

Analiza obudowy wykopu z jednym poziomem kotwienia

Program powiązany:	Ściana analiza
--------------------	----------------

Plik powiązany: Demo_manual_06.gp2

Niniejszy przewodnik inżyniera przedstawia sposób analizy obudowy wykopu. Przeprowadzone zostanie wymiarowanie obudowy oraz sprawdzenie stateczności wewnętrznej układu kotew i stateczności zewnętrznej (ogólnej) konstrukcji.

Zadanie

Przeprowadzić obliczenia obudowy wykopu zaprojektowanej w Przewodniku Inżyniera nr 5.

Schemat projektowanej ścianki szczelnej z jednym poziomem kotwienia – przyporządkowanie

Rozwiązanie:

Aby wykonać zadanie skorzystaj z programu Ściana analiza znajdującego się w pakiecie GEO5. Przewodnik przedstawia kolejne kroki wykonania niniejszego przykładu:

- Faza 1: określenie geometrii konstrukcji i wykonanie wykopu do głębokości 2,5 m poniżej korony ściany,
- Faza 2: kotwienie obudowy wykopu,
- Faza 3: wykonanie wykopu do głębokości 5,0 m poniżej korony ściany,
- Sprawdzenie stateczności wewnętrznej układu kotew, stateczności zewnętrznej (ogólnej) konstrukcji oraz wymiarowanie ścianki szczelnej.

Faza 1

W celu uproszczenia i skrócenia pracy możemy skopiować dane z poprzedniego przykładu, w którym projektowaliśmy obudowę wykopu w programie Ściana projekt. Otwórz poprzednie zadanie w programie Ściana projekt, wybierz przycisk "Edytuj" znajdujący się w lewym górnym rogu ekranu, a następnie kliknij "Kopiuj dane".

Okno dialogowe "Edytuj – Kopiuj dane"

Teraz przejdź do programu Ściana analiza i postępując analogicznie wybierz przycisk "Edytuj" znajdujący się w lewym górnym rogu ekranu, a następnie kliknij "Wstaw dane". Nie wstawimy wszystkich skopiowanych danych, ponieważ zdefiniujemy kotwy ręcznie w drugiej fazie budowy. Ponieważ większość niezbędnych danych wstawiliśmy z poprzedniego zadania, nie będziemy musieli wprowadzać w zasadzie nic nowego.

Dane do wstawien	iia 🛛 🗙		
✓ Projekt			
✓ Ustawienia			
Grunty			
Sejsmika			
Kotwy			
Profil			
 Przyporządkowanie 			
 Teren 			
✓ Woda			
Vykop			
🗹 Geometria			
🗸 ОК	🗙 Anuluj		

Okno dialogowe "Dane do wstawienia"

W ramce "Ustawienia" naciśnij przycisk "Wybierz ustawienia", a następnie sprawdź czy z listy dostępnych ustawień obliczeń wybrane jest ustawienie numer 5 – "Standardowe – EN 1997 – DA3". Ustawienia własnego obliczania parć granicznych wybierz jako "Redukuj według ustawień obliczeń".

Pozostaw domyślną wartość współczynnika minimalnego parcia do wymiarowania równą k = 0,2 i zmień liczbę podziałów ściany na Elementy Skończone (ES) na 30.

Własne obliczenie parć granicznych :	redukuj według ustawień obliczeń 💌
Liczba podziałów ściany na ES :	30
Wyznaczanie parć	
🔽 Uwzględniaj minimalne parcie do wymiarowania	
Wsp. do wyzn. min. parcia do wym. ($\sigma_{a,min}=k\sigma_{z}$) : k =	0,20 [-]

Ramka "Ustawienia" (Wyznaczanie parć)

Uwaga: Wybranie opcji "Własne obliczenie parć granicznych – nie redukować" pozwala na przeprowadzenie obliczeń parć granicznych (czynnego i biernego) bez redukcji parametrów za pomocą współczynników częściowych. Takie podejście pozwala na lepsze oszacowanie rzeczywistej pracy konstrukcji, ale jest niezgodne z normą EN 1997-1. (Więcej informacji w pomocy programu – naciśnij przycisk F1).

