

Projektowanie geometrii fundamentu bezpośredniego

Niniejszy rozdział przedstawia problematykę łatwego i efektywnego projektowania posadowienia bezpośredniego.

Program powiązany:	Fundamenty bezpośrednie
Plik powiązany:	Demo_manual_09.gpa

Zadanie:

Dobrać wymiary osiowej stopy fundamentowej zgodnie z podejściem obliczeniowym DA1 według normy EN 1997-1 (EC 7-1). Obciążenie od słupów działa na wierzch stopy fundamentowej. Siły wejściowe do obliczeń to: N, H_x, H_y, M_x, M_y . Profil terenu za konstrukcją jest poziomy. Podłoże gruntowe składa się z piasku drobnego (FSa) średniozagęszczonego.

Schemat zadania – analiza nośności fundamentu bezpośredniego

Rozwiązanie

W celu wykonania zadania skorzystaj z programu GEO5 Fundamenty bezpośrednie. Wprowadź dane wejściowe do wszystkich zakładek z wyjątkiem ramki "Geometria". Ramka "Geometria" posłuży do zaprojektowania fundamentu bezpośredniego.

GE05

Wprowadzanie danych podstawowych

Przejdź do ramki "Ustawienia" naciśnij przycisk "Wybierz ustawienia" a następnie wybierz z listy dostępnych ustawień numer 3 – "Standardowe – EN 1997 – DA1".

🐮 Lista ustaw	ień obliczeń		×
Numer	Nazwa	Ważne dla	
1	Standardowe - współczynniki bezpieczeństwa	Wszystkie	
2	Standardowe - stany graniczne	Wszystkie	
3	Standardowe - EN 1997 - DA1	Wszystkie	
4	Standardowe - EN 1997 - DA2	Wszystkie	
5	Standardowe - EN 1997 - DA3	Wszystkie	
7	Standardowe - bez redukcji parametrów	Wszystkie	
8	Republika Czeska (EN1997, CSN 73 1004)	Wszystkie	
12	Polska - EN 1997	Wszystkie	
13	Polska - EN 1997, ciężar wody=1.0	Wszystkie	
14	Polska - współczynniki bezpieczeństwa	Wszystkie	
77	Rumunia - EN 1997 - budynki (SR EN 1990:2004/NA:2006)	Wszystkie	
78	Rumunia - EN 1997 - mosty (SR EN 1990:2004/A1:2006/NA:2	Wszystkie	
			🗸 ОК
			Y Apului
			👗 Anuluj

Okno dialogowe "Lista ustawień obliczeń"

Przyjmij ponadto sposób prowadzenia obliczeń – w tym przypadku wybierz opcję "Obliczenia w warunkach z odpływem". W tym zadaniu **nie będziemy analizować osiadań** (będzie to częścią kolejnego Przewodnika inżyniera, nr 10).

— Metoda obliczeniowa —				
Metoda obliczeń :	obliczenia w warunkach z odpływem 🔻			
🖌 Nie obliczaj osi	adania			

Ramka "Ustawienia"

Uwaga: Fundamenty bezpośrednie obliczane są zazwyczaj w warunkach z odpływem przy wykorzystaniu efektywnych wartości parametrów gruntów (φ_{ef}, c_{ef}). Obliczenia w warunkach bez odpływu prowadzone są dla gruntów spoistych lub dla przejściowej sytuacji obliczeniowej przy wykorzystaniu całkowitych wartości parametrów gruntów (φ_u, c_u). Zgodnie z normą EN 1997 całkowity kąt tarcia wewnętrznego wynosi zawsze $\varphi_u = 0$.

GE05

W kolejnym kroku wprowadź profil geotechniczny podłoża – zdefiniuj parametry gruntów i przyporządkuj grunty do odpowiednich warstw. Przejdź do ramki "Grunty" i kliknij przycisk "Dodaj". Dodaj jeden nowy grunt o następujących parametrach (tabelka poniżej), a następnie przyporządkuj ten grunt do profilu w ramce "Przyporządkowanie".

