

# Definiranje geometrije plitkog temelja

| Program: | Plitko temeljenje |
|----------|-------------------|
|----------|-------------------|

Datoteka: Demo\_manual\_09.gpa

U ovom inženjerskom priručniku pokazat ćemo kako jednostavno i učinkovito modelirati plitke temelje.

# Zadatak

Koristeći EN 1997-1 (EC 7-1, DA1) standard, modelirajte centrični plitki temelj. Sile od stupova djeluju na vrhu temelja. Unesene sile su:  $N, H_x, H_y, M_x, M_y$ . Teren iza konstrukcije je horizontalana; temeljno tlo sastoji se od S-F – Pijeska s fino granuliranim zrncima, tlo srednje čvrstoće. Dno temeljne stope se nalazi na 2,5 m ispod razine terena.



Shema zadatka – proračun nosivosti plitkog temelja

# Rješenje

Kako bismo riješili ovaj problem, koristit ćemo GEO5 program Plitko temeljenje. U narednom tekstu objasnit ćemo sve korake u rješavanju ovog primjera. Najprije, moramo unijeti sve podatke, a zatim modelirati temelj u kartici "Geometry".



# Osnovni unos

Najprije idemo u karticu "Settings". Kliknite na "Select settings" odaberite Br. 3 – "Standard – EN 1997 – DA1".

| 🗄 Settings list | t                                                              |           | ×        |
|-----------------|----------------------------------------------------------------|-----------|----------|
| Number          | Name                                                           | Valid for | $\Box$   |
| 1               | Standard - safety factors                                      | All       | <b>A</b> |
| 2               | Standard - limit states                                        | All       |          |
| 3               | Standard - EN 1997 - DA1                                       | All       |          |
| 4               | Standard - EN 1997 - DA2                                       | All       |          |
| 5               | Standard - EN 1997 - DA3                                       | All       |          |
| 6               | Standard - LRFD 2003                                           | All       |          |
| 7               | Standard - no reduction of parameters                          | All       |          |
| 8               | Czech republic - old standards CSN (73 1001, 73 1002, 73 0037) | All       |          |
| 9               | Slovakia - old standards CSN (73 1001, 73 1002, 73 0037)       | All       |          |
| 10              | Slovakia - EN 1997                                             | All       |          |
| 69              | Switzerland - SIA 260 (267) - STR, GEO - standard              | All       |          |
| 70              | Switzerland - SIA 260 (267) - STR, EQU - standard              | All       |          |
|                 |                                                                |           | 🗸 ОК     |
|                 |                                                                |           | - Cancel |
|                 |                                                                |           |          |

# Kartica "Settings list"

Također odaberite metodu proračuna u donjem desnom kutu – u ovom slučaju odaberite "Analysis for drained conditions". **Nećemo proračunavati slijeganje** (ovo će biti dio sljedećeg inženjerskog

priručnika br. 10).

| - Analysis method  |                                 |
|--------------------|---------------------------------|
| Type of analysis : | analysis for drained conditions |
| Do not calculat    | e settlement                    |
|                    |                                 |

#### Kartica "Settings"

Napomena: Obično, plitki temelji se proračunavaju za drenirane uvijete koristeći efektivne parametre tla ( $\varphi_{ef}, c_{ef}$ ). Proračun za nedrenirane uvijete se provodi za kohezivna tla i kratkotrajne utjecaje koristeći ukupne parametre tla ( $\varphi_u, c_u$ ). Prema EN 1997, ukupno trenje je uvijek uzeto kao  $\varphi_u = 0$ .



U sljedećem koraku unijet ćemo parametre tla i dodijeliti ih profilu. Najprije idemo u karticu "Soils" i kliknemo na "Add". Dodajemo novo tlo sa sljedećim parametrima. Zatim tlo dodjeljujemo profilu u kartici "Assign".

| Tlo, stijena<br>(klasifikacija)                                            | Jediniča<br>težina $\gamma \left[ kN/m^{3} ight]$ | Kut unutarnjeg<br>trenja $arphi_{e\!f}\left[^{\circ} ight]$ | Kohezija tla $c_{_{e\!f}}\left[kPa ight]$ | Saturirana<br>jedinična<br>težina<br>$\gamma_{sat} \left[ kN/m^3 \right]$ |
|----------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|
| S-F – Pijesak s tragovima<br>fino granuliranog tla, tlo<br>srednje gustoće | 17,5                                              | 29,5                                                        | 0,0                                       | 18                                                                        |

