementos recientemente agregados y edite el nombre y el símbolo, por ejemplo agregando "(pp)", haciendo referencia a la resistencia máxima posterior.

	-			
😹 Edit data type				— 🗆 X
- Parameters of data type				
Type : Group 👻				
Name : Ab Results - 🛪 EN Comment	: 🗈	▼ 🛪 Identifier :		
Parameters				
No. Name	Identifier	Type Parame	ters	Comment Add
1 Angle of internal friction •	Numb	er Symbol: φ _{ef}		(to the end)
		8,9 ° 8,9 °		
2 Cohesion 6	Numb	er Symbol: c _{ef}		
		8,9 kPa 8,889 psi		
3 Angle of internal friction (pp)	Numb	er Symbol: φ _{ef(pp)}		
		8,9 ° 8 9 °		
4 Cohesion (pp)	Numb	er Symbol: c _{ef(pp)}		
		8,9 kPa		
		0,005 psi		
				- Conv
				All
				Paste
Ranges				
Formula				
Type cannot be calculated				Edit
Conditional input				
Master enumeration : (unspecified) No enumeration	ns defined for using as master.			
Ea Local data type			OK + 🕇 C	JK + 🔶 🗸 OK 🗶 Cancel

De la misma manera, copie las tablas en el grupo "Cálculos" y nómbrelas "resistencia máxima posterior".

Edit data type							_ □
Parameters of data type							
ype : Group 👻							
ame : Ab Calculations	▼ 🛪 EN	V Comment :	1	- x _A	Identifier :		
arameters							
o. Name			Identifier	Туре	Parameters	Comment	+ Add
1 Peak strength - points (graph) Shear stress Vertical stress		6 6		Table Number Number	General Number of elements 2		(to the end)
2 Peak strength - Tangent line Tangent line slope Tangent line shift Vertical stress Shear stress		0 0 0 0		Table Number Number Number Number	General Number of elements 4		
3 Post peak strength - points (graph) Shear stress Vertical stress		111 111 111		Table Number Number	General Number of elements 2		
4 Post peak strength - Tangent line Tangent line slope Tangent line shift Vertical stress Shear stress		6 6 6		Table Number Number Number Number	General Number of elements 4		
							Copy All
							Paste
anges ormula Type cannot be calculated							Edit
Conditional input							
aster enumeration : (unspecified)	Ψ.	No enumerations o	lefined for using	as master.			

Parte 3

Ahora continuaremos ingresando las fórmulas.

Nota: El trabajo básico con fórmulas se explica en el Manual de ingeniería 51.

En el árbol, busque los datos recién creados "Esfuerzo cortante posterior máximo" en el grupo "Muestra n.° 1" y abra la ventana para agregar la fórmula. Aquí pulsamos el botón para agregar una función.

Test ID (String) Insert function Sample index (String) Basic data (Group) > Basic data (Group) Specimen (Group) > Specimen Nr. 1 (Group) Insert Width [mm] (Number) Multilingual text Height [mm] (Number) Multilingual text Wet unit weight [kg/m³] (Number) Calculation uni Dry unit mass [kg/m³] (Number) By data kPa Vertical stress [kPa] (Number) Result preview Field test : Shear - measurement (Table) Max. shear stress - \u03cmp [kPa] (Number) > Shear - measurement (Table) Max. shear stress - \u03cmp [kPa] (Number) > Specimen Nr. 2 (Group) Specimen Nr. 3 (Group)	ormula - Post peak shear stress $[\tau_{pp}]$		×
	Test ID (String) Sample index (String) > Basic data (Group) > Specimen (Group) ✓ Specimen Nr. 1 (Group) Width [mm] (Number) Height [mm] (Number) Wet unit weight [kg/m³] (Number) Dry unit mass [kg/m³] (Number) Dry unit mass [kg/m³] (Number) Vertical stress [kPa] (Number) Vertical stress [kPa] (Number) Consolidation (before test) [mm] (Number) Displacement at failure [mm] (Number) Displacement at failure [mm] (Number) > Shear - measurement (Table) Max. shear stress - τ _{max} [kPa] (Number) Post peak shear stress - τ _{pp} [kPa] (Number) > Specimen Nr. 2 (Group) > Specimen Nr. 3 (Group)	Result preview Field test : Shear box test Partial results	 Insert function f(x) Insert Multilingual text Calculation unit By data kPa ▼

La versión básica de la plantilla de prueba de caja de corte funciona con la tabla "Corte - Medición", en la que el usuario introduce el desplazamiento horizontal, el desplazamiento vertical y la tensión cortante. Para los parámetros pico, se considera la tensión cortante máxima introducida. En la especificación de la tarea, se ha definido que se considerarán los parámetros de superficie para el desplazamiento horizontal especificado; en esta tarea, se consideran 8 mm. Por lo tanto, utilizando la función de interpolación lineal, debemos calcular la tensión cortante dada para el desplazamiento horizontal seleccionado.

