

Análise da estabilidade de taludes

Programa:	Estabilidade de Taludes
-----------	-------------------------

Arquivo: Demo_manual_08.gst

Neste manual de engenharia vamos mostrar como realizar a verificação da estabilidade de taludes para uma superfície de deslizamento circular crítica e para uma superfície de deslizamento poligonal (utilizando a otimização) e descrever as diferenças entre os diferentes métodos de análise da estabilidade de taludes.

Tarefa

Realizar a análise de estabilidade de taludes para um talude com um muro de gravidade. Esta é uma situação de projeto permanente. O fator de segurança necessário é FS = 1.50. Não se considera a existência do nível freático no talude.

Esboço da tarefa

Resolução

Para resolver este problema, vamos utilizar o programa GEO5 "Estabilidade de Taludes". Neste texto, vamos explicar cada passo da resolução deste problema:

- Análise No. 1: otimização da superfície de deslizamento circular (Bishop)
- Análise No. 2: verificação da estabilidade do talude através de todos os métodos
- Análise No. 3: otimização da superfície de deslizamento poligonal (Spencer)
- Resultados da análise (conclusão)

Definir a geometria e outros parâmetros

Na janela "Configurações", clique em "Selecionar" e escolha a opção No. 1 – "Norma – fatores de segurança".

úmero	Nome	Válido para
1	Norma - fatores de segurança	Tudo
2	Norma - estados limites	Tudo
3	Norma - EN 1997 - DA1	Tudo
4	Norma - EN 1997 - DA2	Tudo
5	Norma - EN 1997 - DA3	Tudo
6	Norma - LRFD 2003	Tudo
7	Norma - sem redução dos parâmetros	Tudo
8	República Checa - Normas antigas CSN (73 1001, 73 1002, 73 0037)	Tudo
9	Eslováquia - Normas antigas CSN (73 1001, 73 1002, 73 0037)	Tudo
10	Eslováquia - EN 1997	Tudo
69	Suiça - SIA 260 (267) - STR, GEO - Norma	Tudo
70	Suiça - SIA 260 (267) - STR, EQU - Norma	Tudo

Caixa de diálogo "Lista de configurações"

Para começar, na janela "Interface", clique em "Configurar escalas" e insira as coordenadas das dimensões limite da tarefa, conforme mostra a imagem abaixo. A "profundidade desde o ponto mais fundo do modelo" serve apenas para visualizar o exemplo – não tem qualquer influência na análise.

		~
Coordenadas globais		Х
— Dimensões —		
Escala X mínima :	0.00	[m]
Escala X máxima :	40.00	[m]
Profundidade desde o ponto mais fundo do modelo :	5.00	[m]
✓ Ok	Cance	lar

De seguida, clique em "Adicionar interface" para modelar as interfaces das camadas ou, mais concretamente, o terreno, através das coordenadas descritas abaixo. Para cada interface, adicione todos os pontos via texto e, de seguida, clique em "OK Adicionar interface".

	Interface 1		Interfa	ace 2	Interfa	ace 3	Interface 4			
	x [m]	z [m]	x [m]	z [m]	x [m]	z [m]	x [m]	z [m]		
1	0,00	-4,75	16,80	-4,54	19,17	-2,48	0,00	-8,07		
2	10,81	-3,64	18,87	-4,57	27,61	-1,75	19,06	-7,50		
3	16,80	-4,54	19,17	-2,48	32,66	-0,74	31,40	-5,77		
4	18,59	0,63	19,62	0,71	40,00	0,36	40,00	-5,05		
5	19,62	0,71								
6	19,71	0,71								
7	26,00	2,80								
8	34,30	3,20								
9	40,00	4,12								

Adicionar pontos da interface

1	Adicionar pontos via texto Novos pontos de interface	Novos pontos	×
face	No. x [m] z [m]	Coordenadas x = 16.80 [m] z = <0.00 40.00> ↓ Adicionar interface	=4.54 [m] (-1E99 1E99) cionar X Cancelar

Janela "Interface" – adicionar pontos via texto

Janela "Interface" – as 4 interfaces adicionadas

Agora, adicione 3 solos com os parâmetros seguintes, na janela "Solos", através do botão "Adicionar". O estado de tensão deve ser considerado como efetivo para todos os solos e a foliação do solo não será considerada.