#### Tablica s parametrima tla

| Edit soil parameters     |                        |                     |                      |   | ×                                                                                                                      |
|--------------------------|------------------------|---------------------|----------------------|---|------------------------------------------------------------------------------------------------------------------------|
| - Identification         |                        |                     |                      |   | - Draw                                                                                                                 |
| Name :                   | Sand with              | trace of fines (S-F | ), medium dense      |   | Pattern category :                                                                                                     |
|                          |                        |                     |                      |   | GEO 👻                                                                                                                  |
| — Basic data —           |                        |                     |                      | ? | Search :                                                                                                               |
| Unit weight :            | γ =                    | 17,50               | [kN/m <sup>3</sup> ] |   | Subcategory :                                                                                                          |
| Angle of internal fricti | ion: φ <sub>ef</sub> = | 29,50               | [°]                  |   | Soils (1 - 16) 👻                                                                                                       |
| Cohesion of soil :       | c <sub>ef</sub> =      | 0,00                | [kPa]                |   | Pattern :                                                                                                              |
| — Uplift pressur         | re                     |                     |                      | ? |                                                                                                                        |
| Calc. mode of uplift :   | standard               |                     | •                    |   | da stano di a ta su di a ta sudi a ta sa da si a ta sa da da<br>Ta sua su su da su |
| Saturated unit weight    | t: γ <sub>sat</sub> =  | 18,00               | [kN/m <sup>3</sup> ] |   |                                                                                                                        |
|                          |                        |                     |                      |   | 9 Sand                                                                                                                 |
|                          |                        |                     |                      |   | Color :                                                                                                                |
|                          |                        |                     |                      |   | •                                                                                                                      |
|                          |                        |                     |                      |   | Background :                                                                                                           |
|                          |                        |                     |                      |   | automatic 🔹                                                                                                            |
|                          |                        |                     |                      |   | Saturation <10 - 90> : 30 [%]                                                                                          |
|                          |                        |                     |                      |   |                                                                                                                        |
| Classify                 | Clear                  |                     |                      |   | ✓ OK X Cancel                                                                                                          |

Kartica "Soils" – dodavanje novog tla



U sljedećem koraku, otvaramo karticu "Foundation". Odabrat ćemo vrstu temelja "Centric spread footing" i upisati dimenzije kao što su dubina originalne razine terena (2.5m), dubina dna temeljne stope (2.0m), debljina temelja (1.0m), i nagib konačne razine tla prema slici ispod. Također ćemo unijeti veličinu opterećenja (20kN/m<sup>3</sup>), što predstavlja zapunjenje temelja nakon izgradnje.

| - Type of foundation   | - Dimensions                    |                  |      |     | - Foundation                |              |       |                      |
|------------------------|---------------------------------|------------------|------|-----|-----------------------------|--------------|-------|----------------------|
| centric spread footing | Depth from orig. ground surf. : | h <sub>z</sub> = | 2,50 | [m] | Unit weight of overburden : | γ <b>1</b> = | 20,00 | [kN/m <sup>3</sup> ] |
| 11                     | Depth of footing bottom :       | d =              | 2,00 | [m] |                             |              |       |                      |
| hz d                   | Foundation thickness :          | t =              | 1,00 | [m] |                             |              |       |                      |
|                        | Incl. of finished grade :       | s <sub>1</sub> = | 0,00 | [°] |                             |              |       |                      |
|                        | Incl. of footing bottom :       | s <sub>2</sub> = | 0,00 | [°] |                             |              |       |                      |

#### Kartica "Foundation"

Napomena: Dubina dna temelja ovisi o mnoštvu različitih faktora, kao što su prirodni i klimatski faktori, hidrogeologija gradilišta i geološki uvjeti. U Češkoj Republici dubina dna temelja je preporučena da bude barem 0,8 metara ispod površine zbog smrzavanja. Za glinu, dubina treba biti veća, npr. 1,6 meters. Prilikom proračuna nosivosti temelja, dubina temelja se uzima kao minimalna vertikalna udaljenost između dna temelja i konačne razine tla.

U kartici "Load" unesite sile i momente koji djeluju na gornji dio temelja:  $N, H_x, H_y, M_x, M_y$ . Ove vrijednosti smo dobili iz programa za globalnu analizu konstrukcije, te ih možemo importirati u naš proračun koristeći tipku "Import" (više informacija o uvozu tablice podataka možete pronaći na našoj web stranici: <u>http://www.finesoftware.eu/help/geo5/en/table-data-import-01/</u>). Datoteka za uvoz (import\_load\_spread\_footing.txt) je dio instalacije GEO5 softvera i možete joj pristupiti unutar "FINE" mape u dokumentima.