La función se puede encontrar en la lista bajo "INTERPOLACIÓN LINEAL".

La función calcula el valor de tensión (y) para el desplazamiento especificado (x) de la tabla "Corte - Medición".

Las variables en la función son:

- x Desplazamiento para la resistencia máxima posterior
- Coordenadas x "Desplazamiento horizontal" en la tabla de medición de corte
- Coordenadas y "Esfuerzo cortante" en la tabla de medición de esfuerzo cortante

La notación de la función es la siguiente:

onnula - Post peak shear stress [tpp]			/
Height [mm] (Number)		LINEARINTERPOLATION(- Insert function -
Wet unit weight [kg/m ³] (Number)		{Displacement for post peak strength};{ Δx ,{ τ };	f(x)
Dry unit mass [kg/m ³] (Number)			
Moisture content [%] (Number)			Insert
Vertical stress [kPa] (Number)			Multilingual text
Consolidation (before test) [mm] (Number)			- Calculation unit
Displacement at failure [mm] (Number)			
✓ Shear - measurement (Table)			By data kPa
Number of row			
Horizontal displacement - Δx [mm] (Number)			
Vertical displacement - Δz [mm] (Number)		Result preview	
Shear stress - τ [kPa] (Number)		Field test : Shear how test	
Mobilized friction angle - ϕ_{mob} [°] (Number)		Faitial results	
Max. shear stress - τ_{max} [kPa] (Number)		25,7	
Post peak shear stress - τ_{pp} [kPa] (Number)			
Specimen Nr. 2 (Group)			
Specimen Nr. 3 (Group)			
> Results (Group)	•		
		✓ O	K 🛛 🗙 Cancel

Introduzca las fórmulas para la tensión cortante posterior al pico para las muestras 2 y 3 de la misma manera.

La exactitud de la entrada se puede verificar en cualquier momento en el cuadro Editar Prueba, donde podemos ver los valores calculados de la tensión cortante superficial para nuestro desplazamiento seleccionado de 8 mm.

	Charm	hav tast									
est ID	: Snear	box test									
ample	e index : VA1/1	254							S	elect san	nple
Basic d	lata Specimen	Specimen	Nr. 1	Specimen Nr. 2	Specimen Nr.	3 Results	Calculations	Att	achments		
Width	ı:			60,00	[mm]						
Heigh	it :			21,00	[mm]						
Wet u	init weight :			1921,0	[kg/m ³]						
Dry u	nit mass :			1545,4	[kg/m ³]						
Moisture content : 24.30				[%]							
Vertic	al stress :		100	[kPa]							
Consc	olidation (before	e test) :	0,550	[mm]							
Displa	acement at failu	re :		2.061	[mm]						
Shear	- measurement	t:									
No.≁	Horizontal dis	placement	Vertio	al displacement	Shear stress	Mobilized	friction angle		• Add		
	Δx [m	m]		Δz [mm]	τ [kPa]	φm	iob [°]		+ (to the	e end)	
1		0,023		0,000	10,746		6,1				
2		0,055		-0,005	10,746		6,1				
3		0,118		-0,014	21,692		12,2				
4		0,172		-0,020	31,542		17,5				
5		0,196		-0,025	34,030		18,8				
6		0,284		-0,032	39,934		21,8				
7		0,408		-0,044	43,980		23,7				
8		0,520		-0,053	48,259		25,8	•	:=	•	
	shear stress :	τ _{max} =		71,3	[kPa]						
Max.	beak shear stres	s : τ _{pp} =		54,0	[kPa]						
Max. Post p											
Max. : Post p											
Max. : Post p											

A continuación, introducimos las fórmulas para trazar el gráfico. Hemos preparado dos tablas con los datos. La primera representa los puntos del gráfico y la segunda la línea de tendencia. Como podemos ver en el árbol de la ventana de edición de fórmulas, los datos copiados se copiaron, incluidas las fórmulas.

Comenzamos editando la tabla que representa los puntos. La columna "Esfuerzo vertical" es la misma que la de la tabla para los parámetros pico, por lo que no es necesario modificarla. Por lo tanto, modificaremos la fórmula de la columna "Esfuerzo cortante".