Solo	Peso volúmico	Ângulo de atrito	Coesão do solo
(Classificação do solo)	$\gamma \left[kN/m^{3} \right]$	interno $arphi_{e\!f}$ [°]	c_{ef} [kPa]
MG – Silte com cascalho, consistência firme	19.0	29.0	8.0
S-F – Areia com partículas finas, solo denso	17.5	31.5	0.0
${\rm MS}$ – Silte arenoso, consistência rígida, $S_r > 0{,}8$	18.0	26.5	16.0

Tabela com os parâmetros do solo

Nota: Nesta análise, vamos realizar a verificação da estabilidade do talude a longo prazo. Assim, vamos analisar esta tarefa com recurso aos parâmetros efetivos da resistência ao deslizamento dos solos (φ_{ef} , c_{ef}). A foliação dos solos – parâmetros do solo piores ou diferentes numa direção – não é considerada nesta tarefa.

Acquive			
100 440 <th></th> <th></th> <th>Modos _ ☐ rojeto ☆ Configurações ad Interface ☐ colos ☐ colos ☐ corpos rigidos ☐ Artibuir < Ancoragem ↓ 6 drampos ↓ 6 drampos ↓ 6 drampos ↓ 6 drampos ↓ 5 obrecarja ☐ Nivel freático ♣ Sismo ∰ Configurações da etapa ↓ Andires</th>			Modos _ ☐ rojeto ☆ Configurações ad Interface ☐ colos ☐ colos ☐ corpos rigidos ☐ Artibuir < Ancoragem ↓ 6 drampos ↓ 6 drampos ↓ 6 drampos ↓ 6 drampos ↓ 5 obrecarja ☐ Nivel freático ♣ Sismo ∰ Configurações da etapa ↓ Andires
\$			
Adicionar Clatar No.1 Mo. Nome do solo 1 Mid=Site com cascalho, con 2 S-F - Areia com particulas fin 3 MS - Site arenoso, consisten	X Remover No. 1 MG - Silte com cascalho, consistêncla firme Peso volûmico : $\gamma = 19.00 \text{ kN/m}^3$ Estado de tensão : efetivo Angulo de atrino interno : oqt = 29.00 * Coesão do solo : c _{ef} = 8.00 kPa Peso volúmico saturado : γ_{sat} = 19.00 kN/m ³	B Coplar ■ solos selecionados > todos os solos	Resultados – Et Adicionar imagem Solos e atribuições : 0 Total : 3 Et Lista de imagens Et Lista de imagens Ra Copiar figura

Janela "Solos" – os 3 novos solos adicionados

Passe à janela "Corpos Rígidos". Aqui, vamos modelar o muro de gravidade como um corpo rígido com um peso volúmico de $\gamma = 23,0 \ kN/m^3$. A superfície de deslizamento não atravessa este objeto, uma vez que é uma área de resistência elevada (Mais informações na Ajuda – F1).

Janela "Corpos Rígidos" – novo corpo rígido

Agora, vamos atribuir os solos e o corpo rígido ao perfil, na janela "Atribuir".

O passo seguinte é definir uma sobrecarga contínua, na janela "Sobrecarga", que é considerada como permanente, localizada na superfície do terreno.

Nome : Sobrecarga No.1 - Propriedades da sobrecarga Tipo : contínua Tipo e ação : permanente Posição : no terreno Origem : $x = 26.00$ [m] Comprimento : $I = 8.30$ [m] Talude : $\alpha = 0.00$ [°] Valor da sobrecarga Valor : $q = 10.00$ [kN/m ²]	Novas sobr	ecargas					×			
− Propriedades da sobrecarga Tipo : contínua Tipo e ação : permanente Posição : no terreno Origem : x = 26.00 [m] Comprimento : I = 8.30 [m] Talude : α = 0.00 [°] [0,0] Valor da sobrecarga	Nome :	Sobred	arga No.	1						
Tipo : contínua Tipo e ação : permanente Posição : no terreno Origem : x = 26.00 [m] Comprimento : I = 8.30 [m] Talude : α = 0.00 [°] Image: Comprimento = Valor da sobrecarga Valor : q = 10.00 [kN/m²]	— Proprie	dades d	a sobreca	arga						
Tipo e ação : permanente Posição : no terreno Origem : x = 26.00 [m] Comprimento : I = 8.30 [m] Talude : α = 0.00 [°] [0.0] Valor da sobrecarga Valor : q = 10.00 [kN/m²]	Tipo :		contínua	a	•					
Posição : no terreno Origem : x = 26.00 [m] Comprimento : I = 8.30 [m] Talude : α = 0.00 [°] [0,0] Valor da sobrecarga Valor : q = 10.00 [kN/m²]	Tipo e ação : permanente									
Origem :x =26.00 [m]Comprimento :I =8.30 [m]Talude : α =0.00 [°]Output α =Valor da sobrecargaValor :q =10.00 [kN/m²]	Posição : no terreno 💌									
Comprimento : I = 8.30 [m] Talude : α = 0.00 [°] [0,0] — Valor da sobrecarga	Origem :		x =	26.00	[m]	q/+α				
Talude : $\alpha = 0.00$ [°] [0.0] × 1 — Valor da sobrecarga Valor : $q = 10.00$ [kN/m ²]	Comprime	ento :	l =	<mark>8</mark> .30	[m]					
Valor : q = 10.00 [kN/m ²]	Talude :		α =	0.00	[°]	[0,0]				
Valor da sobrecarga Valor : q = 10.00 [kN/m ²]										
Valor da sobrecarga Valor : q = 10.00 [kN/m ²]										
Valor : q = 10.00 [kN/m ²]	— Valor da	a sobrec	arga —							
	Valor :		q =	10.00	[kN/m ²]					
🕂 Adicionar 💥 Cancela					4	Adicionar X Cance	lar			