| +       | Add  |      |         |         |                |        |                |       |         |
|---------|------|------|---------|---------|----------------|--------|----------------|-------|---------|
| III Imp | port | •    | Service |         |                |        |                |       |         |
| No.     | Loa  | ad   | Name    | N       | M <sub>x</sub> | My     | H <sub>x</sub> | Hy    | Type    |
|         | new  | edit |         | [kN]    | [kNm]          | [kNm]  | [kN]           | [kN]  |         |
| 1       | Yes  |      | Load    | 2500,00 | 150,00         | 200,00 | 100,00         | 75,00 | Design  |
| 2       | Yes  |      | Load    | 1755,00 | 92,00          | 114,00 | 57,00          | 43,00 | Service |
| 3       | Yes  |      | Load    | 2170,00 | 110,00         | 165,00 | 85,00          | 60,00 | Design  |
| 4       | Yes  |      | Load    | 1523,00 | 77,00          | 116,00 | 59,00          | 42,00 | Service |
| 5       | Yes  |      | Load    | 1850,00 | 105,00         | 120,00 | 65,00          | 30,00 | Design  |
| 6       | Yes  |      | Load    | 1295,00 | 74,00          | 86,00  | 32,00          | 13,00 | Service |
| 7       | Yes  |      | Load    | 1920,00 | 135,00         | 160,00 | 95,00          | 70,00 | Design  |
| 8       | Yes  |      | Load    | 1637,00 | 96,00          | 108,00 | 64,00          | 23,00 | Service |

Kartica "Load" - uvoz



Napomena: Za definiranje dimenzija plitkog temelja, obično proračunsko opterećenje je odlučujući faktor. Kako bilo, u ovom slučaju koristimo proračun prema EN 1997-1 - DA1, te također moramo unijeti vrijednosti uporabnog opterećenja jer proračun zahtjeva dvije proračunske kombinacije.

Preskočit ćemo karticu "Geometry" za sad jer ćemo pokrenuti automatski proračun dimenzija u ovoj kartici. Zbog toga najprije moramo definirati sve ostale parametre.

Ostavit ćemo opciju "soil from geological profile" u kartici "Footing bottom".

| Footing bottom : | soil from geological profile | - |
|------------------|------------------------------|---|
|                  |                              |   |

Kartica "Footing bottom"

Nećemo unositi podlogu od pijeska i šljunka u kartici "SG bed", jer uzimamo u obzir propusno tlo bez kohezije na dnu temelja.

Napomena: Podloge od pijeska i šljunka se više ne koriste tako često zbog toga što je bilo mnogo slučajeva u područjima s kohezivnim tlom gdje je temeljna stopa postala znatno natopljena uslijed utjecaja podzemne vode. To je zbog toga što bez odvodnje, podloga od pijeska i šljunka samostalno djeluje kao odvodnja.

U kartici "Material" unosimo karakteristike materijala temelja.

| Unit weight of str. : $\gamma = 23,00$ [kN/r                                                            | n <sup>3</sup> ]                            |                                             |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|
| - Concrete                                                                                              | - Longitudinal reinforcement                | - Transverse reinforcement                  |
| Catalog User def.                                                                                       | Catalog User def.                           | Ca <u>t</u> alog Us <u>e</u> r def.         |
| C 20/25<br>f <sub>ck</sub> = 20,00 MPa<br>f <sub>ctm</sub> = 2,20 MPa<br>E <sub>cm</sub> = 30000,00 MPa | <b>B500</b><br>f <sub>yk</sub> = 500,00 MPa | <b>B500</b><br>f <sub>yk</sub> = 500,00 MPa |



Preskočit ćemo karticu "Surcharge" jer ne postoji dodatno opterećenje u blizini temelja.

Napomena: Dodatno opeterećenje oko temelja utječe na proračun slijeganja i rotaciju temelja, ali ne i na nosivost. U slučaju vertikalne nosivosti, uvijek djeluje povoljno i ne postoji teorija koja uzima u obzir ovaj utjecaj.



Zatim otvorite karticu "Stage settings" i odaberite "permanent" proračunsku situaciju.

| Design situation : | permanent 💌 |
|--------------------|-------------|
|                    |             |

Kartica "Stage settings"

# Definiranje dimenzija plitkog temelja

Sad otvorite karticu "Geometry" i pokrenite naredbu "Dimensions design" s kojom program određuje minimalne potrebne dimenzije temelja. Ove dimenzije se mogu izmijeniti naknadno.

U dijaloškom prozoru je moguće unijeti nosivost temeljnog tla Rd ili odabrati "Calculate". Za sad ćemo odabrati "Calculate". Program automatski proračunava težinu temelja i težinu tla ispod temelja i određuje minimalne dimenzije temelja.

| 🗃 Foundation dimensions design         |          |             |       |            |         | ×  |
|----------------------------------------|----------|-------------|-------|------------|---------|----|
| Bearing capacity of found. soil : ca   | alculate | •           |       |            |         |    |
| - Foundation dimensions design         |          |             |       |            |         |    |
| Designed foundation dimensions         | : x =    | 2,00        | [m]   | <b>y</b> = | 2,00 [  | m] |
| Translation of center of column :      | dx =     | 0,00        | [m]   | dy =       | 0,00 [r | n] |
| Foundation self weight :               | G =      | 92,00       | [kN]  |            |         |    |
| Unit weight of soil above foundation : | Z =      | 76,80       | [kN]  |            |         |    |
| Contact stress                         | σ = 533  | ,04 kPa < 5 | 45,26 | kPa        |         |    |
| ✓ OK X Cancel                          |          |             |       |            |         |    |