Formulas		×
Shear stress - τ (Number)		– Formula - Shear stress
Mobilized friction angle - φ _{mob} (Number)		
Max. shear stress - τ_{max} (Number)		if(Row=1;T _{max} [kPa];if(Row=2;T _{max} [kPa];T _{max} [kPa]))
Post peak shear stress - Tnp (Number)		Edit
Specimen Nr. 3 (Group)		
Width (Number)		
Height (Number)		
Wet unit weight (Number)		
Dry unit mass (Number)		
Moisture content (Number)		
Vertical stress (Number)		
Consolidation (before test) (Number)		
Displacement at failure (Number)		
✓ Shear - measurement (Table)		
Horizontal displacement - Ax (Number)		
Vertical displacement - Az (Number)		
Shear stress - T (Number)		
Mobilized friction angle - (number)		
Max shear stress - Tmax (Number)		
Post peak shear stress - Top (Number)		
Results (Group)		
Angle of internal friction - φ _{ef} (Number)		
Cohesion - c_{ef} (Number)		
Angle of internal friction (pp) - get(pp) (Number)		
Cohesion (pp) - Cef(np) (Number)		
✓ Calculations (Group)		
✓ Peak strength - points (graph) (Table)		
Shear stress - τ (Number)		
Vertical stress - σ_v (Number)		
✓ Peak strength - Tangent line (Table)		
Tangent line slope - k (Number)		
Tangent line shift - c (Number)		
Vertical stress - σ_v (Number)		
Shear stress - τ (Number)		
✓ Post peak strength - points (graph) (Table)		
Shear stress - τ (Number)		
Vertical stress - σ_v (Number)		
✓ Post peak strength - Tangent line (Table)		
Tangent line slope - k (Number)		
Tangent line shift - c (Number)		
Vertical stress - σ_v (Number)		
Shear stress - τ (Number)	-	
		✓ OK X Cancel

GEO5

Aquí vemos que utilizamos la fórmula SI para llenar la tabla de manera que la primera fila de la tabla se llene con los datos de la primera muestra, la segunda fila con los datos de la segunda muestra y la tercera fila con los datos de la tercera muestra .

En la fórmula, solo necesitamos reemplazar las referencias al esfuerzo cortante máximo por referencias al esfuerzo cortante posterior máximo, siempre para las muestras respectivas. Para ello, simplemente mantenga pulsado el botón izquierdo del mouse sobre el elemento con marco rojo (que corresponde a la referencia roja en la fórmula), manténgalo pulsado y desplace el mouse hasta el nuevo elemento. Esto modificará el enlace para que coincida con el tipo de dato seleccionado.

GEO5

La segunda opción es hacer clic derecho en el enlace de la fórmula y presionar la opción "Cambiar" para seleccionar un nuevo tipo de datos del árbol.

ormula - Shear stress [τ]			IF(Test ; Then ; Else) Specifies a logical test to pe	erform	>
> Shear - measurement (Table)			$if({Row}=1;{\tau_{pp}[kPa]};if({Row}=2;{\tau_{max}[kPa]})$	}	Insert function
Max. shear stress - τ _{max} [kPa] (Number)			:{Tmax[kPa]}))		f(x)
Post peak shear stress - τ_{pp} [kPa] (Number)			× Remove	•	
Specimen Nr. 3 (Group)					Insert
Width [mm] (Number)					Multilingual text
Height [mm] (Number)		11			- Calculation unit
Wet unit weight [kg/m ³] (Number)					calculation and
Dry unit mass [kg/m ³] (Number)					kPa
Moisture content [%] (Number)					
Vertical stress [kPa] (Number)					
Consolidation (before test) [mm] (Number)			- Pecult preview		
Displacement at failure [mm] (Number)			Result preview		
> Shear - measurement (Table)			Field test : Shear box test 💌 📃 Partial results		
Max. shear stress - τ _{max} [kPa] (Number)			1: 25,700		
Post peak shear stress - τ_{pp} [kPa] (Number)			2 : 71,300		
> Results (Group)			3 : 107,200		
✓ Calculations (Group)					
> Peak strength - points (graph) (Table)					
> Peak strength - Tangent line (Table)					
➤ Post peak strength - points (graph) (Table)					
Number of row					
Row number					
Shear stress - τ [kPa] (Number)	▼				

La fórmula resultante tiene la siguiente forma:

