

Updated: 1/2024

Редактирование шаблона в программе Лаборатория

Программа: Лаборатория Файл: Demo_manual_52.gsg

Это руководство описывает расширенную работу с формулами и графиками в шаблонах на примере редактирования испытания на прямой сдвиг. Основная работа с формулами описана в Техническом руководстве № 51. Это руководство требует знаний, описанных в Техническом уководстве № 51.

Наша цель - определить значения угла внутреннего трения ϕ_p и сцепления c_p в любой точке во время испытания (для смещения, указанного нами в точке испытания x_p).

В нашем случае мы рассмотрим $x_p = 8$ мм.

Процедура расчета такая же, как и для стандартной пиковой прочности. Из графика напряжений отдельных испытаний мы читаем значения напряжений в точке x_p .

Затем мы проведем прямую линию через полученные точки и рассчитаем значения ϕ_p и c_p .

Примечание: Мы обычно ищем заявленное значение параметров сдвига в части теста за его пиком в попытке найти остаточные параметры прочности на сдвиг. Однако, поскольку испытание по сдвиговой рамке не подходит для определения фактических остаточных параметров, мы представляем производные параметры сдвига для выбранной деформации.

Выходной отчет по испытанию срезной коробки набора шаблонов "Лаборатория - EN-Standard" имеет следующую форму:

GE05	GE05				Shear Box Test			
	Project: A	partment building "Moonlic	hting" - Surv	ev for building per	mit			
Test ID:	Shear box te	st	Project ID: 2022/3548					
Supplier:	GEO5 Labora	atory Ltd.		Customer: Survey	ABC Ltd			
Date of measurement:	27.03.2023	atory Eta.	Perf	ormed by: John Y	ouna			
					5			
Sample								
Field test:	BH5		Sar	mple type: undistu	rbed			
Sample index:	VA1/1254		Geotech	nical type: GT2				
Depth from:	7,00 m		Description:	u plaatiaitu atiff an	ov blue cel	lor		
Depth to:	7,80 m		Clay with low	v plasticity, still, gr	ay-blue co	101		
Specimen								
Specimen ID: V	A1/1254-12		Consolidation	n time: 24,0 hour				
Depth: 7	,35 m		Shea	ar rate: 0,001 mm/	min			
	,	Before test	Specimen N	Ir. 1 Specime	en Nr. 2	Specimen Nr. 3		
Dimensions (width/heig	ht) [mm]	-	60,00 / 21.	00 60,00 /	21,00	60,00 / 21,00		
Moisture content [%]		22,45	24,40	24.	30	22,10		
Consolidation (before to	est) [mm]	-	0,210	0,5	50	1,170		
Vertical stress [kPa]		-	50	10	0	200		
Max. shear stress [kPa]	-	31,7	71	,3	107,2		
Wet unit weight [kg/m ³]		1802,0	1848,0	192	1,0	1967,0		
Dry unit mass [kg/m ³]		1472,2	1485,5	154	5,4	1610,9		
Displacement at failure	[mm]	-	1,530	2,0	61	3,080		
			,	*		,		
Measured values and re	esults							
105,0 90,0 105,0 10,0 10	×	x 0 0 0 0 0 0 0 0 0 0 0 0 0	200,001 200,000 200,0000 200,0000 200,00000000	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0		$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		
T (1)			Angle of inte	annal friation (s. 191		heating a lkDal		
lest results:		Peak values:	Angle of inte	25.8	00	13.8		
		reak values:		20,0		10,0		
Notes Specimens were flooded w test specimens is after the EN ISO 17892-01). Specimen supplied by the equipment: hydraulic shear 17892-10.	ith water during end of the test (customer, test re r device. Test pe	the test. Moisture content indi moisture content determined a esults refer to the sample as re erformed in accordance with EN	cated for the ccording to ceived. Test I ISO					

[GEO5 - Laboratory (32 bit) | version 5.2024.19.0 | hardware key 7288 / 3 | Ondřej Laurin | Copyright © 2024 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu]

Stamp and signature

Требуемая форма протокола следующая:

Verified by: Peter Filmer

GE05	Shear Bo	x Test			
Project: Ap	artment building "Moonli	ghting" - Surve	y for building perm	nit	
Test ID: Shear box test		Project ID: 2022/3548			
Supplier: GE05 Laborat	ory Ltd.	С	ustomer: Survey /	ABC Ltd.	
Date of measurement: 27.03.2023		Perfo	rmed by: John Yo	ung	
Sample					
Field test: BH5		Sam	ple type: undistur	bed	
Sample index: VA1/1254		Geotechn	ical type: GT2		
Depth from: 7,00 m		Description:			
Depth to: 7,80 m		Clay with low	plasticity, stiff, gra	y-blue co	lor
Specimen					
Specimen ID: VA1/1254-12		Consolidation	time: 24,0 hour		
Depth: 7,35 m		Shear	rate: 0,001 mm/m	nin	
	Before test	Specimen Nr	.1 Specimer	n Nr. 2	Specimen Nr. 3
Dimensions (width/height) [mm]	-	60,00 / 21,0	0 60,00 / 2	21,00	60,00 / 21,00
Moisture content [%]	22,45	24,40	24,3	0	22,10
Consolidation (before test) [mm]	-	0,210	0,55	0	1,170
Vertical stress [kPa]	-	50	100)	200
Max. shear stress [kPa]	-	31,7	71,3	3	107,2
Wet unit weight [kg/m ³]	1802,0	1848,0	1921	,0	1967,0
Dry unit mass [kg/m ³]	1472,2	1485,5	1545	,4	1610,9
Displacement at failure [mm]	-	1,530	2,06	1	3,080
Measured values and results					
400.0		105			
	to the child of		T	도도도	
		× 100,			
		se 10,	0	,	
		ູ້ຮູ 25,	0	+ + + +	
≚ 75,0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	× /	<u>.</u> ස් 0,	0		
			0,0 2,0 3,0	5,0	6,0 7,0 8,0 9,0
			Horizont	al displace	ment ∆x [mm]
		Ē 0,10) +		
30,0	torationalis a characta contre Homore e contre contre en Homore (Homore e contre				╧╧╧╋╼╼╎╼┾╼┯╾┥
	to the chards of t		0 0 0	5,0 5,0	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
				- +	
0,0 ¹			° † 7. November 2017		
0,0 20,0 50,0 80,0	0, 02, 02, 03 0, 0, 0, 03 0, 0, 0, 03	0 $\frac{1}{10}$ -0,30) <u>+</u> -		
	∾ 🦉 -0,40) L			
Vertical str	ess σ _v [κΡα]		Pa — 100 kPa -	—200 kF	a
Test results:		Angle of inter	nal friction φ _{ef} [°]	Co	hesion c _{ef} [kPa]
	Peak values:	2	25,8		13,8
Post peak values	at displacement 8,0 mm:	2	22,1		8,5
Notes					
Specimens were flooded with water during t	he test. Moisture content indi	cated for the			
test specimens is after the end of the test (n	noisture content determined a	according to			
2		1			
Specimen supplied by the customer, test res	sults refer to the sample as re	eceived. Test			

[GEO5 - Laboratory (32 bit) | version 5.2024.19.0 | hardware key 7288 / 3 | Ondřej Laurin | Copyright © 2024 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu]

Stamp and signature

Date of issue: 28.03.2023

Решение:

Отредактируйте шаблон с помощью демонстрационного файла - Demo01.gla, который вы можете найти в примерах Fine online. Присвойте имя вновь созданному набору шаблонов EM 52 и сохраните его в администраторе шаблонов для дальнейшего использования. Вводим термин «Постпиковые параметры» для требуемых параметров в рамках решения данного руководства.

