

Updated: 5/2023

Provjera potpornog zida s jednim redom sidara

Datoteka: Demo_manual_06.gp2

U ovom priručniku ćemo vam pokazati kako provjeriti potporni zid. Provest ćemo provjeru dimenzioniranja, unutarnju stabilnost sidara i ukupnu stabilnost konstrukcije.

Zadatak

Provjerite potporni zid koji ste proračunali u inženjerskom priručniku br. 5.

Shema usidrong zida na pilotima - zadatak

Rješenje:

Kako bi riješili ovaj problem, koristit ćemo GEO5 program "Provjera zagatne stijene". U ovom priručniku objasnit ćemo svaki korak u rješavanju ovog zadatka:

- Faza konstrukcije 1: iskop jame dubine 2,5 m, geometrija zida.
- Faza konstruckije 2: sidrenje zida.
- Faza konstrukcije 3: iskop jame dubine 5,0 m.
- Provjera unutarnje stabilnosti sidara, ukupna stabilnost konstrukcije i dimenzioniranje čeličnog presjeka (piloti).

Faza konstrukcije 1

Kako bismo pojednostavili naš posao, kopirat ćemo podatke prethodnog zadatka gdje smo modelirali potporni zid u programu "Dizajn zagatne stijene". Najprije u programu "Dizajn zagatne stijene" kliknemo na "Edit" u gornjoj alatnoj traci i odaberemo opciju "Copy data".

"Edit - Copy data" dijaloški prozor

Nakon toga u programu "Provjera zagatne stijene" kliknemo na "Edit" u gornjoj alatnoj traci i odaberemo opciju "Paste data". Nećemo kopirati sve podatke, jer ćemo ručno definirati sidra u 2. fazi. Sad imamo većinu bitnih podataka iz prethodnog zadatka kopiranu u novi program. Ne moramo ništa više unositi.

"Data to paste" dijaloški prozor

U kartici "Settings" kliknite na "Select settings" i provjerite da je odabrana postavka standarda "Standard – EN 1997, DA3". Zatim postavite proračun zavisnih pritisaka na "Reduce according to analysis settings". Ostavite kofeficijent minimalnog pritiska za dimenzioniranje na k = 0,2 i promijenite FEs na 30.

Analysis of depending pressures : Number of FEs to discretize wall :	reduce according to analysis 30
Pressure analysis \fbox Consider the minimum dimensioning pressure Coeff. for minimum dim. pressure ($\sigma_{a,min}$ =k σ_z) :	k = 0,20 [-]

Kartica "Settings" (proračun pritisaka)

Napomena: Odabir "Analysis of depending pressures – do not reduce" nam omogućuje proračun graničnih pritisaka (aktivnih i pasivnih) bez redukcije unesenih parametara parcijalnim faktorima. Ovo rezultira boljom procjenom stvarnog ponašanja konstrukcije. U drugu ruku, ne prati EN 1997-1 Standard (više informacija možete pronaći u programu na HELP – F1).

Zatim u kartici "Modulus k_h " odaberite opciju "analyze – Schmitt". Ova metoda određivanja modula reakcije tla ovisi o edometarskom modulu i krutosti konstrukcije (više informacija možete pronaći u programu na HELP – F1).

Modulus of reaction :	analyze - Schmitt	•
	Kartica "Modulus k _h "	

Napomena: Modul reakcije tla je važan unos prilikom proračuna konstrukcije koristeći metodu zavisnih pritisaka (elastično-plastični nelinearni model). Modul k_h utječe na deformacije, što nam je potrebno kako bi se postigli aktivni ili pasivni pritisci (više informacija možete pronaći u programu na HELP – F1).

U kartici "Material" odaberite odgovarajuću klasu čelika za konstrukciju iz kataloga. U ovom slučaju odaberite **EN 10248-1: S 240 GP**.