 Shear - measurement (Table) Max. shear stress - τ_{max} [kPa] (Number) Post peak shear stress - τ_{pp} [kPa] (Number) Specimen Nr. 3 (Group) Width [mm] (Number) 	if({Row}=1;{τ _{pp} [kPa]};if({Row}=2;(τ _{pp} [kPa]) ;{τ _{pp} [kPa]}))	 Insert function f(x) Insert Multilingual text
Height [mm] (Number) Wet unit weight [kg/m ³] (Number) Dry unit mass [kg/m ³] (Number) Moisture content [%] (Number) Vertical stress [kPa] (Number) Consolidation (before test) [mm] (Number) Displacement at failure [mm] (Number) Shear - measurement (Table)	Result preview Field test : Shear box test Partial results	Calculation unit
Max. shear stress - τ _{max} [kPa] (Number) Post peak shear stress - τ _{pp} [kPa] (Number) Results (Group) Calculations (Group) Peak strength - points (graph) (Table) Peak strength - Tangent line (Table) Post peak strength - points (graph) (Table) Number of row Row number Shear stress - τ [kPa] (Number)	1 : 25,700 2 : 54,000 3 : 88,400	

La fórmula de la línea de tendencia debería ajustarse automáticamente al copiar. Sin embargo, la abrimos y comprobamos que los enlaces de datos coincidan con la intensidad posterior al pico.

Formula - Post peak strength - Tangent line				×
Test ID (String) Sample index (String) Sable index (String) Sapecimen (Group) Specimen Nr. 1 (Group) Specimen Nr. 2 (Group) Specimen Nr. 3 (Group) Results (Group) Calculations (Group) Peak strength - points (graph) (Table) Peak strength - Tangent line (Table) Vest peak strength - points (graph) (Table) Number of row Shear stress - τ [kPa] (Number) Vertical stress - σ _V [kPa] (Number) Number of row		2	LINEARTRENDANDPOINTS({ov@[kPa]};{t0 [kPa]}) — Result preview Field test : Shear box test	- Insert function - f(x) Insert Multilingual text
Tangent line slope - k [–] (Number)	-			
			✓ OK	× Cancel

Las fórmulas finales que debemos modificar se encuentran en el grupo "Resultados". En ellas, simplemente reemplazamos las referencias de la tabla de intensidad máxima por las de la tabla de intensidad posterior al pico.

Formulas	×
Shear stress - τ (Number)	Formula - Angle of internal friction (pp)
Mobilized friction angle - φ_{mob} (Number)	ΔΤΔΝ(μ)
Max. shear stress - τ_{max} (Number)	
Post peak shear stress - τ _{pp} (Number)	Edit
Specimen Nr. 3 (Group)	
Width (Number)	
Height (Number)	
Wet unit weight (Number)	
Dry unit mass (Number)	
Moisture content (Number)	
Vertical stress (Number)	
Consolidation (before test) (Number)	
Displacement at failure (Number)	
✓ Shear - measurement (Table)	
Horizontal displacement - Δx (Number)	
Vertical displacement - Δz (Number)	
Shear stress - τ (Number)	
Mobilized friction angle - φ _{mob} (Number)	
Max. shear stress - τ_{max} (Number)	
Post peak shear stress - τ_{pp} (Number)	
✓ Results (Group)	
Angle of internal friction - ϕ_{ef} (Number)	
Cohesion - c _{ef} (Number)	
Angle of internal friction (pp) - φ _{ef(pp)} (Number)	
Cohesion (pp) - c _{ef(pp)} (Number)	
Calculations (Group)	
Peak strength - points (graph) (Table)	
Shear stress - τ (Number)	
Vertical stress - σ _v (Number)	
✓ Peak strength - Tangent line (Table)	
Tangent line slope - k (Number)	
Tangent line shift - c (Number)	
Vertical stress - σ _v (Number)	
Shear stress - τ (Number)	
Post peak strength - points (graph) (Table)	
Shear stress - τ (Number)	
Vertical stress - σ _v (Number)	
Post peak strength - Tangent line (Table)	
Tangent line slope - k (Number)	
Tangent line shift - c (Number)	
Vertical stress - σ_v (Number)	
Shear stress - τ (Number)	
	V OK X Cancel

Con esto finalizamos el trabajo con las fórmulas. Tras regresar al cuadro de Editar Prueba, podemos comprobar si los valores calculados son correctos.

