

Vorbemessung der verankerten Verbauwand

Program: Verbauwand

Datei: Demo_manual_06.gp2

In diesem Ingenieurhandbuch wird die Überprüfung der verankerten Spundwandkonstruktion und die Bemessung der inneren Stabilität des Ankers und der Gesamtstabilität der Konstruktion durchgeführt.

Eingabe der Aufgabe:

Überprüfen Sie die Zuverlässigkeit der Vorbemessung der verankerten Wand anhand der vorherigen Aufgabe Nr. 5.

Diagramm der verankerten Wand aus den Spundbohlen – Eingabe der Aufgabe

Lösung:

Zur Berechnung dieser Aufgabe verwenden wir das Programm GEO5 - Verbauwand. In folgendem Text wird eine schrittweise Lösung für das Beispiel beschrieben:

- Bauphase 1: Abteufen der Baugrube bis zu einem Niveau von 2,5 m; Eingabe der Wandgeometrie
- Bauphase 2: Verankerung der Spundwand
- Bauphase 3: Abteufen der Baugrube bis zu einem Niveau von 5,0 m

 Bemessung der inneren Stabilität mit Ankern, der äußeren Gesamtstabilität der Konstruktion und der Bemessung des Stahlquerschnitts

Bauphase 1

Um nicht alle Eingabedaten erneut eingeben zu müssen, verwenden wir die Vorbemessung aus dem vorherigen Handbuch Nr. 5. Zuerst öffnen wir Aufgabe Nr. 5 im Programm "Verbauwand Vorbemessung", in der wir in der oberen Leiste die Option "Bearbeitungen" - "Daten kopieren" auswählen.

Dialogbox – "Bearbeitungen – Daten kopieren"

Klicken Sie dann im Programm "Verbauwand" auf die Schaltfläche "Bearbeitungen" in der oberen Leiste und wählen Sie die Option "Daten einfügen". Wir werden jedoch nicht alle Daten eingeben, da wir die Anker erst in der zweiten Bauphase manuell definieren. Wir haben jetzt die meisten für die Berechnung benötigten Daten übertragen, was uns die Eingabe der Eingabedaten erheblich erleichtert hat.

einzugebende Daten	×			
✓ Projekt				
✓ Einstellung				
✓ Böden				
Erdbeben				
Anker				
✓ Profil				
Zuordnung				
✓ Gelände				
✓ Wasser				
Geometrie	•			
✓ OK X Abbrech	en			

Dialogbox "Daten zur Eingabe"

Klicken Sie im Fenster "Einstellung" auf "Einstellung auswählen", um zu überprüfen, ob die Einstellung Nr. 5 "Standard - EN 1997, DA3" wieder ausgewählt ist. Wir führen die eigene Berechnung der Grenzdrücke mit der Option "Nach der Einstellung reduzieren" durch. Ändern Sie die Anzahl der Wandteilungen auf 30 und den Koeffizient des minimalen Dimensionierungsdrucks in der Größe k = 0,2.

•

Fenster "Einstellung" (Druckberechnung)

Hinweis: Die Option "Eigene Berechnung der Grenzdrücke - Parameter nicht reduzieren" ermöglicht die Berechnung der Grenzdrücke (aktiver und passiver Druck), ohne die Reduktion der Eingangsparameter von Böden oder ohne die Reduktion der Größe der Drücke durch die zugehörigen Teilfaktoren. Dies erfasst das tatsächliche Verhalten der Konstruktion besser und liefert realistischere Ergebnisse - andererseits steht es im Widerspruch zu demSicherheitsnachweis gemäß EN 1997-1 (weitere Informationen in der Hilfe - F1).

Wir gehen nun zum Fenster "Modul", wo wir die Option "berechnen - Schmitt" auswählen. Diese Berechnung verwendet eine Beziehung, die vom edometrischen Modul des Bodens und der Steifigkeit der Konstruktion abhängt.

Fenster "Modul k_h "

Hinweis: Der horizontale Bettungsmodul ist ein wichtiger Eingabeparameter bei der Berechnung der Konstruktion nach der Methode der abhängigen Drücke. (Weitere Informationen finden Sie in der Programmhilfe - F1).

Wählen Sie dann im Fenster "Material" den entsprechenden Baustahl für die Spundbohlen aus dem Katalog aus, in diesem Fall den **Typ EN 10248-1: S 240 GP**.

	-			
Т	- Konstruktionsstahl	Materialienkatalog - Baustahl		×
	Ka <u>t</u> alog Benutzer <u>d</u> ef.	— Materialauswahl aus dem Katalog		
		Konstruktionsstahl EN	EN 10248-1 : S 240 GP	
	EN 10025 : Fe 360	Stahl für Spundbohle EN	EN 10248-1 : S 270 GP	
	$T_y = 235,00$ MPa		EN 10248-1 : S 320 GP	
	E = 210000,00 MPa		EN 10248-1 : S 355 GP	
			EN 10248-1 : S 390 GP	
			EN 10248-1 : S 430 GP	
teri				
ž				
			V OK X Abbrec	hen

Dialogbox "Materialienkatalog"

Jetzt gehen wir zum Fenster "Abteufen", wo wir das Anfangsniveau der Baugrubensohle in einer Tiefe von 2,50 m für die 1. Bauphase definieren.