Caixa de diálogo "Novas sobrecargas"

GEO5

Nota: A sobrecarga é introduzida para 1 m de desenvolvimento do talude. A única exceção é a carga concentrada, em que o programa calcula o efeito da carga no perfil analisado. Para mais informações, consulte a Ajuda (F1).

Salte as janelas "Aterro", "Escavação", "Ancoragem", "Pregagens", "Estacas Anti-deslizantes", "Reforços" e "Nível freático". A janela "Sismo" não tem influência nesta análise porque o talude não está localizado numa zona de atividade sísmica.

Seguidamente, na janela "Configurações da etapa", selecione a situação de projeto. Neste caso, considere uma situação de projeto "permanente".

Janela "Configurações da etapa"

Análise 1 – superfície de deslizamento circular

Abra a janela "Análises", onde a superfície de deslizamento inicial deve ser definida pelo usuário, através das coordenadas do centro (x, y) e pelo raio, ou utilizando diretamente o mouse na Área de trabalho — clicar na interface para adicionar três pontos através dos quais a superfície de deslizamento passa.

Nota: Em solos coesivos, verificam-se com frequência superfícies de deslizamento rotacionais. Estas são modeladas através de superfícies de deslizamento circulares. Esta superfície é utilizada para encontrar as áreas críticas do talude analisado. Para solos não coesivos, as análises através de superfícies de deslizamento poligonais também devem ser realizadas para verificar a estabilidade do talude (ver Ajuda – F1).

Após definir a superfície de deslizamento inicial, selecione a opção "Bishop" como método de análise e defina o tipo de análise como "otimização". De seguida, execute a análise através do botão "Analisar".

Janela "Análises" – Bishop – otimização da superfície de deslizamento circular

Nota: A otimização consiste na busca da superfície de deslizamento circular com menor estabilidade – a superfície de deslizamento crítica. A otimização de superfícies de deslizamento do programa Estabilidade de Taludes avalia todo o talude e é bastante confiável. Desta forma, mesmo para superfícies de deslizamento iniciais diferentes, obtemos o mesmo resultado para a superfície de deslizamento crítica.

O grau de estabilidade definido para a superfície de deslizamento crítica, utilizando o método de "Bishop", é satisfatório (FS = 1.79 > FS = 1.5).

Análise 2 – comparação entre métodos diferentes

Adicione uma nova análise na barra de ferramentas, na parte superior da janela "Análises".

Analysis : 🛨 😑 [1] [2]

Barra de ferramentas "Análises"

Altere o tipo de análise para "Padrão" e selecione a opção "todos os métodos". De seguida, clique em "Analisar".

Janela "Análises" – Todos os métodos – tipo de análise padrão

Nota: Através deste procedimento, a superfície de deslizamento resultante, calculada para todos os métodos, corresponde à superfície de deslizamento crítica obtida a partir da análise anterior, segundo o método de Bishop. Para obter melhores resultados o usuário deve escolher o método e executar a otimização das superfícies de deslizamento.

GEO5

Nota: A escolha do método de análise depende da experiência do usuário. Os métodos mais comuns são os métodos por camadas, sendo o mais comum o método de Bishop. O método de Bishop fornece resultados conservativos.

Para taludes reforçados ou ancorados, são preferíveis outros métodos mais rigorosos (Janbu, Spencer e Morgenstern-Price). Estes métodos mais rigorosos garantem todas as condições de equilíbrio e descrevem melhor o comportamento real da estrutura.

Não é necessário (nem correto) analisar um talude através de todos os métodos de análise. Por exemplo, o método sueco de Fellenius – Petterson fornece resultados muito conservativos, o que pode levar a fatores de segurança irrealisticamente baixos. No entanto, como este é um método famoso e obrigatório em alguns países, para a análise da estabilidade de taludes, este faz parte do software GEO5.