Мы разделим решение проблемы на несколько частей:

- 1. Определение типа данных «Смещение для пиковой прочности» и заполнение его значения
- 2. Определение других типов данных, необходимых для расчета и вывода на график
- 3. Входные формулы для автоматических вычислений
- 4. Редактирование выходного журнала и предварительный просмотр на рабочем столе, чтобы включить новые данные

Часть 1

Сначала откройте файл Demo01.gla, содержащий данные, с которыми мы будем работать. В рамке Шаблоны проверьте, установлен ли набор шаблонов, который мы хотим отредактировать - «Лаборатория - EN-Standard». Нажмите кнопку «Редактировать копию текущего набора шаблонов и добавить его в Администратор», чтобы открыть окно редактирования набора шаблонов.

Назначьте имя созданному набору шаблонов и сохраните его в администраторе как шаблон пользователя.

Откройте шаблон для испытания на сдвиг и добавьте новый локальный тип данных в группу «Основные данные», назовите его **«Смещение для постпикового напряжения»** и назначьте следующие параметры:

- Тип: Номер
- Тип блока: длина
- Название: Смещение для постпикового напряжения
- Символ: -
- Пустой текст: -
- Метрическая единица: мм, 1 знак после зяпятой
- Британская единица: дюйм, 3 знака после зяпятой

B coir oata type					
Parameters of data type					
rpe : Group 👻					
ame : 🏟 Basic data 🔻 🋪 EN Comme	nt : 🛅	▼ 3 _A	Identifier :		
irameters					
lo. Name	Identifier	Туре	Parameters	Comment	+ Add
1 Date of measurement	0	Date and time	Date		(to the end)
2 Performed by	0	String			
3 Verified by	0	String			
4 Date of issue	0	Date and time	Date		
Notes	0	String	Multiline string		_
6 Displacement for post peak strength	n	Number	8,9 mm 8,889 in		
				-	Copy
					€ Copy All
anges				•	Copy All Paste
anges					Copy All 안 Paste
nges				•	는 Copy All 한 Paste
inges					Copy All Paste
nges mula pe cannot be calculated Conditional input				•	Copy All Pase
nges mula pe connet be coloulated Conditional input uster enumeration : (unspecified) ~ No enumera	tions defined for using	as master.		•	Copy All P3 Pase

Примечание: Создание локальных типов данных и базовая работа с шаблонами подробно описана в Руководстве 51.

Сохраните отредактированный шаблон и перейдите к рамке «Испытание на прямой сдвиг» и откройте входное испытание.

В окне мы видим новое поле для созданного нами типа данных «Смещение для постпикового напряжения». Мы укажем 8 мм согласно спецификациям. Затем мы будем использовать это значение в дальнейших расчетах.

Примечание: если это значение уже заполнено, мы увидим предварительный просмотр конкретных вычислений при создании формул. Это облегчит нашу работу.

😹 Edit test: S	Shear box t	est							×
Test ID :	Shear I	oox test							
Sample inde	ex : VA1/12	254						Select sar	nple 🔻
Basic data	Specimen	Specimen Nr. 1	Specimen Nr. 2	Specimen Nr. 3	Results	Calculations	Attachments		
Date of me	easurement	:	27.03.2023						
Performed	by :		John Young						
Verified by	:		Peter Filmer						
Date of iss	ue :		28.03.2023						
Notes :			Specimens were t the test specimer according to EN Specimen supplie	flooded with wate ns is after the end ISO 17892-01). ed by the custome	r during t of the te er, test res	he test. Moist st (moisture co sults refer to th	ure content in ontent determ ne sample as r	dicated fo ined eceived.	or
Displacem	ent for post	: peak strength :		8,0 [mm]					
✓ Recalcula	ate						🗸 ОК	X Ca	ancel

Часть 2

Теперь вернитесь к модификации шаблона и в группу «Образец № 1» добавьте еще один локальный тип данных «Постпиковое напряжение сдвига» со следующими параметрами:

- Тип: Номер
- Тип блока: давление
- Название: Постпиковое сдвиговое напряжение
- Символ: τ_{pp}
- Пустой текст: -
- Метрическая единица: мм, 1 знак после зяпятой
- Британская единица: дюйм, 3 знака после зяпятой

Этот тип данных не будет введен пользователем, но мы назначим ему формулу для автоматического расчета.

Нам нужен тот же тип данных в группе для образцов 2 и 3. Чтобы ускорить работу, теперь мы можем скопировать созданный элемент и нажать кнопку «ОК + стрелка вниз», чтобы перейти прямо к группе «Образец № 2», куда мы просто вставляем элемент.

🗃 Edit data type					_ 🗆 X
Parameters of data type					
Type : Group 👻					
Name : 🎒 Specimen Nr. 1 💌 🛪 EN Comme	ent : 🗈	▼ \$\overline\$A	Identifier :		
Parameters					
No. Name	Identifier	Туре	Parameters	Comment	. Add
4 Dry unit mass	N	umber	8,9 kg/m ³ 8,89 lb/ft ³		(to the end)
5 Moisture content	N	umber	8,89 % 8,89 %		(before 11)
6 Vertical stress	N	umber	9 kPa 8,889 psi		Fdit (number 11)
7 Consolidation (before test) 6	N	umber	8,889 mm 8,8889 in		Remove (number 11)
8 Displacement at failure	N	umber	8,889 mm 8,8889 in		
9 Shear - measurement 6 Horizontal displacement 6 Shear stress 6 Mobilized friction angle 6	Ta Ni Ni Ni Ni	ible umber umber umber umber	General Number of elements 4		
10 Max. shear stress 6	N	umber	Symbol: τ _{max} 8,9 kPa 8,889 psi		Move upwards (number 11)
11 Post peak shear stress		umber	Symbol: τ _{pp} 8,9 kPa 8,889 psi		(number 11)
Ranges					
				/	/
Formula					
Type cannot be calculated				/	Edit
	diana dafina diferenzi				
No enumeration : (unspecified)	ations defined for using as r	naster.		<u> </u>	
🗈 Local data type			0	K + 🕇 OK + 🖊	✓ OK X Cancel

Продолжите, также вставив его в группу «Образец № 3».

Далее мы продолжаем, создавая типы данных для журналов вычислений и вывода. В группе «Результаты» у нас уже есть два типа данных для результатов в пиковых значениях. Теперь мы можем скопировать, а затем повторно вставить эти два типа данных в одну группу. Программа предупредит нас, что те же типы данных уже есть в группе, но мы выберем их снова.