😹 Edit test: She	ear box te	est		-						×
Test ID :	Shear b	box test								
Sample index :	VA1/12	254							Select sam	ple 🔻
Basic data Sp	ecimen	Specimen Nr. 1	Specimen Nr. 2	Specimen	Nr. 3	Results	Calculations	Attachments		
Angle of inter	nal fricti	on: φ _{ef} =		25,8	[°]	,				
Cohesion :		c _{ef} =		13,8	[kPa]	_				
Angle of inter	nal fricti	on (pp) : φ _{ef(pp)} =		22,1	[°]					
Cohesion (pp)):	$c_{ef(pp)} =$		8,5	[kPa]					
						•				
									×c	
 Recalculate 								✓ OK	👗 Car	ncel

Parte 4

En la siguiente etapa, modificamos el gráfico y el protocolo para incluir los datos recién creados.

Nota: La edición básica de registros se describe en el Manual de Ingeniería 51.

Comenzaremos modificando el protocolo:

Edit tem	plate									- 🗆
ame : 🚯	Shear box test 🔹 🛪 EN C	omment : 🗈	▼ 7 _A							
				Input data					List of output protocols	i i
No.	Name	Identifie	r Type	Column Paramet	Conditional input	Comment	HI Add	No.	Name	+ Add
1	Test ID	•	String	1			 according to sample 	1 Protocol		1.00
2	Sample index	6	String	~		Borehole+Well+SPT+PMT / Fixed	- Add	2 Protocol - d	etailed	Coumber 1
3	Basic data		Group	Number of elements 6			+ to the end	3 Protocol + 1	ab	(namber 1
	Date of measurement	•	Date and time					4 Protocol - d	etailed + tab	Remove
	Performed by	6	String					5 Decision no	sátes	^ (number
	Verified by	6	String					2 Desktop pro		
	Date of issue	•	Date and time							Copy
	Notes	•	String							"Lab (number)
	Displacement for post peak strength		Number							23 a
4	Specimen		Group	Number of elements 7						D Paste
	Specimen ID		string						List of output document	a
	Wet unit weight		Number							
	Dry unit mass	6	Number					No. Docum	ent name Number of chapt	ers
	Moisture content		Number					1 Universal de	cument	
	Consolidation time	•	Number				_	2 Documenta	tion - basic	1
	Shear rate	•	Number					3 Documenta	tion - detailed	1
5	Specimen Nr. 1		Group	Number of elements 11						
	Width	•	Number							-
	Height	•	Number					Previews in left p	art of the desktop :	I Define pre
	Wet unit weight	•	Number					Developer in slatt	nort of the dockton -	Define are
	Dry unit mass	e	Number					ereviews in right	part of the desktop .	the beaute pre
	Moisture content	•	Number						list of mapping for export and	import
	Conselections (and one text)		Number							
	Displacement at failure		Number					No. Name	Comment	T Add
	Shear - measurement	6	Table							
	Horizontal displacement	•	Number							
	Vertical displacement	•	Number							
	Shear stress	0	Number							
	Mobilized friction angle	6	Number				Copy			
	Max. shear stress	•	Number				Las All			
	Post peak shear stress	0	Number				E-2 Posts			
6	Specimen Nr. 2	A	Group	Number of elements 11			C			
	Width	•	Number							
	Height	•	Number							

Añadimos una fila en la pestaña "Cuadrícula de celdas 6", donde se muestran los valores resultantes.

Edit protocol							×
Sectors Current section : 11 * + Add *	Parameters Name : 40 Protocol •	Drawing Thickness: 0.41 (nm) Color: Inner Inns Thickness: 0.20 (nm) Color: Height Roor: 50 (nm) Freet:	Paper format Paper size : A4 Layout : portrait t	Margina Arial 15.0 (mm) Bottom : 15.0 (mm) Arial 15.0 (mm) Right : 15.0 (mm) Arial	Font	Field te Shear box t	Preview st : est Print preview
Cell grid 1 Cell grid 2 Cell grid 2 Cell Pyre : cell grid • Space showe : 0.0 fmml • Finner on the top • Timme th	yrd 4 Call grid 5 Coll grid 6 Faster					Column : + Add X Remove Row : + Add X Remove	Add Kernove (Cell grid 6) (Cell grid 6)
Frame right Space below . 20 Introl Frame on the battom those page frame Conditions	1 : 1.0 2 : 1.0 3 : 1.0	A : 1,0 Test results:	Peak values:	8:0,5 Angle of internal friction φ _{ef} [°] 25,8	C : 0,5 Cohesion c _{ef} [KPa] 13,8	GenClipboard* Copy cell grid D Pate Cotti grid Zoom : 100% E 2	
eloreys Edit Peper size : 1850/mm × 267,0mm							DK X Cancel