Następnie przejdź do ramki "Moduł k_h" i wybierz opcję "wyznacz - Schmitt". Wybrana metoda wyznaczania modułu reakcji podłoża wykorzystuje związek pomiędzy modułem edometrycznym a sztywnością konstrukcji. (Więcej informacji w pomocy programu – naciśnij przycisk F1).

'	Moduł reakcji podłoża :	wyznacz - Schmitt	
e.			
Moduł K			

Ramka "Moduł k_h"

Uwaga: Moduł reakcji podłoża jest istotnym parametrem wejściowym podczas obliczania konstrukcji metodą parć zależnych (nieliniowy model sprężysto-plastyczny). Moduł k_h ma wpływ na deformację konstrukcji, która jest niezbędna do osiągnięcia parcia czynnego lub biernego. Więcej informacji w pomocy programu – naciśnij przycisk F1).

Przejdź do ramki "Materiał" i wybierz z katalogu materiałów stal konstrukcyjną ścianki z grodzic. W tym przypadku wybierz klasę stali **EN 10248-1: S 240 GP**.

Ł		Katalog materiałów - Stal konstrukcyjna	L. C.	×
1	- Stal konstrukcyjna:	— Wybierz z katalogu materiałów ——		
	Katalog Użytkownika	Stal konstrukcyjna EN	EN 10248-1 : S 240 GP	
	italing official	Stal grodzic EN	EN 10248-1 : S 270 GP	
	EN 10248-1 : S 240 GP	Żeliwo EN	EN 10248-1 : S 320 GP	
	f _y = 240,00 MPa		EN 10248-1 : S 355 GP	
	E = 210000,00 MPa		EN 10248-1 : S 390 GP	
	G = 81000,00 MPa		EN 10248-1 : S 430 GP	
Materiał			V OK X An	uluj

Okno dialogowe "Katalog materiałów"

Przejdź do ramki "Wykop" i wybierz kształt dna wykopu oraz wprowadź jego głębokość w pierwszej fazie budowy jako 2,5 m poniżej korony ściany.

Ramka "Wykop" – Faza budowy nr 1

Następnie przejdź do ramki "Obliczenia". Lewa część ramki zawiera wykres modułów reakcji podłoża; w prawej części pokazane są: kształt zdeformowanej konstrukcji, rzeczywiste i graniczne wartości parć gruntu oraz wykres przemieszczeń. (Więcej informacji w pomocy programu – naciśnij przycisk F1).

Ramka "Obliczenia" – Faza budowy nr 1

Faza 2

Dodaj nową (drugą) fazę budowy zgodnie z poniższym opisem. W tej fazie zdefiniujemy kotwienie obudowy wykopu. Nie wprowadzamy zmian w ramkach "Ustawienia", "Profil", "Moduł K_h", "Grunty" oraz "Geometria", gdyż dane są takie same dla wszystkich faz budowy.

Otwórz ramkę "Kotwy" i wybierz przycisk "Dodaj". Dodaj poziom kotwienia na głębokości 1,5m poniżej powierzchni terenu. Nie określimy rodzaju kotew, ponieważ wymiarowanie kotew nie jest celem naszego zadania. Zdefiniuj następujące parametry kotew:

- długość całkowita kotew: $l_c = 10 \text{ m}$ (długość buławy $l_k = 3 \text{ m}$, długość wolna l = 7 m)
- kąt nachylenia kotew do poziomu: $\alpha = 15^{\circ}$
- rozstaw kotew: b = 2,5 m

Następnie wprowadź dane niezbędne do określenia sztywności kotew (średnica d = 32 mm orazmoduł sprężystości podłużnej E = 210 GPa) oraz siłę wstępnego sprężenia o wartości F = 240 kN.