🔀 Edit	data type									
Dara	maters of data turna									
Tupe :	Group									
News	Ab Poculto				- *	l de stiffen e				
Name :	AD Results	* *A EN Comment	.: ==		▼ ×A	Identifier :				
Parame	ters									
No.	Name		Identifier		Туре	Parameters		Comment	+	Add
1 Ar	igle of internal friction	·		Numbe	er	Symbol: φ _{ef} 8,9 ° 8,9 °				
2 Co	hesion	6		Numbe	er	Symbol: c _{ef} 8,9 kPa 8,889 psi				
	Paste data types				_				×	
	Paste data types	16	Туре	Paste	Replace	No	ote		×	
	Paste data types Nam Angle of internal friction	ne	Type Number	Paste	Replace Sar fric	No me as existing data type N tion". Will be pasted as a r	ote o. 1 "Angle of new data type.	internal	×	
	Paste data types Nan Angle of internal friction Cohesion	10	Type Number Number	Paste	Replace Sar fric Sar pas	No me as existing data type N tion". Will be pasted as a r me as existing data type N sted as a new data type.	ote o. 1 "Angle of new data type. o. 2 "Cohesion	internal ". Will be	×	ру
	Paste data types Nan Angle of internal friction Cohesion	1e	Type Number Number	Paste	Replace Sai fric Sai pas	No me as existing data type No tion". Will be pasted as a r me as existing data type No sted as a new data type.	ote o. 1 "Angle of new data type. o. 2 "Cohesion	internal ". Will be	×	py ;te
Ranges	Paste data types Nan Angle of internal friction Cohesion	10	Type Number Number	Paste	Replace Sar fric Sar pas	No me as existing data type N tion". Will be pasted as a r me as existing data type N sted as a new data type.	ote o. 1 "Angle of new data type. o. 2 "Cohesion	internal ". Will be	×	py ite
Ranges	Paste data types Nan Angle of internal friction Cohesion	10	Type Number Number	Paste	Replace Sar fric Sar par	Na me as existing data type N titon". Will be pasted as a r me as existing data type N sted as a new data type.	ote o. 1 "Angle of new data type. o. 2 "Cohesion	internal ". Will be	* Paste	py .te
Ranges	Paste data types Nan Angle of internal friction Cohesion	10	Type Number Number	Paste	Replace San fric San pat	No me as existing data type N ttion". Will be pasted as a r me as existing data type N sted as a new data type.	ote o. 1 "Angle of new data type. o. 2 "Cohesion	internal ". Will be	✓ Paste ✓ Close	py ite
Ranges	Paste data types Nan Angle of internal friction Cohesion	ne	Type Number Number	Paste	Replace Sat fric Sat par	Na me as existing data type N tition". Will be pasted as a r me as existing data type N sted as a new data type.	ote o. 1 "Angle of new data type. o. 2 "Cohesion	internal ". Will be	 Paste Close 	ру .te
Ranges Formula	Paste data types Nan Angle of internal friction Cohesion	ne	Type Number Number	Paste	Replace Sar fric	Ne me as existing data type N tition". Will be pasted as a r me as existing data type N sted as a new data type.	ote o. 1 "Angle of new data type. o. 2 "Cohesion	internal ". Will be	 ✓ ✓	py ite
Ranges Formula <i>Type</i> α	Paste data types Nan Angle of internal friction Cohesion innot be calculated itional input	ne	Type Number Number	Paste	Replace Sar fric Sar par	No me as existing data type N tion". Will be pasted as a r me as existing data type N sted as a new data type.	ote o. 1 "Angle of new data type. o. 2 "Cohesion	internal ". Will be	 ✓ ✓	py .te
Ranges Formula <i>Type cc</i> — Conc	Paste data types Nan Angle of internal friction Cohesion Cohesion innot be calculated itional input enumeration : (unspecified)	ne No enumeratio	Type Number Number	Paste	Replace Sar fric Sar pas	Na me as existing data type N titon". Will be pasted as a r me as existing data type N sted as a new data type.	ote o. 1 "Angle of new data type. o. 2 "Cohesion	internal ". Will be	✓ Paste ✓ Close Edit	py .te

Теперь просто откройте недавно добавленные элементы и отредактируйте имя и символ, например, добавив «(pp)», ссылаясь на постпиковое напряжение.

2	Edit data type							_ 🗆 X
_	Parameters of data type							
Tvi								
Na	me : Ab Results	The EN Comment	B	▼ →	Identifier :			
Dat		A EN Comment.		~~	identifier .			
Pa	difieters			_				
N 1	Angle of internal friction	0	Identifier	Type Sv	Parameter	rs	Comment	(to the end)
	Augle of memorina medon			8, 8,	9 ° 9 °			
2	Cohesion	6	Number	Sy 8,	rmbol: c _{ef} 9 kPa			
3	Angle of internal friction (pp)	ß	Number	8, Sy 8, 8,	9 ° 9 °			
4	Cohesion (pp)	in.	Number	Sy 8, 8,	mbol: c _{ef(pp)} 9 kPa 889 psi			
- - - -								
								Copy All
								Paste
Ra	nges							
Fo	mula							
Ту	pe cannot be calculated							Edit
-	Conditional input							
Ma	aster enumeration : (unspecified)	 No enumerations 	defined for using as master.					
	Local data type					OK + 🕇	OK + 🖊	✓ OK X Cancel

Таким же образом скопируйте таблицы в группу «Расчеты» - и назовите их «Постпиковые напряжения».

Edit data type						_	×
Parameters of data type							
Type : Group 👻							
Name : Ab Calculations -	🛪 EN Comment :		▼ \$\$	Identifier :			
Parameters							
No. Name		Identifier	Туре	Parameters	Comment	+ Add	
1 Peak strength - points (graph) Shear stress Vertical stress	6 6		Table Number Number	General Number of elements 2		(to the end)	
2 Peak strength - Tangent line Tangent line slope Tangent line shift Vertical stress Shear stress	6 6 6 6		Table Number Number Number Number	General Number of elements 4			
3 Post peak strength - points (graph) Shear stress Vertical stress	6		Table Number Number	General Number of elements 2			
4 Post peak strength - Tangent line Tangent line slope Tangent line shift Vertical stress Shear stress	6 6 6 6		Table Number Number Number Number	General Number of elements 4		-	
						Copy All	
						Paste	
Ranges							
Formula							
Type cannot be calculated					E	dit	
Conditional input							
Master enumeration : (unspecified)	No enumerations	defined for using as m	haster.				
Local data type				OK +	↑	OK 🗙 Car	ncel

Часть 3

Теперь продолжим ввод формул.

Примечание: Основная работа с формулами описана в Техническом руководстве 51.

В дереве найдите вновь созданные данные «Постпиковое сдвиговое напряжение» в группе «Образец № 1» и откройте окно для добавления формулы. Здесь мы нажимаем кнопку, чтобы добавить функцию.

Test ID (String) Sample index (String) Sample index (String) Basic data (Group) > Specimen (Group) (Group) > Specimen Nr. 1 (Group) Multilingual text Width [mm] (Number) Height [mm] (Number) Height [mm] (Number) By data kPa Wet unit weight [kg/m ³] (Number) By data kPa Dry unit mass [kg/m ³] (Number) Result preview Consolidation (before test) [mm] (Number) Field test : Shear box test ▼ Partial results Field test : Shear box test ▼ Partial results Field test : Shear box test ▼ Partial results	Formula - Post peak shear stress $[au_{pp}]$		×
	Test ID (String) Sample index (String) > Basic data (Group) > Specimen (Group) > Specimen Nr. 1 (Group) Width [mm] (Number) Height [mm] (Number) Height [mm] (Number) Wet unit weight [kg/m³] (Number) Dry unit mass [kg/m³] (Number) Moisture content [%] (Number) Vertical stress [kPa] (Number) Consolidation (before test) [mm] (Number) Displacement at failure [mm] (Number) Shear - measurement (Table) Max. shear stress - τ _{max} [kPa] (Number) Post peak shear stress - τ _{pp} [kPa] (Number) > Specimen Nr. 2 (Group) > Specimen Nr. 3 (Group)	Result preview Field test : Shear box test Partial results	 Insert function f(x) Insert Multilingual text Calculation unit By data kPa ▼

Базовая версия шаблона испытания на прямой сдвиг работает с таблицей «Измерение сдвига», в которой пользователь вводит Горизонтальное смещение, вертикальное смещение и напряжение сдвига. Для пиковых параметров учитывается максимальное введенное напряжение сдвига. В техническом задании мы определили, что будем рассматривать параметры поверхности для указанного горизонтального смещения - в этом задании рассмотрим 8 мм. Используя функцию линейной интерполяции, мы должны вычислить заданное напряжение сдвига для выбранного горизонтального смещения.

