

Verificação de uma parede multi-ancorada

Programa: Verificação de Contenções

Arquivo: Demo_manual_07.gp2

Neste capítulo, vamos mostrar como dimensionar e verificar uma parede multi-ancorada. Esta estrutura de contenção foi executada durante a construção da estação Prosek, na linha de metro C de Praga.

Pode encontrar mais informações acerca deste projeto nos documentos seguintes:

- <u>Follheto</u>
- <u>Relatório de investigação que compara os resultados calculados com os resultados da</u> <u>monitorização</u>

Introdução

O método das pressões dependentes assume que o solo, ou rocha, na vizinhança da parede, assume um comportamento elasto-plástico ideal, de acordo com Winkler. Este material é determinado através do módulo de reação do subsolo k_h , que caracteriza a deformação da região elástica, e através de deformações limite adicionais. Quando estas deformações são excedidas, o material assume um comportamento plástico ideal.

São assumidas as hipóteses seguintes:

- A pressão atuante na parede pode atingir um valor arbitrário, entre a pressão ativa e passiva
 mas não pode exceder estes valores limite.
- A pressão em repouso atua numa estrutura indeformável (w = 0).

Tarefa

Verificar uma parede multi-ancorada realizada em estacas soldado metálicas do tipo I 400, com l = 21 m de comprimento. A sua profundidade é h = 15 m. O terreno é horizontal. A sobrecarga atua na superfície e é permanente com um valor de $q = 25 \text{ kN/m}^2$. O nível freático atrás da estrutura está 10 m abaixo da superfície. O espaçamento entre eixos dos perfis metálicos é a = 2 m.

Esquema da parede ancorada em várias camadas – Etapa de construção 1

Solo	Espessura da camada de solo [<i>m</i>]	$\gamma \left[kN/m^3 \right]$	$arphi_{e\!f}$ [°]	c_{ef} [kPa]	$\delta = [\circ]$	v [-]
F6	4.5	19.5	20	16	7.5	0.4
F4	1	19.5	22	14	7.5	0.35
R3	10.6	22	40	100	15	0.25
R5 (1)	4	19	24	20	7.5	0.3
R5 (2)	1	21	30	35	14	0.25
R5 (3)	3.9	21	40	100	15	0.2

Tabelas com os parâmetros dos solos e rochas

O peso volúmico do solo γ é igual ao peso volúmico do solo saturado γ_{sat} . Considera-se o estado de tensão como **efetivo**, a pressão em repouso é calculada para solos **coesivos** e a determinação da pressão hidrostática é definida como **padrão** para cada solo.

Todas as ancoragens têm um diâmetro d = 32 mm e o módulo de elasticidade é E = 210 GPa. O espaçamento entre ancoragens é b = 4 m.

Ancoragem No.	Prof. <i>z</i> [m]	Comprimento livre l [m]	Raiz $l_k [m]$	Inclinação α [°]	Força de ancoragem F [kN]	Etapa de construção para a nova ancoragem
1	2.5	13	6	15	300	2
2	5.5	10	6	17.5	350	4
3	8.5	7	6	20	400	6
4	11	6	4	22.5	500	8
5	13	5	3	25	550	10

Tabela com as posições e dimensões das ancoragens

O módulo Kh é linearmente crescente com o aumento da profundidade até aos 5 m, onde atinge um valor de 10 MN/m3. A partir desta profundidade, o seu valor passa a ser constante.

Resolução

Para resolver este problema, utilize o programa GEO5 "Verificação de Contenções". A análise será realizada sem redução dos dados introduzidos, para simular o comportamento real da estrutura.

Na janela "Configurações", selecione a opção No. 2 "Norma – estados limite". Vamos considerar a pressão mínima para dimensionamento k = 0,2. O número de elementos finitos (EFs) definido para modelar a parede é 30 (*ver figura*).