En la celda recién creada, escriba el texto "Valores máximos posteriores al desplazamiento", modifique el formato y agregue un enlace al tipo de datos de desplazamiento seleccionado. El número se puede agregar mediante la opción "Datos de prueba - datos" y la unidad mediante la opción "Datos de prueba - nombre". Esto garantizará que, si cambiamos la unidad de los datos a, por ejemplo, cm, también se produzca un cambio en el informe de salida.

iber of o	columns : 1 🖌 Right margin Background row : 1 🖌 Bottom margin	color : No color	•			
n 1 m type	: Text 🗸					+ Add item
~	B $I \ \underline{U} \ \underline{\leftrightarrow} \ \underline{A} \ \underline{\leftarrow} \ \underline{A} \ \underline{\leftarrow} \ \mathbf{X} \ \mathbf{X}_2 \ \mathbf{X}^2 \equiv \Xi \equiv$	≡≡≡			Insert field	- Insert item
		Post p	eak values a	t displac	cement [Displacement for post peak strength] m	m := (before 1)
(Test data - name			×		
	Name	Symbol	Unit			
	Test ID	Symbol	Unit			
	Sample index					
	Basic data					
	Basic data → Date of measurement					
	Basic data → Performed by					
	Basic data \rightarrow Verified by					
	Basic data → Date of issue					
	Basic data → Notes					
	Basic data \rightarrow Displacement for post peak strength		mm			
	Specimen					
	Specimen → Specimen ID					
	Specimen \rightarrow Depth		m			
	Specimen \rightarrow Wet unit weight		kg/m ³			
	Specimen → Dry unit mass		kg/m ³			
	Specimen → Moisture content		%			
Item lo	Specimen \rightarrow Consolidation time		hour			—
rizont	Specimen → Shear rate		mm/min	4	✓ Vertical text	
	Specimen Nr. 1				Vord wrap	
rtical :	Specimen Nr. 1 → Width		mm		• • • • • • • • • • • • • • • • • • •	
Condit	Specimen Nr. 1 \rightarrow Height		mm	-		
dit			¥ Conv			
		▼ UK				

Nota: en caso de que quisiéramos utilizar el protocolo en más idiomas, es posible insertar "Texto multilingüe" a través de la opción "Insertar campo", donde el texto podrá ser traducido a otros idiomas.

Luego, inserte los datos correspondientes en las celdas restantes. Seleccione "Datos de prueba - datos" mediante la opción "Insertar campo".

Edit protocol								×
Sections	Parameters	Drawing Paper	r format	Margins	For	nt		Preview
Current section : UI * + Add *	Name : 🚯 Protocol 🔹	TA DN Frame Thickness: 0.11 (mm) Color: * Paper size: // Inner lines Thickness: 6.20 (mm) Color: * Layout: y Height Row: 5.0 (mm) Font: 3.5 (mm)	44 v Top : zortrait v Left :	15,0 (mm) Bottom : 15,0 (mm) 15,0 (mm) Right : 15,0 (mm)	arial	•	15 Shear	eld test : box test = Print preview
Cell grid 1 Cell grid 2 Cell grid 3 Cell	grid 4 Gell grid 5 Gell grid 6 Footer							
Type :							Column :	+ Add -
cell grid 👻							+ Add	Cell grid 6)
							X Remove	More upwards
Space above :							NOW :	- (Cell gris 6)
0,0 [mm]							× Remove	-
✓ Frame on the top ✓ Frame left								
✓ Frame right				0.05				
Space below : 2.0 (mm)		A : 1,0		B : 0,5		C : 0,5		
✓ Frame on the bottom	1 : 1,0	Test results:		Angle of internal friction	י φ _{ef} [°]	Cohesion c _{ef} [kP	a] GeoClipbcan	P*
Whole page frame	2 : 1,0		Peak values:	25,8		13,8	Copy cell grid	
	3 : 1,0	Post peak values at displacen	nent 8,0 mm:	22,1		8,5	Paste	
							Cell grd	
							10055	3
always								
Edit								
Paper size : 100 Drum x 207 Omm								
							CK + 🕹	✓ OK X Cancel

Usando el botón "Vista previa", puede ver el informe modificado en formato de impresión. Aquí podemos ver que, como hemos añadido una línea, ya no cabe todo en una sola página.