Функцию можно найти в списке в разделе «LINEARINTERPOLATION».

Функция вычисляет значение напряжения (у) для указанного смещения (х) из таблицы «Измерение сдвига».

Переменные в функции:

- х Смещение для постпикового напряжения
- Координаты х «Горизонтальное смещение» в таблице «Измерение сдвига»
- Координаты у «Сдвиговое напряжение» в таблице «Измерение сдвига»

Обозначение функции выглядит следующим образом:

Formula - Post peak shear stress $[\tau_{pp}]$			×
Height [mm] (Number) Wet unit weight [kg/m ³] (Number) Dry unit mass [kg/m ³] (Number) Moisture content [%] (Number) Vertical stress [kPa] (Number) Consolidation (before test) [mm] (Number) Displacement at failure [mm] (Number) ✓ Shear - measurement (Table) Number of row Horizontal displacement - Ax [mm] (Number)	*	LINEARINTERPOLATION({Displacement for post peak strength};{Δx0};{τ0})	 Insert function f(x) Insert Multilingual text Calculation unit By data kPa
Vertical displacement - Δz [mm] (Number) Shear stress - τ [kPa] (Number) Mobilized friction angle - φ _{mob} [°] (Number) Max. shear stress - τ _{max} [kPa] (Number) Post peak shear stress - τ _{pp} [kPa] (Number) > Specimen Nr. 2 (Group) > Specimen Nr. 3 (Group) > Results (Group)		Result preview Field test : Shear box test Partial results 25,7	
		√ 0I	K X Cancel

Введите формулы для постпикового сдвигового напряжения для образцов 2 и 3 таким же образом.

Правильность ввода можно проверить в любое время в окне ввода теста, где мы можем увидеть расчетные значения сдвигового напряжения поверхности для выбранного нами смещения 8 мм.

Test ID: Shear box test Sample index: V41/1254 Sele Basic data Specimen Nr. 1 Specimen Nr. 2 Specimen Nr. 3 Results Calculations Attachments Width : Specimen Nr. 1 Specimen Nr. 2 Specimen Nr. 3 Results Calculations Attachments Width : 60,00 [mm] </th <th></th>	
Sample index : V41/1254 Sele Basic data Specimen Specimen Nr. 1 Specimen Nr. 2 Specimen Nr. 3 Results Calculations Attachments Width : 60,00 [mm] 60,00 [mm] Imm] Imm] <td< td=""><td></td></td<>	
Basic data Specimen Nr. 1 Specimen Nr. 2 Specimen Nr. 3 Results Calculations Attachments Width : 60,00 [mm] Height : 21,00 [mm] Wet unit weight : 1921,0 [kg/m ³] Dry unit mass : 1545,4 [kg/m ³] Moisture content : 24,30 [%] Vertical stress : 100 [kPa] Consolidation (before test) : 0,550 [mm] Displacement at failure : 2,061 [mm] Shear stress Mobilized friction angle ϕ_{mob} [°] ϕ_{mob} (°) 1 0,023 0,000 10,746 6,1 2 0,055 -0,005 10,746 6,1 3 0,118 -0,014 21,692 12,2 4 0,172 -0,020 31,542 17,5	ct sample
Width : 60,00 [mm] Height : 21,00 [mm] Wet unit weight : 1921,0 [kg/m ³] Dry unit mass : 11545,4 [kg/m ³] Moisture content : 24,30 [%] Vertical stress : 100 [kPa] Consolidation (before test) : 0,550 [mm] Displacement at failure : 2,061 [mm] Shear - measurement : Vertical displacement Shear stress Mobilized friction angle ϕ_{mob} [°] ϕ_{mob} (°) 1 0,023 0,000 10,746 6,1 ϕ_{mob} (°) <t< td=""><td></td></t<>	
Height : 21,00 [mm] Wet unit weight : 1921,0 [kg/m³] Dry unit mass : 11545,4 [kg/m³] Moisture content : 24,30 [%] Vertical stress : 100 [kPa] Consolidation (before test) : 0,550 [mm] Displacement at failure : 2,061 [mm] Shear - measurement : No.^ Horizontal displacement Δx [mm] Δz [mm] Γ [kPa] ϕ_{mob} [°] 1 0,023 0,000 10,746 6,1 1 2 0,055 -0,005 10,746 6,1 1 3 0,118 -0,014 21,692 12,2 1 4 0,172 -0,020 31,542 17,5 1 5 0,116 -0,025 34,030 18 1 1	
Wet unit weight : 1921,0 $[kg/m^3]$ Dry unit mass : 1545,4 $[kg/m^3]$ Moisture content : 24,30 $[\%]$ Vertical stress : 100 $[kPa]$ Consolidation (before test) : 0,550 [mm] Displacement at failure : 2,061 [mm] Shear - measurement : $\chi r mm]$ $\chi r mm r mass r masses r measurement : No. Horizontal displacement \Delta x [mm] Shear stress \Delta r mm r mos r m masses r measurement : 1 0,023 0,000 10,746 6,1 2 0,055 -0,005 10,746 6,1 3 0,118 -0,014 21,692 12,2 4 0,172 -0,020 31,542 17,5 5 0.196 -0.025 34.030 18.8 $	
Dry unit mass : 1545,4 [kg/m ³] Moisture content : 24,30 [%] Vertical stress : 100 [kPa] Consolidation (before test) : 0,550 [mm] Displacement at failure : 2,061 [mm] Shear - measurement : 3 0,012 $\Gamma [kPa]$ Mobilized friction angle $\tau [kPa]$ $\phi_{mob} [^o]$ $\phi_{mob} [^o]$ $\phi_{mob} [^o]$ 1 0,023 0,000 10,746 6,1 $\phi_{mob} [^o]$ $\phi_{mo} [^o]$ $\phi_{mo} [^o]$ $\phi_{mo} [^o]$ $\phi_{mo} [^o]$ $\phi_{mo} [^o]$	
Moisture content : 24,30 [%] Vertical stress : 100 [kPa] Consolidation (before test) : 0,550 [mm] Displacement at failure : 2,061 [mm] Shear - measurement : No. Horizontal displacement Δx [mm] Shear stress Δx [mm] Mobilized friction angle ϕ_{mob} [°] ϕ_{mob} [°] 1 0,023 0,000 10,746 6,1 ϕ_{mob} [°] ϕ_{mob} [°] 3 0,118 -0,014 21,692 12,22 ϕ_{mob} [°] ϕ_{mo} [°]	
Vertical stress : 100 [kPa] Consolidation (before test) : 0,550 [mm] Displacement at failure : 2,061 [mm] Shear - measurement : 2,061 [mm] No. Horizontal displacement Δx [mm] Shear stress Δz [mm] Mobilized friction angle ϕ_{mob} [°] + Add (to the er 1 0,023 0,000 10,746 6,11 + 2 0,055 -0,005 10,746 6,11 + 3 0,118 -0,014 21,692 12,2 + 4 0,172 -0,020 31,542 17,5 +	
No. Horizontal displacement Δx [mm] Vertical displacement Δx [mm] Shear stress τ [kPa] Mobilized friction angle ϕ_{mob} [°] + Add (to the end the	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Displacement at failure : 2,061 [mm] Shear - measurement : Shear stress Mobilized friction angle σmob [°] + Add (to the end) 1 0,023 0,000 10,746 6,1 2 0,055 -0,005 10,746 6,1 3 0,118 -0,014 21,692 12,2 4 0,172 -0,020 31,542 17,5	
Shear - measurement : No.* Horizontal displacement displacement Shear stress tress tress (kPa) Mobilized friction angle (φmob [°)) Add (to the end) 1 0,023 0,000 10,746 6,1 •	
No. Horizontal displacement Δx [mm] Vertical displacement Δz [mm] Shear stress τ [kPa] Mobilized friction angle φmob [°] + Add (to the end to th	
Δx [mm] Δz [mm] τ [kPa] φmob [*] (if the e) 1 0,023 0,000 10,746 6,1 2 0,055 -0,005 10,746 6,1 3 0,118 -0,014 21,692 12,2 4 0,172 -0,020 31,542 17,5 5 0,196 -0.025 34,030 18.8	n d)
1 0,023 0,000 10,746 6,1 2 0,055 -0,005 10,746 6,1 3 0,118 -0,014 21,692 12,2 4 0,172 -0,020 31,542 17,5 5 0,196 -0,025 34,030 18.8	10)
2 0,055 -0,005 10,746 6,1 3 0,118 -0,014 21,692 12,2 4 0,172 -0,020 31,542 17,5 5 0,196 -0,025 34,030 18.8	
3 0,118 -0,014 21,692 12,2 4 0,172 -0,020 31,542 17,5 5 0,196 -0,025 34,030 18.8	
4 0,1/2 -0,020 31,542 17,5 5 0,196 -0.025 34,030 18.8	
5 -111/5 -111/5	
c 0.284 0.022 30.024 21.0	
0 0,204 -0,032 39,934 21,8 7 0,408 0,044 42,990 23,7	
8 0.520 -0.053 48.259 25.8	
Max. snear stress : $\tau_{max} = /1,3$ [kPa]	
Post peak snear stress : $\tau_{pp} = 54,0$ [kPa]	
	¥ Canad