Janela "Configurações"

Nota: Para problemas mais complexos (ex.: paredes multi-ancoradas), os autores do programa recomendam a computação das pressões limite sem redução dos parâmetros do solo e, consequentemente, sem redução dos empuxos de terra através dos fatores parciais correspondentes. O método das pressões dependentes sem redução dos parâmetros do solo permite uma melhor simulação do comportamento real do solo (o usuário obtém os valores reais dos assentamentos) e esta análise é semelhante à análise numérica através do MEF (ver Ajuda – F1).

Agora, abra a caixa de diálogo "Editar configurações atuais", através do botão "Editar", e selecione "introduzir" como método para obter o módulo de reação do subsolo. Remova, também, a seleção da possibilidade de "Considerar a redução do módulo de reação para retenções suportadas" (Mais informações na Ajuda – F1).

Editar configurações atuais : Verificação de Contenções									
Materiais e Normas Análise de pressão Ancoragem									
Cálculo do empuxo de terra ativo :	Coulomb	•	Alterar as configurações de análise para o						
Cálculo do empuxo de terra passivo :	Caquot-Kerisei		programa :						
Método de análise :	pressões dependentes	·	Estabilidade						
Análise sísmica :	Mononobe-Okabe		de Taludes						
Módulo da reação do subsolo :	introduzir								
Considerar a redução do módulo o	de reação do subsolo para ur	na cortina escorada							
Assentamento :	nao inserido								
Metodologia de verificação :	Estados limites (LSD)	•							
Coeficiente.l ymp reduzir tg do äng	gulo de atrito interno φ								
Situação permanente do projeto Situ	uação transitória do projeto	Situação acidental do projeto Situação sísmica do projeto							
 Coeficiente de redução de parâme 	etros do solo								
Coeficiente de redução de atrito inte	rno :	γmφ = 1.10 [-]							
Coeficiente de redução de coesão :		γmc = 1.40 [-]							
Redução do coeficiente de Poisson :		γmv = 1.00 [-]							
Coeficiente de unidade de peso por t	trás da construção :	γmγ = 1.00 [-]							
Coeficiente de unidade de peso na fr	rente da construção :	γmγ = 1.00 [-]							
Coeficiente de Redução de estabilida	ade interna de ancoragens :	γ _{Ris} = 1.10 [-]							
Coef. de red. de carga para elevação	hid. :	γh = 1.30 [-]							
			🗸 ОК						
			🗙 Cancelar						

Caixa de diálogo "Editar configurações atuais"

Nas janelas "Perfil", "Solos" e "Atribuir", defina o perfil geológico para a tarefa, de acordo com a tabela e informação fornecidas anteriormente. Primeiro, na janela "Perfil", adicione 4 novas interfaces com as profundidades indicadas na imagem seguinte.

Janela "Perfil" – adicionar uma nova interface

De seguida, na janela "Solos", adicione 6 novos solos com os parâmetros descritos na tabela anterior. Depois, na janela "Atribuir", atribua os solos ao perfil.

Janela "Perfil" – atribuir solos ao perfil

Por último, na janela "Nível Freático", defina as condições do nível freático. Na primeira etapa de construção, os valores à frente e atrás da estrutura serão iguais a 10 m.

Janela "Nível Freático" – definir parâmetros do nível freático

Na janela "Módulo Kh", introduza o valor de Kh através de uma distribuição – crescente linearmente até à profundidade de 5 m, onde passa a ser constante com o valor de 10 MN/m³. O módulo é definido para a profundidade da estrutura.

Se a profundidade for alterada, o módulo é corrigido automaticamente. Neste caso, este continuará a ser constante até à profundidade total da estrutura (21 m). Se o valor de Kh for desconhecido, é possível recorrer a outros parâmetros conhecidos do solo para calculá-lo (por exemplo, através do método de Schmitt – com base no E_{oed} ou E_{def}). Pode encontrar mais informações acerca do módulo Kh na Ajuda do programa – F1.

Janela "Módulo Kh"

Na janela "Geometria", defina os parâmetros da contenção suportada – tipo da parede e comprimento da secção l = 21 m. Clique no botão "Adicionar" e, a partir da base de dados das secções tipo I, selecione a secção I (IPN) 400. O espaçamento entre eixos dos perfis metálicos é igual a a = 2 m. Seguidamente, defina o coeficiente de redução da pressão abaixo da base da vala como 0.5.