5 <u>5</u> 2	_	
\$	Catalog of materials - Structural steel	×
EN 10025 : Fe 360 User def. Fy = 235,00 MPa E = 210000,00 MPa G = 81000,00 MPa G = 81000,00 MPa	Select from catalog of materials Structural steel EN Sheetpile steel EN	EN 10248-1 : S 240 GP EN 10248-1 : S 270 GP EN 10248-1 : S 320 GP EN 10248-1 : S 355 GP EN 10248-1 : S 390 GP EN 10248-1 : S 430 GP
Material		V OK X Cancel

"Catalog of materials" dijaloški prozor

Sad idemo u karticu "Excavation" i unosimo dubinu prve jame 2,50 m u prvoj fazi konstrukcije.

Kartica "Excavation" – Faza konstrukcije 1

Zatim idemo u karticu "Analysis". U prvom dijelu kartice možemo vidjeti modul reakcije tla; u desnom dijelu oblik deformirane konstrukcije, stvarne i granične pritiske tla i pomake (više informacija možete pronaći u programu na HELP – F1).

Kartica "Analysis" – Faza konstrukcije 1

Faza konstruckije 2

Dodajte novu fazu konstruckije sa sljedećim atributima. Ovdje ćemo definirati sidrenje zida. Ne možemo ništa mijenjati u karticama "Settings", "Profile", "Modulus k_h ", "Soils" i "Geometry", jer ovi podaci moraju ostati jednaki za sve faze konstrukcije.

U kartici "Anchors" kliknite na tipku "Add". Za zid na pilotima, modelirajte jedan red sidara na dubini od 1,5 m ispod razine tla. Nećemo specificirati vrstu sidara jer provjera sidara nije cilj našeg zadatka. Definirajte parametre sidara kako slijedi:

- ukupna duljina sidara: $l_c = 10 \text{ m}$ (slobodna duljina sidra l = 7 m, duljina korijena sidra $l_k = 3 \text{ m}$)
- nagib sidara: $\alpha = 15^{\circ}$
- razmak između sidara: b = 2,5 m

Zatim unesite neophodne parametre potrebne za proračun krutosti sidra (promjer d = 32 mm i modul elastičnosti E = 210 GPa) te silu prednapinjanja od F = 240 kN.

New anchor				×
Anchor type :	[no	t specified	•
Name :	[An	chor 1	
- Anchor parameter	s —			
Depth :	z	=	1,50	[m]
Free length :	I	=	7,00	
Root length :	I_{k}	=	3,00	[m] 777
Slope :	α	=	15,00	["]
Spacing :	b	=	2,50	[m]
- Stiffness				
Type of input :			input diameter	
Diameter :	ds	=	32,0	[mm]
Elasticity modulus :	E	=	210000,00	[MPa]
Pre-stressing force :	F	=	240,00	[kN]
				🕂 Add 🗙 Cancel

"New anchor" dijaloški prozor

Napomena: Za usidrene zidove može biti prednost unijeti sidra u posebnoj fazi konstrukcije, a nakon toga modelirati iskop u sljedećoj fazi. Razlog tomu je iteracija modula reakcije tla – prilikom modeliranja i sidara i iskopa u istoj fazi, proračun može biti nestabilan i možda ne dođe do rješenja.

Napomena: Krutost sidara je uzeta u obzir u sljedećim fazama konstrukcije. Sile u sidrima se mijenjaju uslijed deformacije konstrukcije (više informacija možete pronaći u programu na HELP – F1).

Ostali uneseni parametri se ne mijenjaju. Sad možemo provesti proračun.

Kartica "Analysis" – Faza konstrukcije 2

Na prethodnoj slici je prikazano da su dodana sidra uzrokovala dodatno utiskivanje konstrukcije u tlo. Pritisak tla u blizini sidra je porastao na veličinu pasivnog pritiska ili je preraspodjela povećala pritiske tla koji djeluju na konstrukciju.

Faza konstrukcije 3

Sad ćemo dodati još jednu fazu konstrukcije, gdje ćemo definirati ukupni iskop jame. U kartici "Excavation", promijenite dubinu jame na posljednju dubinu (5,0 m).