Далее вводим формулы построения графика. Мы подготовили две таблицы в данных. Первый график точек на графике, второй график линии (линии тренда). Как мы видим в дереве окна редактирования формулы, скопированные нами данные были скопированы, включая формулы.

Начнем с редактирования таблицы, по которой строятся точки. Столбец «Вертикальное напряжение» совпадает с столбцом в таблице для пиковых параметров, поэтому нам не нужно его изменять. Поэтому мы изменим формулу для столбца «Напряжение сдвига».

Formulas		×
Shear stress - τ (Number)		- Formula - Shear stress
Mobilized friction angle - omob (Number)		
Max. shear stress - τ_{max} (Number)		ıf(Row=1;τ _{max} [kPa];if(Row=2;τ _{max} [kPa];τ _{max} [kPa]))
Post peak shear stress - Top (Number)		Edit
Specimen Nr. 3 (Group)		
Width (Number)		
Height (Number)		
Wet unit weight (Number)		
Dry unit mass (Number)		
Moisture content (Number)		
Vertical stress (Number)		
Consolidation (before test) (Number)		
Displacement at failure (Number)		
✓ Shear - measurement (Table)		
Horizontal displacement - Δx (Number)		
Vertical displacement - Δz (Number)		
Shear stress - τ (Number)		
Mobilized friction angle - φ _{mob} (Number)		
Max. shear stress - τ _{max} (Number)		
Post peak shear stress - Top (Number)		
✓ Results (Group)		
Angle of internal friction - φ _{ef} (Number)		
Cohesion - c _{ef} (Number)		
Angle of internal friction (pp) - φ _{ef(pp)} (Number)		
Cohesion (pp) - c _{ef(pp)} (Number)		
✓ Calculations (Group)		
V Peak strength - points (graph) (Table)		
Shear stress - τ (Number)		
Vertical stress - σ _v (Number)		
V Peak strength - Tangent line (Table)		
Tangent line slope - k (Number)		
Tangent line shift - c (Number)		
Vertical stress - σ_v (Number)		
Shear stress - τ (Number)		
V Post peak strength - points (graph) (Table)		
Shear stress - τ (Number)		
Vertical stress - σ_v (Number)		
Post peak strength - Tangent line (Table)		
Tangent line slope - k (Number)		
Tangent line shift - c (Number)		
Vertical stress - σ_v (Number)		
Shear stress - τ (Number)	-	

Здесь мы видим, что мы используем формулу IF для заполнения таблицы таким образом, чтобы первая строка таблицы была заполнена данными первого образца, вторая строка - данными второго образца, а третья строка - данными третьего образца.

В формуле нам просто нужно заменить ссылки на Макс. напряжение сдвига с привязками к напряжению после пикового сдвига, всегда для соответствующих образцов. Мы можем сделать это, просто нажав левую кнопку мыши на красный элемент в рамке (который соответствует красной ссылке в формуле), удерживая ее и перемещая мышь к новому элементу. Связь будет изменена в соответствии с вновь выбранным типом данных.

Formula - Shear stress [τ]			×
Wet unit weight [kg/m ³] (Number) Dry unit mass [kg/m ³] (Number) Moisture content [%] (Number) Vertical stress [kPa] (Number) Consolidation (before test) [mm] (Number) Displacement at failure [mm] (Number) > Shear - measurement (Table) Max. shear stress - τ _{max} [kPa] (Number) Post peak shear stress - τ _{pp} [kPa] (Number)	>	if({Row}=1;{τ _{pp} [kPa]};if({Row}=2;{τ _{max} [kPa]}; ;{τ _{max} [kPa]}))	 Insert function f(x) Insert Multilingual text Calculation unit kPa ▼
Width [mm] (Number) Height [mm] (Number) Wet unit weight [kg/m ³] (Number) Dry unit mass [kg/m ³] (Number) Moisture content [%] (Number) Vertical stress [kPa] (Number) Consolidation (before test) [mm] (Number) Displacement at failure [mm] (Number) Shear - measurement (Table) Max. shear stress - τ _{max} [kPa] (Number) Post peak shear stress - τ _{pp} [kPa] (Number) Vestimen Nr. 3 (Group) Width [mm] (Number)		Result preview Field test : Shear box test 1 : 25,700 2 : 71,300 3 : 107,200	
			✓ OK X Cancel

Второй вариант - щелкнуть правой кнопкой мыши ссылку в формуле и нажать опцию «Изменить», чтобы выбрать новый тип данных из дерева.