Nota: O coeficiente de redução dos empuxos de terra abaixo da escavação reduz a pressão no solo. Para paredes de contenção clássicas, este parâmetro é igual a 1.0 e para contenções suportadas é menor ou igual a 1. Este parâmetro depende do tamanho e espaçamento entre suportes (Mais informações na Ajuda – F1).

	0.00	
Nova secção	×	
Tipo da parede :	Perfil metálico tipo I	
Nome da secção transversal :	Perfil tipo I : I(IPN) 400; a = 2.00 m Personalizado	
Comprimento da secção :	l = 21.00 [m]	
Coef. de redução de pressão a	baixo do fundo da vala : introduzir 💌 0.5	-]
— Geometria —		_
Dist. axial dos centros :	a = 2.00 [m]	
— Perfil —		-
<u>C</u> atálogo Soldada	T	
Nome : I(IPN) 400		
— Informação ————		_
A = 5.90E-03 [m ² /m]	l = 1.46E-04 [m ⁴ /m]	
$W_{y1} = 7.276E-04 \ [m^3/m]$	W _{pl,y} = 8.543E-04 [m ³ /m]	
Catálogo do <u>u</u> suário	🕂 Adicionar 🗙 Cancelar	

Caixa de diálogo "Nova secção"

Arquivo			
•			Modos
1	•	dicionar	Configurações da etapa
	No.	Comprimento da secção Perfili Material	Resultados _
	, 1	[Im] Nome do perfil A [m ⁺ /m] [Im ⁺ /m] W [m ⁺ /m] E [M ⁰ /a] G [M ⁰ a] G [M ⁰ a] 1 2100 Perfil Ino 1: (IBM 400: a 200 m) 500-03. 146f-44, 2726f-04, 2120000, 810000 m) =	Adicionar imagem
	<u> </u>		Geometria : 0
			Total: 0
			E Lista de imagens
Geometria		~	Copiar figura

Janela "Geometria" – adicionar uma nova secção

Na janela "Material", selecione a classe de aço apropriada para a estrutura, a partir do catálogo. Para este caso, selecione o tipo **EN 10210-1: S 355**.

I	— Aço estrutural ———		Catálogo de materiais - Aço estrutural	×
	Ca <u>t</u> álogo	P <u>e</u> rsonalizado	- Selecionar do catálogo de materiais	
	EN 10210-1: S 355 fy = 355.00 MPa E = 21000.00 MPa G = 81000.00 MPa	a a a	Aço estrutural EN EN 10025 : Fe 360 Aço para a estaca-prancha EN EN 10025 : Fe 430 EN 10025 : Fe 510 prEN 10113 : Fe E 275 prEN 10113 : Fe E 355 EN 10210-1 : S 235 EN 10210-1 : S 275 EN 10210-1 : S 355	
Material			✓ OK	X Cancelar

Caixa de diálogo "Catálogo de materiais"

Agora, vamos descrever a construção da parede etapa-a-etapa. É necessário modelar a tarefa em etapas para simular a construção real da estrutura. Em cada etapa, é necessário observar os valores das forças internas e deslocamentos.

Se a contenção suportada não for estável em qualquer uma das etapas de construção, ou se a deformação obtida for demasiado elevada, será necessário modificar a estrutura – por exemplo, aumentar a profundidade da base da parede, tornar a vala mais rasa, aumentar as forças de ancoragem, etc.

GEO5

Na primeira etapa de construção, define-se a sobrecarga superficial permanente, na janela "Sobrecarga", como $q=25~{\rm kN/m^2}$.