Kartica "Excavation" – Faza konstrukcije 3

Sad pokrenite proračun kako bi prikazali raspodjelu unutarnjih sila i pomaka usidrene konstrukcije.

Kartica "Analysis" – Faza konstrukcije 3 (Unutarnje sile)

Kartica "Analysis" – Faza konstrukcije 3 (Pomak i pritisci tla na konstrukciju)

Provjera materijala i poprečnog presjeka pilota:

Zatim otvorite karticu "Dimensioning". Maksimalni promatrani moment na konstrukciju je 101,86 kNm/m. Ukupna iskoristivost pilota **VL 602** iz EN 10248-1: čelik S 240 GP je **50,2** %. Maksimalni pomak konstrukcije (20,9 mm) također zadovoljava.

Kartica "Analysis" – Faza konstrukcije 3 (Ukupna iskoristivost pilota VL 602)

Provjera stabilnosti sidra

Kako bi provjerili stabilnost sidara, idemo u krarticu "Internal stability". Možete vidjeti da unutarnja stabilnost sidara ne zadovoljava (ukupna iskoristivost je **141,16**%). To znači da je moguće da se sidra odvoje od tla.

Kartica "Internal stability" – Faza konstrukcije 3 (nezadovoljavajući rezultati)

Razlog ovoga je što je sidro prekratko, pa u kartici "Anchors" (u fazi konstrukcije 2) kliknite na "Edit no.1" i pormijenite slobodnu duljinu sidra na 9,5 meters. Ukupna duljina sidra je sad 12,5 m.

Edit anchor						×
Anchor type :		no	not specified			
Name :	[An	ichor 1			
- Anchor parame	eters —					
Depth :	z	=	1,50	[m]		
Free length :	1	=	9,50	[m]	_р_	
Root length :	I_{k}	=	3,00	[m]	7///	
Slope :	α	=	15,00	[°]		4
Spacing :	ь	=	2,50	[m]		
- Stiffness						
Type of input :			input diameter	-		
Diameter :	d₅	=	32,0	[mm]		
Elasticity modulu	s: E	=	210000,00	[MPa]		
Pre-stressing for	ce: F	-	240,00	[kN]		
C	K + 🕆		OK + 🕂	√ 0	К	🗙 Cancel

"Edit anchor" dijaloški prozor – Faza konstrukcije 2

Zatim se ponovno vratite u fazu konstrukcije 3, provedite proračun i idite opet na karticu "Internal stability". Sljedeća slika prikazuje da je novo modelirano sidro zadovoljilo zahtjeve unutarnje stabilnosti. (ukupna iskoristivost je 71.37%).

Kartica "Internal stability" – Faza konstrukcije 3 (zadovoljavajući rezultati)

Posljednja stvar koju moramo provjeriti je ukupna stabilnost konstrukcije. Kliknite na tipku "External stability". Ovo otvara program "Stabilnost kosina". U kartici "Analysis" kliknite na tipku "Analyze". Možemo vidjeti da je ukupna stabilnost prihvatljiva. Izađite iz programa "Stabilnost kosina" klikom na "Exit and save".

Kartica "External stability"

Rezultati proračuna

Prilikom promjene duljine sidra na $l_c = 12,5 \text{ m}$ došlo je do male promjene u proračunu unutarnjih sila, deformacija i pritisaka tla. Na temelju vrijednosti rezultata, rezultati faze konstrukcije su sljedeći:

Kartica "Analysis" – Faza konstrukcije 3 (nakon promjene duljine sidra)

Proračunata konstrukcije zida na pilotima zadovoljava sve parametre:

-	Iskoristivost čeličnog presjeka:	51,8 %		ОК
_	Unutarnja stabilnost:	71,37 %		ОК
_	Ukupna stabilnost:	82 %	Metoda – <i>Bishop</i> (optimizacija)	ОК