Rodzaj kotew :	nie zd	lefiniowany		•
Nazwa :	Anch	or 1		
— Parametry kotwy ——				
Głębokość :	z =	1,50	[m]	_
Długość wolna :	I =	7,00	[m] b	1
Długość buławy :	$I_k =$	3,00	[m]	
Nachylenie :	α =	15,00] (°]	
Rozstaw :	b =	2,50	[m]	
— Sztywność ————				
Sposób definiowania :		definiuj średnicę	-	
Średnica :	d _s =	32,0	[mm]	
Moduł sprężystości :	E =	210000,00	[MPa]	
Siła sprężenia wstępnego	:F =	240,00	[kN]	
ОК + 🔶		OK + 🕘	🗸 OK 🛛 🗙 Anuluj	

Okno dialogowe "Nowa kotew"

Uwaga: W przypadku ścian kotwionych zaleca się wprowadzanie kotew i głębienia wykopu w odrębnych fazach budowy. Powodem takiego postępowania jest iteracyjne obliczanie modułu reakcji podłoża – modelowanie kotew i głębienia wykopu w jednej fazie budowy może prowadzić do niestabilności obliczeniowej i braku rozwiązania.

Uwaga: Sztywność kotwy mobilizuje się w kolejnych fazach budowy. Odkształcenie konstrukcji obudowy powoduje zmianę sił normalnych w kotwach. (Więcej informacji w pomocy programu – naciśnij przycisk F1).

Pozostałe dane wejściowe nie uległy zmianie. Przeprowadź obliczenia obudowy wykopu.

Ramka "Obliczenia" – Faza budowy nr 2

Wprowadzona kotew spowodowała redukcję przemieszczeń obudowy od gruntu, powodując tym samym wciśnięcie ściany z grodzic w grunt względem pierwszej fazy budowy. Parcie gruntu w pobliżu kotwy osiągnęło wartość parcia biernego lub nastąpiła redystrybucja parcia powodująca zwiększenie parcia działającego na konstrukcję.

Faza 3

W tej fazie budowy zdefiniujemy docelową głębokość wykopu. Przejdź do ramki "Wykop" i zmień głębokość wykopu na docelową, równą 5,0 m poniżej poziomu terenu.

Ramka "Wykop" – Faza budowy nr 3

Następnie przeprowadź obliczenia, aby wyświetlić wykresy sił wewnętrznych i przemieszczeń konstrukcji w tej fazie.

Ramka "Obliczenia" – Faza budowy nr 3

Ramka "Obliczenia" – Faza budowy nr 3 (Siły wewnętrzne)

GEO5

Ramka "Obliczenia" – Faza budowy nr 3 (Przemieszczenia i naprężenia)

Wymiarowanie konstrukcji ściany z grodzic stalowych

Następnie przejdź do ramki "Wymiarowanie". Maksymalny moment zginający występujący w konstrukcji wynosi 101,86 kNm/m. Wykorzystanie nośności ściany wykonanej z profili **VL 602** wykonanej ze stali EN 10248-1: S 240 GP wynosi **50,2 %**. Maksymalne przemieszczenie konstrukcji (20,9 mm) także spełnia wymagania projektowe.

Ramka "Obliczenia" – Faza 3 (Wykorzystanie nośności ścianki szczelnej)

Sprawdzenie stateczności wewnętrznej układu kotew

W celu sprawdzenia stateczności wewnętrznej układu ściana-kotew-grunt przejdź do ramki "Stateczność wewnętrzna". Stateczność wewnętrzna układu kotew nie spełnia wymagań (wykorzystanie wynosi **153,23** %), co oznacza, że mogłoby dojść do wyrwania kotwy z bloku gruntu.

Ramka "Stateczność wewnętrzna" – Faza budowy nr 3 (stateczność układu nie spełnia wymagań)

Przyczyną braku stateczności wewnętrznej układu kotew jest zbyt mała długość kotwy. Przejdź do ramki "Kotwy" (w drugiej fazie budowy) i zwiększ długość wolną cięgna do wartości 9,5 m, co daje łączną długość kotwy 12,5m.