Formula - Shear stress [τ]		IF(Test ; Then ; Else)	×
 > Shear - measurement (Table) Max. shear stress - τ_{max} [kPa] (Number) Post peak shear stress - τ_{pp} [kPa] (Number) ✓ Specimen Nr. 3 (Group) Width [mm] (Number) Height [mm] (Number) Wet unit weight [kg/m³] (Number) Dry unit mass [kg/m³] (Number) Moisture content [%] (Number) 	if ({Row}=1;{τ _{pp} [kPa];{τ _{max} [kPa]}))	;if({Row}=2;{T _{max} [kPa]}	 Insert function f(x) Insert Multilingual text Calculation unit kPa ▼
Vertical stress [kPa] (Number) Consolidation (before test) [mm] (Number) Displacement at failure [mm] (Number) > Shear - measurement (Table) Max. shear stress - τ _{max} [kPa] (Number) Post peak shear stress - τ _{pp} [kPa] (Number) > Results (Group) > Results (Group) > Calculations (Group) > Peak strength - points (graph) (Table) > Peak strength - Tangent line (Table) > Post peak strength - points (graph) (Table) Number of row Row number Shear stress - τ [kPa] (Number)	Result preview Field test : Shear box test 1 : 25,700 2 : 71,300 3 : 107,200	Partial results	
			✓ OK X Cancel

Полученная формула имеет следующий вид:

Shear - measurement (Table)			- Insert function -
Max char stress T [kDa] (Number)		if({Row}=1;{ τ_{pp} [kPa]};if({Row}=2;{ τ_{pp} [kPa]}	insert function
Post posk chost stress = [kPa] (Number)	-	;{τ _{pp} [kPa]}))	f(x)
Specimen Nr. 2 (Group)	-		- Insert
Width [mm] (Number)			A dealer the second dealer
Height [mm] (Number)	×	>	Multilingual text
Wet unit weight [kg/m ³] (Number)			- Calculation unit
Dry unit mass $[kg/m^3]$ (Number)			kPa
Moisture content [%] (Number)			
Vertical stress [kPa] (Number)			
Consolidation (before test) [mm] (Number)			
Displacement at failure [mm] (Number)		Result preview	
Shear - measurement (Table)		Field test : Shear box test 💌 🗌 Partial results	
Max. shear stress - Tmax [kPa] (Number)		1 · 25 700	
Post peak shear stress - Tpp [kPa] (Number)		2 : 54,000	
Results (Group)	-	3 : 88,400	
✓ Calculations (Group)			
> Peak strength - points (graph) (Table)			
> Peak strength - Tangent line (Table)			
✓ Post peak strength - points (graph) (Table)			
Number of row			
Row number			
Shear stress - τ [kPa] (Number)	-		

При копировании формула линии тренда должна быть скорректирована автоматически. Тем не менее, мы открываем его и проверяем, соответствуют ли каналы передачи данных постпикового напряжения.

Formula - Post peak strength - Tangent line		×
Test ID (String) Sample index (String) Sample index (String) Sample index (Group) Specimen (Group) Specimen Nr. 1 (Group) Specimen Nr. 2 (Group) Specimen Nr. 3 (Group) Results (Group) Calculations (Group) Peak strength - points (graph) (Table) Peak strength - Tangent line (Table) Post peak strength - points (graph) (Table) Number of row Shear stress - τ [kPa] (Number) Vertical stress - σ _v [kPa] (Number) Vertical stress - σ _v [kPa] (Number) Number of row Tangent line slope - k [-] (Number)	LINEARTRENDANDPOINTS({σ _v @[kPa]};{τ\$ [kPa]}) - Result preview Field test : Shear box test * - Partial results 2; 0,407428571428571; 8,500000000004; 0; 8,500000000004 89,9857142857143	 Insert function f(x) Insert Multilingual text Multilingual text
	✔ ОК	× Cancel

Окончательные формулы, которые нам нужно изменить, находятся в группе «Результаты». В них, опять же, мы просто заменяем ссылки из таблицы пикового напряжения в таблицу постпикового напряжения.

Formulas	X
Shear stress - τ (Number)	Formula - Angle of internal friction (pp) ——
Mobilized friction angle - φ _{mob} (Number)	ΔΤΔΝ(μ)
Max. shear stress - τ_{max} (Number)	
Post peak shear stress - τ _{pp} (Number)	Edit
Specimen Nr. 3 (Group)	
Width (Number)	
Height (Number)	
Wet unit weight (Number)	
Dry unit mass (Number)	
Moisture content (Number)	
Vertical stress (Number)	
Consolidation (before test) (Number)	
Displacement at failure (Number)	
✓ Shear - measurement (Table)	
Horizontal displacement - Δx (Number)	
Vertical displacement - Δz (Number)	
Shear stress - τ (Number)	
Mobilized friction angle - φ_{mob} (Number)	
Max. shear stress - τ_{max} (Number)	
Post peak shear stress - τ _{pp} (Number)	
✓ Results (Group)	
Angle of internal friction - φ _{ef} (Number)	
Cohesion - c _{ef} (Number)	
Angle of internal friction (pp) - φ _{ef(pp)} (Number)	
Cohesion (pp) - c _{ef(pp)} (Number)	
Calculations (Group)	
Peak strength - points (graph) (Table)	
Shear stress - τ (Number)	
Vertical stress - σ _v (Number)	
Peak strength - Tangent line (Table)	
Tangent line slope - k (Number)	
Tangent line shift - c (Number)	
Vertical stress - σ _v (Number)	
Shear stress - τ (Number)	
Post peak strength - points (graph) (Table)	
Shear stress - τ (Number)	
Vertical stress - σ _v (Number)	
Post peak strength - Tangent line (Table)	
Tangent line slope - k (Number)	
Tangent line shift - c (Number)	
Vertical stress - σ _v (Number)	
Shear stress - τ (Number)	
	V OK X Cancel

На этом работа с формулами завершается. После возвращения в окно ввода теста мы можем проверить правильность рассчитанных значений.

避 Edit test: She	ar box te	est		-						×
Test ID :	Shear b	box test								
Sample index :	VA1/12	254							Select sam	ple 🔻
Basic data Spe	ecimen	Specimen Nr. 1	Specimen Nr. 2	Specimen	Nr. 3	Results	Calculations	Attachments		
Angle of inter	nal fricti	on : φ _{ef} =		25,8	[°]					
Cohesion :		c _{ef} =		13,8	[kPa]	_				
Angle of inter	nal fricti	on (pp) : φ _{ef(pp)} =		22,1	[°]					
Cohesion (pp)	:	$c_{ef(pp)} =$		8,5	[kPa]					
 Recalculate 								V OK	🗙 Ca	ncel

Часть 4

На следующем этапе мы модифицируем график и протокол, чтобы включить вновь созданные данные.

Примечание: Основные работы по редактированию журнала описаны в Техническом руководстве 51.