	Nova sob	recarga					Х
	Nome :	Sobrecarga p	permanente				
	— Propri	edades da so	brecarga				
	Tipo :		Surpefície		•		
	Tipo de	ação :	permanente		•		
	- Valor	da sobrecarga	a ————				
	Valor :	q =	25.00	[kN/m ²]			
ł							
					🕂 Adiciona	ar 🛛 💢 Cancel	ar

Janela "Sobrecarga" – caixa de diálogo "Nova sobrecarga"

Na etapa de construção 1, a vala atinge uma profundidade de h = 3 m. O **Nível freático** atrás e à frente da estrutura está a uma profundidade de $h_1 = h_2 = 10 \text{ m}$ abaixo da superfície do terreno. Execute a análise e, de seguida, adicione uma nova etapa. Na etapa 2, adicione uma nova ancoragem, na janela "Ancoragem", à profundidade z = 2,5 m.

Nova ancoragem					×
Tipo de ancoragem :		nã	o definido		•
Nome :	[An	coragem No.1		
— Parâmetros da ancorag	em				
Prof. :	z	=	2.50	[m	
Comp. livre :	I	=	13.00	[m	
Comp. da raíz :	Ik	=	6.00	[m	1
Inclinação :	α	=	15.00	[°]	~
Espaçamento :	b	=	4.00	[m]
— Rigidez ———					
Tipo de introdução :			inserir diâmetr	0	
Diâmetro :	ds	=	32.0	[m	im]
Módulo de elasticidade :	E	=	210000.00	[M	Pa]
Força de pré-esforço :	F	=	300.00	[kl	۷]
				÷	Adicionar 🔀 Cancelar
			L		

Janela "Ancoragens" – adicionar uma nova ancoragem (etapa de construção 2)

Janela "Ancoragens" – Etapa de construção 2

Execute, novamente, a análise e adicione uma nova etapa de construção. Na 3ª etapa de construção, abra a janela "Escavação" e altere a profundidade da vala para h = 6,5 m. Nesta etapa não são adicionadas ancoragens. Volte a executar a análise e adicione a 4ª etapa de construção. Na 4ª etapa, adicione uma nova ancoragem à profundidade z = 5,5 m. O nível freático mantém-se constante.

Nova ancoragem			×
Tipo de ancoragem :	nã	o definido	•
Nome :	An	coragem No.2	
— Parâmetros da ancoraç	gem —		
Prof. :	z =	5.50	[m]
Comp. livre :	=	10.00	
Comp. da raíz :	I _k =	6.00	[m]
Inclinação :	α =	17.50	[°]
Espaçamento :	b =	4.00	[m]
— Rigidez ———			
Tipo de introdução :		inserir diâmetro	
Diâmetro :	d _s =	32.0	[mm]
Módulo de elasticidade :	E =	210000.00	[MPa]
			1
Força de pré-esforço :	F =	350.00	[kN]
		[🕂 Adicionar 🗙 Cancelar

Janela "Ancoragens" – adicionar uma nova ancoragem (etapa de construção 4)

Janela "Ancoragens" – Etapa de construção 4

Adicione uma 5ª etapa de construção. Na 5ª etapa de construção, altere a profundidade da vala para h = 9 m. Depois, adicione mais outra etapa de construção. Na 6ª etapa, adicione uma nova ancoragem à profundidade de z = 8,5 m. O nível freático mantém-se constante.

Nova ancoragem					
Nova ancoragem				^	
Tipo de ancoragem :	[nã	o definido	•	
Nome :	[An	coragem No.3		
- Parâmetros da ancoragem					
Prof. :	z	=	8.50	[m]	
Comp. livre :	I	=	7.00	[m] b	
Comp. da raíz :	lk	=	6.00	[m] 📶	
Inclinação :	α	=	20.00	[°]	
Espaçamento :	b	=	4.00	[m]	
- Rigidez					
Tipo de introdução :			inserir diâmetro	•	
Diâmetro :	ds	=	32.0	[mm]	
Módulo de elasticidade :	E	=	210000.00	[MPa]	
Força de pré-esforço :	F	=	400.00	[kN]	
			[🕂 Adicionar 🗙 Cancelar	

Janela "Ancoragens" – adicionar uma nova ancoragem (etapa de construção 6)

Janela "Ancoragens" – Etapa de construção 6

Adicione outra etapa de construção. Na 7ª etapa de construção, altere a profundidade da escavação para h = 11,5 m. Na janela "Nível Freático", altere, ainda, o Nível freático à frente da parede passa e estar a uma profundidade de $h_2 = 12 \text{ m}$, abaixo da superfície. O nível freático atrás da estrutura mantém-se constante. Adicione a 8ª etapa de construção. Na 8ª etapa, adicione mais uma ancoragem à profundidade de z = 11 m.