Print and export	in and epot document X													
	Durant Share	how best Cheve	her lest Destace		Select all		One page							
	One Official Street	UNA LEST - STROOT	took test - Protoco		Remove selection		E Multiple pa	ges						
Save Print	and edit Scheme: color			- copy		width page	ED Book							
	GEOS		Shear Box Te:	st			Test results:		Peak vo	Angle of i aluna:	25,8	Cohesion o 13,8	- DPal	
6	Project: Apartm	rent building "Moon	lighting" - Survey for I	building permit				Post peak val	lues at displacement 8,0	0 mm :	22,1	8,5		
	Sappler, GE05 Labersbryl	LM.	Caston	tor Survey ABC Ltd.										
Date	of measurement: 27.03.2023		Performed	by, John Young										
Sam	iple		E como to to	per un time mod										
	Sample index: VA1/1254		Ceptechnical ty	pe: GT2										
	Dopth from: 7,00 m		Description: Classes th law electric	inter still one-blee en	lar.									
	organization 1,000 M		in the second second	,										
oper	Specimen ID: VA1/1254-12		Consolidation time:	24,0 hour										
	Depth: 7,35 m	Being best	Sheer rate: Sheer rate:	0,001 mmmin Spacimen Nr. 2	Searcinan Nr. 1									
Dime	ensions (width theight) [mm]		00.00 / 21,00	60,00 / 21,00	00.00/21,00									
Mok	Visite content [%] colidation (bolice loci) (mm)	22,45	24,40	24,30	22,10									
Vet	ical stress (kPa)		50	100	200									
Wet	shoar shoss (kPa) unit weight (kom ³)	1802.0	31,7 1848.0	71,3 1921.0	107,2									
Dry	unit mass (kg/m ³)	1472,2	1480,5	1545,4	1010,9									
Disp	stacement at failure (mm)		1,530	2,061	3,080									
Mean	sured values and results													
	120.0		20,0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1252233153									
	105.0	/	8 00.0											
7	90,0	/	8 40,0		1000000000									
8	75,0	/	\$ 0,0 L		5.9.0.9.9									
trest	60.0		8 C	ef el el el el si Horzanta dirabica	er n' er er g men Asimul									
192	45.0		£ 0.05		A CONTRACTOR									
	30.0		3 0.00	2 3 3 3 2	000000000000000000000000000000000000000									
	15.0		8 0,10	0.0000.000	10000101									
			0.20	X.	100000033									
	ତ ରେ କି କି କି କି କି	120 140 101	8 8 9 0.30	1000000000	10000000									
	Vorticel stress	o _v (kPa)	-SU kira -	- 100 kPa 200 kP	1a									
							Specimens were	loaded with water di	ring the left Martine cash	est indicated for the				
1							EN ISO 17892.0 Sectimon autob	after the end of the to 0 d by the casterior to	est (weisture context deter) at results refer to the same	minod according to its as received. Tes				
							equipment hydra 17892 10	ulic shear device. Te	stpedamed in accordance	WE EN ISO				
							Verified by	Peter Filmer	Date of issue: 3	28.03.2023		Stamp and signature		
	24574 FROM (4200) 142 (0) (44504 5 (202) (120) (1	anara ng 13873 Ories	CENTRAL CONTRACTOR C 2021 MA	e operation, ve Kopita haaarved	was seen and the		10(0) - 13	1999 A 06 1999 A	and the commence by falls (a)	COMPLEX. CODE	Provident President and All	ngre naervid som tree	a color of	
V Document of	watches its settings	a] 1 = 272	IN MOL	0 v 20 7 cm)										

Para resolver esto, por ejemplo, reduzca el tamaño del gráfico en la pestaña "Celda 5 de la cuadrícula" (cada fila en 0,5).

Reduzca el tamaño de 0,5 a 7,8 para ambas filas.

Row height 1	×				
Input mode :	row count 🔻				
Height :	7,8 [rows]				
✔ ОК	X Cancel				

Ahora podemos ver que el reporte vuelve a caber en una página.

La última tarea pendiente es agregar los nuevos datos al gráfico. Haga clic en el gráfico y abra la ventana de edición.

Pulse el botón "Añadir serie".

GEO5

Seleccione la tabla "Resistencia máxima posterior – puntos", el eje principal "Esfuerzo vertical" y el eje secundario "Esfuerzo cortante".

mber of row : m 1	2 Sottom margin						
em type : C	hart	-					+ Add item (to the end)
lumber	Table	Main a	xis		Side axis	+ Add serie	∃ Insert item (before 1)
1 Calcula	tions / Peak strength - points (graph)	Vertical stress	[kPa]	Shear stress	[kPa]		
2 Calcula	tions / Peak strength - Tangent line	Vertical stress	[kPa]	Shear stress	[kPa]	Tealt serie 1	
						× Delete serie 1	
		Add serie			×	Edit settings of	
		- Data source				serie 1	
		Table : Calcul	ations / Post r	peak strength - points	(graph) 🔻	- 12 - 1 - 1	
		Main avis : Vortier		seak strenger points	(graph)	settings	
			al suess		·	- Edit settings of	
		Side axis : Shear	stress		· ·	ich settings of	
		- Chart settings -					
		Side axis : Axis 1			-		
				+ Add	Cancel		
						Chart settings	
						Edit user drawing	
Item location i	n cell						
orizontal : le	eft Part of width :	100 [%]					
ertical : c	Part of height :	100 [%]					
- alia	always						