Análise 3 – superfície de deslizamento poligonal

Na última etapa, adicionamos mais uma análise e convertemos a superfície de deslizamento circular original numa superfície de deslizamento poligonal, através do botão "Converter para polígono". Para este caso, inserimos vários segmentos: 5

1	Análises : 🛨	0 🖯 [1] [2]	[3]									
		Superfície de des	ilizamento : circular 🔹	🖉 🛷 Su	bstituir gi	raficamente	🔟 E	ditar	via texto 🔰	Kem	over 🕻 Converter para polígono	F Resultados detalhados
	Analisar	 Parâmetros das 	s análises	- Superfíc	ie de desl	lizamento ci	rcular —				Verificação da estabilidade de talude (Todos os métodos)	
		Método :	[Todos os métodos] 💌	Centro :	x =	18.13	[m]	z =	4.87	[m]	Bishop : Análise não foi realizada.	
		Tipo de análise :	Padrão 👻	Raio :	R =	9.44	[m]				Spencer : Análise não foi realizada.	
				Ângulos :	α.1 =	-7.97	[°] c	x2 =	77.74	[°]	Janbu : Análise não foi realizada. Morgenstern-Price : Análise não foi realizada.	
ses											3	
Anális												

Janela "Análises" – converter para uma superfície polygonal

Converter para polígono	×
Número de segmentos :	5
✔ ОК	🗙 Cancelar

Caixa de diálogo "Converter para polígono"

Como método de análise, selecione a opção "Spencer" e como tipo de análise, selecione "otimização" e execute a análise.

yadani	Editar Editar					
					1220 1440 940 940 940 [m]	Modos - ■ Projeto Configurações ● Configurações - ■ Solos - ■ Corpos rigidos - ■ Arabuir - ▲ Anocagem - ■ Sobrecaga - ■ Nord Fredico - ■ Nord Fredico - ■ Sobrecaga - ■ Nord Fredico - ■ Configurações de etapa ● Configurações de etapa
Análises : 🛨 😑	[1] [2] [3]					
Analisar Analisar Sigure Kestr	icie de deslizamento : poligonal • imetros das análises lo : <u>Spencer</u> • e análise : Otimização • ções não está inserido	Image: Substituir ▲ feftar X Re - Superficie poligonal de desiltam X [m] 2 [m] 1 15,76 2 2 15,77 3 3 18,00 4 4 22,05 5 5 24,29 6 6 26,84 7 7 28,85	C2 Converter para circulo Verificação da estabilidade de talude (5) Fordo de segurança = 1,52 > 1,50 Exabilidade do talude VERIFICA -4.38 -5.03 -1.10 0.96 2.59 -1.10 0.59	vencer)	🗲 Resultados detalhados	Resultados - E Adicionar imagem Análises : 0 Total : 0 E Lista de imagens B Copiar figura

Janela "Análises" – Spencer – otimização da superfície de deslizamento poligonal

Os resultados do grau de estabilidade do talude para a superfície de deslizamento poligonal são satisfatórios (FS = 1.52 > FS = 1.5).

Nota: A otimização de uma superfície de deslizamento poligonal é gradual e depende da localização da superfície de deslizamento inicial. Isto significa que é melhor realizar várias análises, com superfícies de deslizamento iniciais diferentes e com diferentes números de secções. A otimização de superfícies de deslizamento poligonais também pode ser afetada pelos fatores de segurança mínimos locais. Isto significa que é necessário encontrar a superfície de deslizamento crítica real. Por vezes é mais eficiente o usuário definir a superfície de deslizamento inicial com uma forma semelhante e defini-la como uma superfície de deslizamento circular otimizada.

Mínimos locais - superfícies de deslizamento poligonal e circular

Nota: Recebemos algumas queixas de usuários de as superfícies de deslizamento "desaparecerem" após a otimização. Para solos não coesivos, em que $c_{ef} = 0 k Pa$, a superfície de deslizamento crítica é igual à linha mais inclinada da superfície do talude. Neste caso, o usuário deve alterar os parâmetros do solo ou introduzir restrições que a superfície de deslizamento não pode atravessar.

Conclusão

A estabilidade do talude após otimização é:

_	Bishop (circular - otimização):	FS = 1.79 > FS = 1.5	SATISFAZ
_	Spencer (poligonal - otimização):	FS = 1.52 > FS = 1.5	SATISFAZ

O talude em análise, com o muro de gravidade, satisfaz os requisitos de estabilidade.