Nova ancoragem			×
Tipo de ancoragem :	nã	o definido	•
Nome :	Ar	coragem No.4	
— Parâmetros da ancora	gem –		
Prof. :	z =	11.00	[m]
Comp. livre :	1 =	6.00	[m] b
Comp. da raíz :	I _k =	4.00	[m] 📶
Inclinação :	α =	22.50] ເ"
Espaçamento :	b =	4.00	[m]
— Rigidez ———			
Tipo de introdução :		inserir diâmetre	0 🔻
Diâmetro :	d _s =	32.0	[mm]
Módulo de elasticidade	: E =	210000.00	[MPa]
Força de pré-esforço :	F =	500.00	[kN]
			🕂 Adicionar 🗙 Cancelar

Janela "Ancoragens" – adicionar uma nova ancoragem (etapa de construção 8)

Janela "Ancoragens" – Etapa de construção 8

Volte a adicionar uma nova etapa de construção. Na 9ª etapa de construção, a vala é escavada até à profundidade de h = 13,5 m. O nível freático à frente da estrutura está a $h_2 = 15,5 \text{ m}$, abaixo da superfície. De seguida, adicione outra etapa de construção. Na 10ª etapa, adicione uma ancoragem à profundidade de z = 13 m.

Nova ancoragem				×
Tipo de ancoragem :	[nã	o definido	•
Nome :	[An	coragem No.5	
— Parâmetros da ancorag	jem			
Prof. :	z	=	13.00	[m]
Comp. livre :	I	=	5.00	
Comp. da raíz :	Ik	=	3.00	[m] 📶
Inclinação :	α	=	25.00	[°]
Espaçamento :	b	=	4.00	[m]
— Rigidez ———				
Tipo de introdução :			inserir diâmetro	o 🔻
Diâmetro :	ds	=	32.0	[mm]
Módulo de elasticidade :	E	=	210000.00	[MPa]
Força de pré-esforço :	F	=	550.00	[kN]
				🕂 Adicionar 🗙 Cancelar

Janela "Ancoragens" – adicionar uma nova ancoragem (etapa de construção 10)

Janela "Ancoragens" – Etapa de construção 10

Na 11ª, e última, etapa de construção, a vala é escavada até à profundidade de h = 15 m. Não são adicionadas mais ancoragens. O nível freático mantém-se constante desde a 9ª etapa de construção (profundidade de $h_2 = 15,5 \text{ m}$ à frente da parede e de $h_1 = 10 \text{ m}$ atrás).

Janela "Ancoragens" – Etapa de construção 11

Nota: As forças das ancoragens variam devido às deformações da estrutura. Estas variações dependem da rigidez das ancoragens e da deformação na cabeça das ancoragens. A força pode diminuir (devido à perda da força de pré-esforço) ou aumentar. As forças podem voltar a ser pré-esforçadas em qualquer etapa de construção, de modo a obter o valor desejado.

Resultados da análise

Nas imagens abaixo, são exibidos os resultados da análise (análise das forças internas – momento fletor e força de cisalhamento, deslocamentos da estrutura e empuxos de terra) para a última (11ª) etapa de construção.

Janela "Análises" – Etapa de construção 11 (módulo de reação do subsolo)

Janela "Análises" – Etapa de construção 11 (Forças internas)

Janela "Análises" – Etapa de construção 11 (deslocamentos da estrutura + empuxos de terra)

Todas as etapas de construção estão analisadas. Isto significa que a estrutura de contenção suportada é estável e funcional em todas as etapas de construção. Também se deve verificar se os deslocamentos não são demasiado elevados, assim como se deve verificar se as forças de ancoragem não excedem a capacidade de suporte da ancoragem (o próprio usuário deve realizar estas verificações uma vez que não são realizadas pelo programa Verificação de Contenções). Para a última etapa de construção (11ª), os resultados são os seguintes:

_	Força de cisalhamento máxima:	Q _{max} = 86.41 kN/m,
_	Momento fletor máximo:	M _{max} = 41.03 kNm/m,
_	Empuxo de terra máximo:	σ _x = 97.04 kPa,
_	Deslocamento máximo:	μ _{max} = 15.9 mm.