📳 GED5 2020 - Verbauwand [C.\Users\Public\Documents\Fine\GEO5 2020 Piklady\Demo_manual_06.gp2 1] - 🗆 🗙					
Datei Bearbeitungen Eingabe Berechnung Ausgabe Einstellung Hilfe					
	Modi _				
	Projekt				
	Einstellung				
	Profil				
	🔓 Modul Kh				
	🔯 Böden				
	_ Geometrie				
	Material				
	Zuordnung				
	± Abteufen				
	Gelände				
	Wasser				
	Eingegebene Kräfte				
	Anker				
	비 Stützen				
	T Aussteifungen				
	₅ <mark>₽</mark> , Erdbeben				
	6 ²⁹ Phaseneinstellung				
	Berechnung				
	Außere Stabilität				
Abteufen Bodenaufschüttung					
Schachttiefe: h = 2,50 [m] Bodenanfuhr: (nicht zugeordnet)					
Auflast des Grubenbodens : f = 0,00 [kPa] Schichtmächtigkeit : 0,90 [m]	Ausgabe _				
Bodenverbesserung am Konstruktionsfuß betrachten	Abteufen : 0				
Verbesserungshöhe : h ₁ = 1,00 [m]	Gesamt : 0				
Verbesserungsbreite : ws = 1,00 [m]	B ^{III} Abbildungsverzeichnis				
Höhe über dem Fuß : h ₁₂ = 0,00 [m]					
Winkel der inneren Reibung : $\phi = 30,00$ [*]					
	The Ansicht kopieren				

Fenster "Abteufen" – Bauphase 1

Wir gehen zum Fenster "Berechnung". Im linken Teil des Fensters sehen wir den Verlauf des des horizontalen Bettungsmoduls mit der Tiefe, im rechten Teil die Form der verformten Konstruktion sowie die Verläufe des tatsächlichen und des begrenzten Erddrucks (weitere Informationen in der Hilfe - F1).

Fenster "Berechnung" – Bauphase 1

Bauphase 2

Wir werden die zweite Bauphase hinzufügen, in der wir die Verankerung der Spundwand definieren. Die Fenster "Einstellung, Profil, Modul k_h , Böden und Geometrie" sind nicht mehr zugänglich und können in nachfolgenden Phasen nicht mehr geändert werden.

Klicken Sie im Fenster "Anker" auf die Schaltfläche "Hinzufügen". Für die Konstruktion der Spundwand werden wir eine Reihe von Ankern 1,5 m unter der Geländeoberfläche entwerfen. Wir definieren die notwendigen Parameter des Ankers:

- gesamte Ankerlänge: $l_c = 10 \text{ m}$ (freie Ankerlänge l = 7 m, Wurzellänge $l_k = 3 \text{ m}$)
- Ankerneigung: $\alpha = 15^{\circ}$,
- Ankerabstand: b = 2,5 m.

Als nächstes werden wir die Eigenschaften eingeben, die zur Berechnung der Steifigkeit des Ankers (Durchmesser d = 32 mm und Elastizitätsmodul E = 210 GPa) und der Vorspannkraft F = 240 kN erforderlich sind.

Neuer Anker ×					
Ankertyp :	nich	nicht definiert 🔹			
Name :	Ank	Anker 1			
— Ankerparameter					
Tiefe :	z =	1,50	[m]		
Freilänge :	1 =	7,00	[m] ^b ~		
Wurzellänge :	I _k =	3,00	[m] 🥢		
Neigung :	α =	15,00	[°]	~	
Ent. zwisch :	b =	2,50	[m]		
— Steifigkeit ——			-		
Eingabetype :		Durchmesser eir	ngeben 🔻		
Durchmesser :	d ₅ =	32,0	[mm]		
Elastizitätsmodul :	E =	210000,00	[MPa]		
Vorspannkraft :	F =	240,00	[kN]		
			🕂 Hinzufügen 🕻	Abbrechen	

Fenster "Anker" – Bauphase 2

Hinweis: Für die verankerte Verbauwand ist es vorteilhafter, den Anker in einer separaten Bauphase einzuführen und den eigenen Aushub dann in der nächsten Phase zu modellieren. Der Grund ist die Iteration des horizontalen Bettungsmoduls. Wenn Sie den Anker und den Aushub in einer Phase modellieren, kann die Berechnung möglicherweise instabil werden und keine Lösung gefunden werden. Die Steifigkeit der Anker selbst spiegelt sich in der Berechnung in den folgenden Phasen wider. Aufgrund der Verformung der Konstruktion ändern sich die Kräfte in den Ankern (mehr dazu in der Programmhilfe - F1).

Andere Eingabedaten ändern sich nicht. Wir werden jetzt die "Berechnung" durchführen.