"Foundation dimensions design" dijaloški prozor

Prihvatit ćemo dimenzije klikom na "OK" i sve dimenzije se prenose u kućice u donjem lijevom dijelu kartice. Postavit ćemo obje dimenzije stupa na 0,5 m.

| - Type of foundation | tion           | <ul> <li>Basic dimensions</li> </ul> |                  |      |     |
|----------------------|----------------|--------------------------------------|------------------|------|-----|
| centric spread fo    | oting 💌        | Overall dimension :                  | x =              | 2,00 | [m] |
| ſL                   |                | Overall dimension :                  | y =              | 2,00 | [m] |
|                      |                | Column dimension :                   | c <sub>x</sub> = | 0,50 | [m] |
|                      |                | Column dimension :                   | c <sub>y</sub> = | 0,50 | [m] |
|                      | × ×            | Spr. footing rotation :              | α=               | 0,00 | [°] |
| ▶ <u>D</u> im        | ensions design |                                      |                  |      |     |

Kartica "Geometry"



Napomena: Proračun centričnog i ekscentričnog plitkog temelja se uvijek provodi na način da su dimenzije temelja što manje moguće i postižu adekvatnu vertikalnu nosivost. Opcija "Input" proračunava dimenzije plitkog temelja na temelju unesene nosivosti temeljnog tla.

Napomena: U slučaju da imamo nezahtjevnu konstrukciju (konstrukcija sa jednostavnim temeljima) možemo unijeti nosivost Rd iz tablice. U kompliciranijim slučajevima nosivost Rd se uvijek proračunava.

Provjerite ćemo proračun u kartici "Bearing cap.". U ovoj provjeri nećemo uzimati u obzir otpor

tla. GEO5 2020 - Spread Footing [C:\Users\tomas\Desktop\Fine 9-11\09\_spread footing\demo\_manual\_09.gpa]  $\times$ File Edit Input Analysis Outputs Settings Help Đ [1] File Verification of spread footing bearing capacity Vertical bearing capacity check Frames 2D Project Shape of contact stress : rectangle 🔅 Settings 30 Most unfavorable load case No. 2. (Load) 日 Profile = 2,13° ↔ 🗧 Soils Design bearing capacity of found.soil  $R_d$  = 545,22 kPa Extreme contact stress  $\sigma$  = 532,59 kPa Delta : Extreme contact stress 🗮 Assign Q Bearing capacity in the vertical direction is SATISFACTORY # Foundation 1 Load - LC Verification of load eccentricity Max. eccentricity in direction of base length e<sub>x</sub> = 0,019<0,333 24 Geometry H Footing bottom 📥 SG bed Eccentricity of load is SATISFACTORY 🚥 Material 2,00 Surcharge Horizontal bearing capacity check Most unfavorable load case No. 7. (Load) GWT + subsoil Earthquake Horizontal bearing capacity  $R_{dh} = 1180,77 \text{ kN}$ Extreme horizontal force H = 118,00 kN🗗 Stage settings 📥 Bearing cap. 2,00 Bearing capacity in the horizontal direction is SATISFACTORY H Dimensioning Bearing capacity of foundation is SATISFACTORY ŝ <sup>1</sup> Analysis : 🛨 😑 [1] Find max values automatically • Horizontal bearing capacity Vertical bearing capacity Varification Earth resistance : not considered VERT. BEARING CAPACITY : SATISFACTORY (97,7%) HOR. BEARING CAPACITY : SATISFACTORY (10,0%) Outputs Shape of contact stress : rectangle 🔻 B+ Add picture Bearing cap. : Total B<sup>III</sup> List of pictures Copy view



– Vertikalna nosviost: 97,7 %  $R_d = 545.22 > \sigma = 532.59$  [kPa] ZADOVOLJAVA

# **GE05**

# Dimenzioniranje armature plitkog temelja

Nakon provjere vertikalne nosivosti, postavit ćemo armaturu plitkog temelja u karticu "Dimensioning". Pretpostavljamo istu armaturu u oba smjera (X, Y). Postavljamo 18 šipki promjera 14 mm. Zaštitni sloj betona je 60 mm. Provjerit ćemo odabranu armaturu na najnepovoljniju kombinaciju opterećenja ("Find max. values automatically").



Kartica "Dimensioning"

# Zaključak:

Proračun plitkog temelja (2,0 x 2,0 m) zadovoljava.