Verificação da secção transversal da estrutura

Abra a janela "Dimensionamento", na última etapa de construção (11ª), onde podem ser observadas os valores máximo e mínimo das variáveis (envolventes das forças internas).

—	Força de cisalhamento máxima (mínima):	$Q_{max, min} = 86.41 \text{ kN/m},$
_	Momento fletor máximo (mínimo):	M _{max, min} = 50.73 kNm/m.

As forças internas são calculadas por metro (pé) de desenvolvimento da estrutura, no programa Verificação de Contenções. Para o dimensionamento real de vigas soldado (secção metálica tipo I), é necessário multiplicar estes valores pelo espaçamento entre perfis a = 2 m, de modo a obter as forças internas na secção transversal.

- Força de cisalhamento máxima para dimensionamento: Q_{Ed} = 86.41 x 2.0 = 172.82 kN/m,
- Momento fletor máximo para dimensionamento: $M_{Ed} = 50.73 \times 2.0 = 101.46 \text{ kNm/m}.$

O programa realiza a avaliação de vigas soldado (secção metálica tipo I) para os valores extremos das forças internas, de acordo com a Norma EN 1993-1-1 (EC 3).

Por agora, mantemos o coeficiente de redução da capacidade de suporte como 1.0. Para este caso, os resultados são os seguintes:

- − Capacidade de suporte da secção transv.: $M_{Rd} = 516.61 \text{ kNm} \ge M_{Ed, max} = 101.46 \text{ kNm/m}.$
- Utilização total da secção metálica tipo I: 19.6 %

a secção transversal tipo I satisfaz os critérios da análise

Janela "Dimensionamento" – Etapa de construção 11 (Avaliação da secção metálica tipo I 400)

Durante a análise, mantivemos os valores limite dos empuxos de terra não reduzidos, sendo que o carregamento é inferior ao suposto, de acordo com a Norma EN 1997-1. No entanto, as forças internas são mais adequadas ao comportamento real da estrutura. As variações nos empuxos de terra levam a melhorias na segurança, mas também distorcem os resultados da análise. É por esta razão que introduzimos um valor personalizado para o coeficiente de redução da capacidade de suporte, durante a avaliação da secção metálica.

Nota: A Norma EN 1997-1 assume que o fator parcial para uma carga permanente é $\gamma_G = 1,35$ e para uma carga variável é $\gamma_Q = 1,5$. No entanto, neste caso, a totalidade da sobrecarga e do carregamento atuam como permanentes, sendo que devemos aplicar o fator parcial γ_G igual a 1.35.

Para uma combinação de cargas permanentes e variáveis, devemos determinar o valor do fator parcial de dimensionamento, dentro do intervalo 1.35 a 1.5, consoante as componentes predominantes do carregamento.

GEO5

náx. na secção transv. ecção transversal

Agora, vamos modificar o coeficiente de redução da capacidade de carga para 1.35. Multiplicamos este coeficiente pelas forças internas atuantes na secção transversal da viga soldado. Neste caso, as forças internas são as seguintes:

_ Força de cisalhamento máxima para dim.: $Q_{Ed, max} = (86.41x2) \times 1.35 = 233.31 \text{ kN/m},$

M_{Ed. max} = (50.73x2) x 1.35 = 136.97 kNm/m.