Начнем с модификации протокола:

🙆 Edit ton	plate											– 🗆 X
Name : 4	Shear box test 💌 🛪 EN	Comment : D	• 7 _A									
					Input data						List of output protocol	
No.	Name	Identifier	Type	Column	Parameters	Conditional input	Comment	B-0 Add	No.		Name	+ Add
1	Test ID	۰	String	~				 according to sample 	1 Pr			
2	Sample index	6	String	~			Borehole+Well+SPT+PMT / Fixed	. Add	2 Pr	otocol - detaile	ł	Comper 1
3	Basic data	2	Group	Number	of elements 6			to the end)	3 Pr	otocol + tab		(and a
	Date of measurement	•	Date and time						4 Pr	otocol - detaile	f + tab	Remove
	Performed by Verified by		String						5 D	esktop preview		(number 1)
	Date of issue		Date and time									- Came
	Notes	•	String									(number 1)
	Displacement for post peak strength	-	Number									(namear i)
- 4	Specimen	n	Group	Number	of elements 7							Paste
	Specimen ID	•	String								List of output documen	ts
	Wet unit weight		Number									
	Dry unit mass	6	Number						NO.	Document na	me Number of chap	ters
	Moisture content		Number						1 0	niversal docume	nt	
	Consolidation time	•	Number						2 D	ocumentation -	basic	1
	Shear rate	•	Number						3 D	ocumentation -	detailed	1
5	Specimen Nr. 1		Group	Number	of elements 11							
	Height	č	Number						Proview	s in left part of	the desktop :	III Define previews
	Wet unit weight		Number									-
	Dry unit mass	6	Number						Previews	s in right part	of the desktop :	H Define previews
	Moisture content	e	Number							List of	mapping for export and	import
	Vertical stress	0	Number									
	Consolidation (before test)		Number						No.	Name	Comment	+ Add -
	Shear - measurement	6	Table									
	Horizontal displacement	•	Number									
	Vertical displacement	•	Number									
	Shear stress	•	Number					C				
	Mobilized friction angle		Number					C copy				
	Post peak shear stress		Number									
6	Specimen Nr. 2	2	Group	Number	of elements 11			Poste				
	Width	6	Number					_				
	Height	•	Number					👻 🗮 Edit formulas				
Global libra	ries : LABORATORY +	Capability :								OK + 🕇	OK + ♦ ✔ 09	Cancel

На вкладке «Ячейка сетки 6», где отображаются полученные значения, добавьте строку.

Edit protocol							×
Sections Current section : 11 * 4 Add *	Parameters Name : 40 Protocol	Drawing PA En Frame Thickness : 0,41 Imm] Color : Imm] Inner lines Thickness : 0,20 Imm] Color : Imm] Height Row : 5,0 Imm] Font: 3,5 Imm]	Paper format Paper size : A4 v Layout : portrait v Left :	Margins Arial 15.0 [mm] Boxtom : 15.0 [mm] 15.0 [mm] Right : 15.0 [mm]	Font ·	Field test Shear box tes	Preview Print proview
Cell grid 1 Cell grid 2 Cell grid 3 Cell g	grid 4 Cell grid 5 Cell grid 6 Footer						
Nyse : cel grid → Space above : 0.0 inrel → Freme on the top						Calumn : + Add X Remove Row : + Add X Remove	 Add ▼ Remove (Cell grid & (Cell grid & (Cell grid &)
Frame left Frame right	ſ						
Space below :		A : 1,0		B : 0,5	C : 0,5		
2,0 (mm)	1.10	Test secults:		Angle of internal friction ϕ_{ef} [°	Cohesion c _{ef} [kPa]	GeoClipboard**	
 Frame on the bottom 	1.10	lest results:		1			
Frame on the bottom Whole page frame	2 : 1,0		Peak values:	25,8	13,8	Copy cell grid	
Formers the locition Whole page frame Conditions days Equit Formers 28 Jun	2:10 3:10		Peak values:	25,8	13,8	Congrad Congrad Congrad Const 100% Const 100% Const Co	

Во вновь созданной ячейке наберите текст «Постпиковые значения при смещении», измените форматирование и добавьте ссылку на выбранный нами тип данных смещения. Само число можно добавить через опцию «Тестовые данные - данные», единицу - через опцию «Тестовые данные - название». Это гарантирует, что, если мы изменим единицу в данных, например, на см, также произойдет изменение в отчете о результатах.

Tes	$I \cup A \cdot A \cdot X \cdot X^2 \equiv \Xi \equiv \Xi$ st data - name Name	= _ Post p	eak values a	ıt disp		(to the en
Tes Tes	st data - name Name	≕ Post p	eak values a	ıt disp		
Tes	st data - name Name	Post p	eak values a	t disp	Insert field 🕶	: Insert iten
Tes	st data - name Name				placement [Displacement for post peak strength] mm	(before 1)
Te	Name			×		
Te		Symbol	Unit			
Si	est ID					
	ample index					
B	Basic data					
B	Basic data → Date of measurement					
B	Basic data \rightarrow Performed by					
B	Basic data \rightarrow Verified by					
B	Basic data → Date of issue					
B	Basic data → Notes					
B	Basic data \rightarrow Displacement for post peak strength		mm			
S	ipecimen					
S	pecimen → Specimen ID					
S	ipecimen → Depth		m			
S	ipecimen → Wet unit weight		kg/m ³			
S	ipecimen → Dry unit mass		kg/m ³			
S	ipecimen → Moisture content		%			
tem le S	pecimen \rightarrow Consolidation time		hour			
rizont S	ipecimen → Shear rate		mm/min		Vertical text	
S	pecimen Nr. 1				✓ Word wrap	
tical : S	ipecimen Nr. 1 → Width		mm		•	
Condit S	pecimen Nr. 1 → Height		mm	▼		
lit		🗸 ОК	× Cano	el		

Примечание: в случае, если мы хотим использовать протокол на большем количестве языков, можно вставить «Многоязычный текст» через опцию «Вставить поле», где текст может быть переведен на другие языки.

Затем вставьте соответствующие данные в оставшиеся ячейки. Выберите « Тестовые данные - данные» с помощью опции «Вставить поле».

Edit protocol							×
Sections Current section : 101 * + Add	Paramoters Name : Ab Protocol	30 EN Traine Thickness: 5.41 (rm); Color: ▼ Inner lines: Thickness: 6.20 (rm); Color: ▼ Ineglit: Row: 5.0 (rm); Torit: 3.5 (rm); Torit:	Paper size : A4 v Top : Layout :v Left :	Margins 15,0 (mm) Bottom : 15,0 (mm) An 15,0 (mm) Right : 15,0 (mm)	Font •	Field the Shear box to	Preview R : Print preview
Cell grid 1 Cell grid 2 Cell grid 3	Cell grid 4 Cell grid 5 Cell grid 6 Footer						
Type : cell grid ▼ Space above : 0.0 (mm) Z Frame on the top ✓ Frame left						Column :	 Add - Remove (Cell grid 6) More upwards (Cell grid 6)
Frame right Space below :		A : 1,0		B:0,5	C : 0,5]	
2.0 [mm]	1:1,0	Test results:		Angle of internal friction φ	ef [°] Cohesion c _{ef} [kPa]	GeoClipbcard**	
Whole page frame	2 : 1,0		Peak values:	25,8	13,8	Copy cell grid	
	3 : 1,0	Post peak values at di	isplacement 8,0 mm:	22,1	8,5	Paste call and	
Conditions always Edit Pagor size : 105,Cmm × 207,0mm						Zoon: 100% 🖸	
						СК і 🐥 🗸 С	K X Cancel

С помощью кнопки «Предварительный просмотр» можно просмотреть измененный отчет в форме печати. Здесь мы видим, что поскольку мы добавили строку, все больше не помещается на одной странице.

Чтобы решить эту проблему, например, уменьшите размер графика во вкладке «Ячейка сетки 5» - каждая строка на 0,5.

Уменьшить размер на 0,5 - до 7,8 для обоих рядов.

Row height 1	×
Input mode :	row count 🔻
Height :	7,8 [rows]
✔ ОК	X Cancel

Теперь мы видим, что протокол снова умещается на одной странице.