Agregue la línea de tendencia de resistencia máxima posterior de la misma manera. Podemos ver las dos nuevas series en el gráfico:

GEO5

Por último, modificamos la visualización de las dos nuevas series para adaptarlas a nuestras necesidades:

Nota: La edición de la visualización gráfica de los gráficos se explica en el Manual de Ingeniería 51.

Este protocolo modificado corresponde a la especificación.

GE05	Shear Box Test								
	Project: Apartment building "Moonlighting" - Survey for building permit								
Test ID: S	Shear box test		Project ID: 2022/3548						
Supplier: 0	GEO5 Laborato	ry Ltd.	Custor	ier: Survey A	ABC Ltd.				
Date of measurement: 2	7.03.2023		Performed	by: John Yo	ung				
Sample									
Field test: E	BH5		Sample type: undisturbed						
Sample index: V	/A1/1254		Geotechnical ty	pe: GT2					
Depth from: 7	′,00 m		Description:						
Depth to: 7	′,80 m		Clay with low plasticity, stiff, gray-blue color						
Specimen									
Specimen ID: VA	1/1254-12		Consolidation time:	24,0 hour					
Depth: 7,3	35 m		Shear rate: 0,001 mm/min						
		Before test	Specimen Nr. 1	Specimer	n Nr. 2	Specimen Nr. 3			
Dimensions (width/heigh	it) [mm]	-	60,00 / 21,00	60,00 / 2	21,00	60,00 / 21,00			
Moisture content [%]		22,45	24,40	24,3	0	22,10			
Consolidation (before te	st) [mm]	-	0,210	0,55	0	1,170			
Vertical stress [kPa]		-	50	100)	200			
Max. shear stress [kPa]		-	31,7	71,3	3	107,2			
Wet unit weight [kg/m ³]		1802,0	1848,0	1921	,0	1967,0			
Dry unit mass [kg/m ³]		1472,2	1485,5	1545	,4	1610,9			
Displacement at failure [mm]	-	1,530	2,06	1	3,080			
Measured values and res	sults								
120,0 T	nd no tico t	in the classifier	<u></u> 125,0 <u></u>	17,717,717	1111				
105,0	이라고 이라 이라 두 1번 1번 1번 1번 1번 1번 1번								
g 90,0	50,0 5 250		<u> </u>						
혼 75,0-	1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 *		ළ ස් 0,0						
8 60.0	0.0 1,0 3,0 6,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1								
			Horizontal displacement Δx [mm]						
She she		31615616161							
30,0				6 6 6	0,0,	0,			
15,0						<u>♀ ;=1=;=?=;</u> ♀ ; ♀ ; ♀ ;			
0,0									
40, 20,	80, 80, 60,	120, 140, 160, 180,							
	Vertical stre	ss σ _v [kPa]	50 kPa —	—100 kPa —	—200 kP	a			
Test results:			Angle of internal fri	ction φ_{ef} [°1	Coł	nesion c _{of} [kPa]			
i con courto.		Peak values	25.8	Teres		13.8			
Post	peak values a	t displacement 8,0 mm	: 22,1		8,5				

Notes		
Specimens were flooded with water during test specimens is after the end of the test EN ISO 17892-01). Specimen supplied by the customer, test i equipment: hydraulic shear device. Test p 17892-10.	g the test. Moisture content indicated for the (moisture content determined according to results refer to the sample as received. Test erformed in accordance with EN ISO	
Verified by: Peter Filmer	Date of issue: 28.03.2023	Stamp and signature

[GEO5 - Laboratory (32 bit) | version 5.2024.19.0 | hardware key 7288 / 3 | Ondřej Laurin | Copyright © 2024 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu]

Sin embargo, si volvemos a la ventana principal del programa, vemos que el gráfico no ha cambiado. Este gráfico se muestra desde el protocolo de salida (reporte) "Vista Previa del Escritorio", por lo que también debemos modificarlo.

Simplemente copie y pegue el gráfico y la tabla de resultados en la vista previa.

Otros reportes pueden modificarse de la misma manera.