R

8

Copia

Momento fletor máximo para dim.:

Resultados

FLEXÃO + COMPR. : SATISFAZ CORTANTE : SATISFAZ

(26,5%) (23,2%)

[10] [11] Força de cisalhamento Min1 = 1,26; Min2 = -85,96kt Max1 = 86.41; Max2 = -80.575 Momento fletor Min1 = 25,51; Min2 = -50,26kNm/m Max1 = 50,72; Max2 = -2,10kNm/m Min1 = -5,6; Min2 = -24,8mn Max1 = -0.3; Max2 = -15 6mr 🗮 Atribui ¥ Escavação ┏ Terreno 0,00 0,00 2000 2.00 2.00 46,30 2.00 Freitico Sobrecarga 4,00 4,0 \$50.73 4,00 6,00 6,00 6,00 8.00 8.00 8.00 석 Apoios 북 Suportes 10,00 10,00 👾 so. 👷 Sismo 👘 Configurações da etapa 10,00 12,00 12,00 12,00 -∫ Análises -√ Estabilidade i 14,00 14,00 14,00 16,00 16,00 16,00 🖑 Estab. externa 22,43 18.00 18.00 18.00 8,05 20,00 20,0 20,00 37'5 37,5 175,00 75,00 [kNm/r L 100.00 <u>ې</u> Análise : 🛨 😑 [1] - toda a estrutura (21,00 m) [2] - toda a estrutura (21,00 m) 🕵 Em detalhe Verificação : toda a estrutura • (envolventes de todas as etapas) Editar 8⁺ Adic ria : Perfil tipo I : I(IPN) 400; a = 2,00 m Verificar secção transversal Informação 1,35 [-] Coef. de redução da capacidade de suporte : Deformação máx Esforço transvers Momento máx = -24,8 mm = 233,30 kN = 136,97 kNm B^{III} Lista de in Influência da força normal : força normal - não considerar

Janela "Dimensionamento" – Etapa de construção 11 (Nova avaliação da secção metálica tipo I 400)

Neste caso (avaliação com influência do coeficiente de redução da capacidade de suporte igual a 1.35), os resultados são os seguintes:

- Capacidade de suporte da secção transv.: M_{c, Rd} = 516.61 kNm ≥ M_{Ed, max} = 136.97 kNm/m
- Utilização total da secção metálica tipo I: 26.5 % OK
- Verificação ao cisalhamento: $V_{c, Rd}$ = 1005.29 kN ≥ $Q_{Ed, max}$ = 233.31 kNm/m _
- Utilização total da secção metálica tipo I: 23.2 % OK

Análise da estabilidade interna

Abra a janela "Estabilidade interna", na última etapa de construção, e observe a força máxima permitida em cada ancoragem.

Nota: A verificação é realizada desta forma. A força da ancoragem é iterada, até alcançar o equilíbrio de todas as forças atuantes na cunha de terra. Esta cunha de terra é limitada pela estrutura, superfície do terreno, centro das raízes das ancoragens e base teórica da estrutura (mais informações em Ajuda – F1). Se alguma das ancoragens não for satisfatória, a melhor forma de resolver o problema é aumentar o seu comprimento ou reduzir a força de pré-esforço.

Obtemos a força máxima nas ancoragens (linha No. 5), a partir da análise e, de seguida, a utilização total da ancoragem:

Janela "Estabilidade interna" – Etapa de construção 11

Verificação da estabilidade externa (global)

A última verificação a realizar é a da estabilidade externa. Ao abrir a janela "Estabilidade externa", é iniciado automaticamente o programa "Estabilidade de Taludes". Na janela "Análises", clique no botão "Analisar" para computar a estabilidade global.

Programa "Estabilidade de Taludes" – método de Bishop com otimização da superfície de deslizamento circular

Conclusão, resultados complementares:

A estrutura foi dimensionada com sucesso, com uma deformação máxima de 24.8 mm. Isto é satisfatório para este tipo de estruturas. Os limites das forças nas ancoragens também não foram excedidos.

-	Capacidade de suporte	26.5 %	516.61 kNm ≥ 136.97 kNm/m	Satisfaz
_	Estabilidade interna:	10.66 %	6056.23 kN ≥ 645.54 kN	Satisfaz
_	Estabilidade global:	59.40 %	Método – <i>Bishop</i> (otimização)	Satisfaz

A estrutura de contenção suportada satisfaz os critérios de avaliação.