Edycja kotwy				×
Rodzaj kotew :	nie zd	lefiniowany		•
Nazwa :	Anch	or 1		
— Parametry kotwy —				
Głębokość :	z =	1,50	[m]	
Długość wolna :	1 =	9,5	[m]	b
Długość buławy :	I _k =	3,00	[m]	
Nachylenie :	α =	15,00	[°]	,
Rozstaw :	b =	2,50	[m]	
— Sztywność ————				
Sposób definiowania :		definiuj średnicę	-	
Średnica :	d _s =	32,0	[mm]	
Moduł sprężystości :	E =	210000,00	[MPa]	
Siła sprężenia wstępnego	:F=	240,00	[kN]	
OK +		OK + 🗏	🗸 ОК	🗙 Anuluj

Okno dialogowe "Edycja kotwy" – faza budowy nr 2

Następnie przejdź do trzeciej fazy budowy, przeprowadź ponowne obliczenia fazy i przejdź do ramki "Stateczność wewnętrzna". Stateczność wewnętrzna układu kotew po przeprojektowaniu jest zachowana (wykorzystanie wynosi **87,92** %), co przedstawia poniższy rysunek.

	🗋 💾 • 🗐 • 🔸 • 🔶 - 🚪 🗎 • 📴	y foz	
			Tryby _
Ľ			Przyporządkowanie
3	7		≟ Wykop
_	<i>₩</i>		Teren
+	× →		📑 Woda
			(🗮 Obciążenie
(🛃 Zdefiniowane siły
			🛧 Kotwy
5	7		보 Podpory
Ľ	3		T Rozpory
			👯 Sejsmika
			Ustawienia fazy
			Obliczenia
			-🐬 Stateczność wewnętrzna
			🝠 Stat. zewnętrzna
E			🔥 Wymiarowanie
	Ab	Although	Oczepy
-			
Ł			
	Nr - Siła w kotwie Max, dozw, siła Wykorzyst, Analiza	— Wyniki —————	
	[kN] [kN] [%]	Analiza krytycznego rzędu kotew : 🕼 Szczegółowo	Wyniki _
	1 302,13 409,10 73,85 spełnia w	Kotew Nr: 1	🕒 Dodaj rysunek
		Zdefiniowana ciła w kotwie – 302 13 kN	Stateczność wewnętrzna : 0
			Łącznie: 4
zna		wyznaczona maksymaina dozwolona siła w kotwie = 409, lu kiw	E Lista rysunków
mętr		SPEŁNIA WYMAGANIA	
wew			Hall Administrator załączników
eczność			
State			Bathan Kopiuj widok

Ramka "Stateczność wewnętrzna" – Faza budowy nr 3 (stateczność spełnia wymagania)

Ostatnią czynnością do wykonania jest sprawdzenie stateczności ogólnej konstrukcji. Wybierz przycisk "Stateczność zewnętrzna", co spowoduje uruchomienie programu Stateczność zbocza. Przejdź do ramki "Obliczenia" i naciśnij przycisk "Oblicz". Stateczność zewnętrzna (ogólna) konstrukcji jest zachowana. Po wykonaniu obliczeń opuść program Stateczność zbocza klikając "Zakończ i prześlij dane", w ten sposób wyniki analizy stateczności zostaną przekazane do raportu z obliczeń w programie Ściana analiza.

Ramka "Stateczność zewnętrzna" – wyniki analizy

Wyniki obliczeń

Podczas zmiany długości kotew na $l_c = 12,5 \text{ m}$ zmianie uległy wartości sił wewnętrznych, przemieszczeń oraz parć gruntu. Ostateczne wyniki obliczeń w trzeciej fazie budowy przedstawiono poniżej:

Ramka "Obliczenia" – Faza budowy nr 3 (po zmianie długości wolnej kotew)

Zaprojektowana obudowa wykopu w postaci ściany z grodzic stalowych spełnia wszystkie wymagania:

-	Wykorzystanie grodzic:	50,6 %	ОК
_	Stateczność wewnetrzna:	73.85 %	ОК

	•

Stateczność ogólna: 82,0 % Metoda Bishopa (optymalizacja) OK