Copy and edit Cook Schear box test - Shear box test - Protocol + Copy 2 Schear box test - Shear box test - Protocol + Copy 2 Schear box test - Protocol + Copy 2 Schear box test - Shear box test - Protocol + Copy 2 Schear box test - Shear box test - Protocol + Copy 2 Schear box test - Shear box test - Shear box test - Protocol + Copy 2 Schear box test - Shear box test - Shear box test - Protocol + Copy 2 Schear box test - Shear box test - Protocol + Copy 2 Schear box test - Shear box test - Protocol + Copy 2 Schear box test - Shear box test - Protocol + Copy 2 Schear box test - Shear box test - Shear box test - Protocol + Copy 2 Schear box test - Shear box test - Protocol + Copy 2 Schear box test - Shear box test - Protocol + Copy 2 Schear box test - Shear box test - Protocol + Copy 2 Schear box test - Shear box test - Protocol + Copy 2 Schear box	One page Page Two Width pages Book	
GEOS Shear Box Test		
Test ID: Stear box test Project ID: 2022/3548		
Suppler: GEOS Laboratory Ltd. Customer: Survey ABG Ltd. whe of measurement: 27.03.2023 Performed by: John Young		
anpie		
Field test: BHS Sample type: undisturbed Sample index: VA1/1254 Gestechnical type: GT2		
Depth from: 7,00 m Description: Depth to: 7,00 m Clay with low plasticity, stiff, pray-blue color		
pecimen		
Bpecimen ID: VA1/1254-12 Consolidation time: 24,0 hour Death: 7.35 m Sheer rate: 0.001 mm/min		
Before test Specimen Nr. 1 Specimen Nr. 2 Specimen Nr. 3		
Intersense (warming marging print) - 00,007/21,00 60,007/21,00 60,007/21,00 oistum content [%] 22,45 24,40 24,30 22,10		
ensolidation (before test) (mm) - 0,210 0,550 1,170 etical stress (kPa) - 50 100 200		
as. shear stress (APa) - 31,7 71,3 107,2 full and waishing how 71 1802.0 1568.0 1921.0 1962.0		
ry unit mass [kg/m ²] 1472,2 1485,5 1545,4 1610,9		
isplacement at failure (mm) - 1,030 2,061 3,080		
120.0 T		
105,0		
7 90.0 50.0 50.0 State		
75.0		
60,0 Horizontal displacement Δx (yes)		
300 × 0.10		
15.0		
Vertical stress or (b Da)		
ast results: Angle of Internal friction $q_{ef}[2]$ Cohecion $q_{ef}[2Pa]$		
Peak values: 25,8 13,8 Post neak values at displacement 8 0 mm: 52.5 8.5		
totes		
pectmens were flooded with water during the text. Monture content indicated for the nit spectromers is after the end of the lest (moisture content determined according to 1.5 Con 2170-DL		
In row (1992-01) georemes supplied by the outsimer, test results refer to the sample as received. Test gagment: hydraulic shear device. Testperformed in accordance with DN ISO		
Verified by: Peter Filmer Date of Insue: 28.03.2023		
,		
32005 - Lateratory (32 bit) (version 5.2004 19.0) herdware key 7288 / 3) Ondie Laurin Depright D 2004 Pine spol. or in: All Fights Reserved www.freestheam.ex/		

Последняя оставшаяся задача - добавить новые данные в график. Нажмите на график и откройте окно редактирования.

Нажмите кнопку «Добавить серию».

Выберите таблицу « Постпиковое напряжение - точки», главную ось «Вертикальное напряжение» и вторичную ось «Сдвиговое напряжение».

em 1 Chart	•					+ Add item (to the end)
Series						: Insert item
Jumber Table	1	Main axis		Side axis	+ Add serie	:± (before 1)
1 Calculations / Peak strength - po	pints (graph) Vertical stress	[kPa]	Shear stress	[kPa]	← Edit serie 1	
2 Calculations / Peak strength - Ta	rigent line Vertical stress	[крај	Snear stress	[KPa]	× Delete serie 1	
	Add serie			×	Edit settings of	
	— Data sour	rce			serie 1	
	Table :	Calculations / Post pe	eak strength - points	(graph) 🔻	To Edit main axis	
	Main axis :	Vertical stress		-	- settings	
	Side axis :	Shear stress		· ·	Edit settings of	
	— Chart sett	tings			side axis	
	Side axis :	Axis 1		-		
			+ Add	Cancel		
					Chart settings	
					Edit user drawing	
Item location in cell						
orizontal : left 🔹 Part o	f width : 100 [%	5]				
ertical : center Part o	f height : 100 [%	5]				
Conditions						

Таким же образом добавьте линию тренда пиковой силы. Мы можем увидеть две новые серии на графике:

Наконец, мы модифицируем визуализацию двух новых серий в соответствии с нашими требованиями:

Примечание: Редактирование графической визуализации графиков описано в Техническом руководстве 51.

Этот модифицированный протокол соответствует спецификации.

GE05			st				
Laboratory	Project: Apartment building "Moonlighting" - Survey for building permit						
Test ID:	Shear box test		Project	Project ID: 2022/3548			
Supplier:	Supplier: GE05 Laboratory Ltd.			Customer: Survey ABC Ltd.			
Date of measurement: 27.03.2023			Performed	Performed by: John Young			
(
Sample							
Field test: BH5			Sample ty	Sample type: undisturbed			
Sample index:	VA1/1254		Geotechnical ty	Geotechnical type: GT2			
Depth from:	7,00 m		Description:	Description:			
Depth to: 7,80 m		Clay with low plast	Clay with low plasticity, stiff, gray-blue color				
Encoimon							
Specimen							
Specimentib. V	A1/1234-12		Consolidation time.	Consolidation time: 24,0 hour			
Depth: 7,35 m		Snear rate:	Snear rate: 0,001 mm/min				
		Before test	Specimen Nr. 1	Specimen Nr. 2	Specimen Nr. 3		
Dimensions (width/heig	ght) [mm]	-	60,00 / 21,00	60,00 / 21,00	60,00 / 21,00		
Moisture content [%]		22,45	24,40	24,30	22,10		
Consolidation (before t	est) [mm]	-	0,210	0,550	1,170		
Vertical stress [kPa]		-	50	100	200		
Max. shear stress [kPa]	-	31,7	71,3	107,2		
Wet unit weight [kg/m ³]	1802,0	1848,0	1921,0	1967,0		
Dry unit mass [kg/m ³]		1472,2	1485,5	1545,4	1610,9		
Displacement at failure	• [mm]	-	1,530	2,061	3,080		
Management water and a	a a vilta						
Measured values and r	esuits						
120,0			Image: block with the second seco				

Test results:	Angle of internal friction ϕ_{ef} [°]	Cohesion c _{ef} [kPa]
Peak values:	25,8	13,8
Post peak values at displacement 8,0 mm:	22,1	8,5

Notes		
Specimens were flooded with water during test specimens is after the end of the test EN ISO 17892-01). Specimen supplied by the customer, test in equipment: hydraulic shear device. Test p 17892-10.		
Verified by: Peter Filmer	Date of issue: 28.03.2023	Stamp and signature

[GEO5 - Laboratory (32 bit) | version 5.2024.19.0 | hardware key 7288 / 3 | Ondřej Laurin | Copyright © 2024 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu]

Однако, если мы вернемся к главному окну программы, мы увидим, что график остался неизменным. График здесь отображается из протокола вывода под названием «Предварительный просмотр рабочего стола», поэтому нам нужно также изменить его.

Просто скопируйте и вставьте график и таблицу результатов в окно предварительного просмотра.

Другие протоколы могут быть изменены таким же образом.