Fenster "Berechnung" – Bauphase 2

Aus der vorherigen Abbildung ist ersichtlich, daß der hinzugefügte Anker die Konstruktion in Richtung Boden gedrückt hat. Am Anker stieg der Bodendruck auf die Größe des passiven Drucks an, mit anderen Worten ist es zu der Umverteilung der Größe der auf die Konstruktion einwirkenden Erddrücke gekommen.

Bauphase 3

In dieser Phase modellieren wir den Gesamtaushub einer Baugrube. Geben Sie im Fenster "Abteufen" die endgültige Baugrubentiefe von 5,0 m ein.

Fenster "Abteufen" – Bauphase 3

Wir werden nun eine "Berechnung" durchführen und die Verläufe der inneren Kräfte entlang der Wandlänge herausfinden. In den Bildern sehen wir die endgültige Verformung der verankerten Konstruktion und den daraus resultierenden Verlauf der inneren Kräfte.

Fenster "Berechnung" – Bauphase 3 (Innere Kräfte)

Fenster "Berechnung" – Bauphase 3 (Verformung + Spannung)

Nachweis des Spundwandquerschnitts:

Nun wechseln wir zur Fenster "Dimensionierung". Das maximal festgestellte Moment an der Konstruktion beträgt 101,86 kNm / m. Die Gesamtausnützung des Spundbohlentyps VL 602 aus Baustahl der Klasse EN 10248-1: S 240 GP beträgt 50,2%. Die maximale Verformung der Konstruktion von 20,9 mm ist ebenfalls zufriedenstellend.

Fenster "Dimensionierung" – Bauphase 3 (Ausnutzung der Stahlspundwand – Typ VL 602)

Nachweis der Ankerstabilität:

Öffnen Sie zur Nachweis der Ankerstabilität den Fenster "Innenstabilität". Hier sehen wir, daß die Innenstabilität des Ankers unbefriedigend ist (die Gesamtausnutzung beträgt 141,16%). Der Anker kann aus dem Boden herausgezogen werden.

Fenster "Innenstabilität" – Bauphase 3 (Nachweis nicht genügt)

Der Grund ist, daß der Anker zu kurz ist, so dass wir zur zweiten Bauphase zur Fenster "Anker" zurückkehren werden. Hier klicken wir auf "Bearbeiten (Nummer 1)" und ändern die freie Länge auf 9,5 m. Die Gesamtlänge des Ankers beträgt jetzt 12,5 m.

Ankerbearbeitung				×
Ankertyp :	nich	nt definiert	-	
Name :	Ank	er 1		
— Ankerparamete	er ———			
Tiefe :	z =	1,50	[m]	
Freilänge :	1 =	9,50	[m]	
Wurzellänge :	I _k =	3,00	[m]	
Neigung :	α =	15,00	[°]	~
Ent. zwisch :	b =	2,50	[m]	
— Steifigkeit —				
Eingabetype :		Durchmesser ein	geben 🔻	
Durchmesser :	d _s =	32,0	[mm]	
Elastizitätsmodul	: E =	210000,00	[MPa]	
Vorspannkraft :	F =	240,00	[kN]	
OK +	Ŷ	OK + 🕂	🗸 OK	X Abbrechen

Dialogbox "Ankerbearbeitung" – Bauphase 2

Dann kehren wir in die 3. Bauphase zurück, führen die Berechnung durch und kehren zum Fenster "Innenstabilität" zurück. Aus der folgenden Abbildung ist ersichtlich, dass der neu entworfene Anker bereits zufriedenstellend ist (die neue Ausnutzung des Ankers beträgt **71,37%**).

Fenster "Innenstabilität" – Bauphase 3 (Nachweis genügt)

Die letzte notwendige Überprüfung ist die Bemessung der Gesamtstabilität der Konstruktion. Wir klicken auf die Schaltfläche "Äußere Stabilität" und gehen zum Böschungsbruch-Programm, wo wir zum Fenster "Berechnung" wechseln. Hier klicken wir auf die Schaltfläche "Berechnen", um die Konstruktion zu berechnen. Wir sehen, dass die Gesamtstabilität insgesamt zufriedenstellend ist. Um das Programm "Böschungsbruch" zu beenden, klicken Sie auf die Schaltfläche "Beenden und übertragen".

Fenster "Äußere Stabilität"

Schlußfolgerung:

Nach der Bearbeitung der Ankerlänge auf $l_c = 12,5 \text{ m}$ kommt es während der Berechnung zu kleinen Änderungen der inneren Kräfte, der Verformungen und der Erddrücke. Für die letzte Bauphase ergeben sich die resultierenden Werte wie folgt:

Fenster "Berechnung" – nach der Änderung der Ankerlänge

Die auf diese Weise entworfene Konstruktion erfüllt alle betrachteten Parameter:

_	Querschnittstragfähigkeit:	50,6 %		GENÜGT
_	Innenstabilität :	71,37 %		GENÜGT
_	Gesamtstabilität:	82 %	Methode – Bishop (Optimalisierung)	GENÜGT