Grunt (Klasyfikacia gruptu)	Profil	Ciężar objętościowy	Efektywny kąt tarcia wewnętrznego	Efektywna spójność gruntu	Ciężar objętościowy gruntu nawodnionego
	[<i>m</i>]	$\gamma \left[kN/m^{3} \right]$	$arphi_{e\!f}\left[^{\circ} ight]$	$c_{ef} \left[kPa \right]$	$\gamma_{sat} \left[kN/m^3 \right]$
FSa - piasek drobny, średniozagęszczony	0,0 – 6,0	17,5	29,5	0,0	18,0

Ramka "Grunty" – dodawanie nowego gruntu

GE05

Następnie przejdź do ramki "Fundament". Jako rodzaj fundamentu wybierz "Osiowa stopa fundamentowa" i wprowadź następujące wymiary: głębokość od pierwotnej powierzchni terenu (2,5m), głębokość posadowienia fundamentu (2,0m), wysokość fundamentu (1,0m) oraz nachylenie terenu zmodyfikowanego jak pokazano na rysunku poniżej. Wprowadź ponadto ciężar objętościowy nadkładu – zasypki fundamentu po zakończeniu budowy.

— Typ fundamentu ————	— Wymiary —				- Nadkład
osiowa stopa fundamentowa 🔻	Głęb. od pierwotnej pow. terenu :	h _z =	2,50	[m]	definiuj ciężar objętościowy 👻
11	Głęb. posadowienia fund. :	d =	2,00	[m]	Ciężar objętościowy nadkładu : $\gamma_1 = 20,00$ [kN/m ³]
h _z t	Wysokość fundamentu :	t =	1,00	[m]	
	Nachyl.Terenu Zmodyf. :	s ₁ =	0,00	[°]	
	Nachyl. podstawy fund. :	s ₂ =	0,00	[°]	

Ramka "Fundament"

Uwaga: Głębokość posadowienia stopy fundamentowej zależy od wielu czynników, jak chociażby warunki klimatyczne i hydrogeologiczne podłoża gruntowego. Minimalną zalecaną głębokością posadowienia fundamentu w Czechach jest 0,8 m poniżej poziomu terenu ze względu na strefę przemarzania gruntu. W przypadku gruntów spoistych może być ona znacznie większa i wynosić nawet 1,6m. Podczas obliczania nośności fundamentu jako głębokość posadowienia przyjmowana jest minimalna odległość pionowa między poziomem posadowienia a docelową powierzchnią terenu.

Przejdź do ramki "Obciążenia" i wprowadź wartości sił oraz momentów działających na wierzchnią część fundamentu: N, H_x, H_y, M_x, M_y . Wartości sił uzyskano korzystając z oprogramowania do analizy konstrukcji – możemy wczytać te dane do naszych obliczeń klikając przycisk "Importuj" (więcej informacji na temat importu danych tabelarycznych do programu znajdziesz na stronie internetowej: <u>http://www.finesoftware.pl/pomoc/geo5/pl/import-danych-tabelarycznych-01/</u>). Plik do zaimportowania (*import_load_spread_footing.txt*) jest częścią pakietu instalacyjnego GEO5 i znajduje się w folderze "FINE" w dokumentach publicznych.

: = -	+] Dodaj							
III Imp	ortuj	► Ob	c. <u>c</u> har.						
Nr	Obci	ążenie	Nazwa	N	M _x	My	H _x	Hy	Rodzaj
	nowe	Edycja		[kN]	[kNm]	[kNm]	[kN]	[kN]	
1	Tak		Load	2500,00	150,00	200,00	100,00	75,00	Obliczeniowe
2	Tak		Load	1755,00	92,00	114,00	57,00	43,00	Charakterystyczne
3	Tak		Load	2170,00	110,00	165,00	85,00	60,00	Obliczeniowe
4	Tak		Load	1523,00	77,00	116,00	59,00	42,00	Charakterystyczne
5	Tak		Load	1850,00	105,00	120,00	65,00	30,00	Obliczeniowe
6	Tak		Load	1295,00	74,00	86,00	32,00	13,00	Charakterystyczne
7	Tak		Load	1920,00	135,00	160,00	95,00	70,00	Obliczeniowe
8	Tak		Load	1637,00	96,00	108,00	64,00	23,00	Charakterystyczne

Ramka "Obciążenie"

Uwaga: W przypadku wyznaczania wymiarów fundamentu decydującym obciążeniem jest zwykle obciążenie obliczeniowe. Wykonując obliczenia zgodnie z podejściem obliczeniowym DA1 według normy EN 1997-1 musimy wprowadzić dodatkowo wartość obciążenia charakterystycznego, gdyż podejście to wymaga wykonania dwóch kombinacji obliczeniowych.

Pomijamy na razie ramkę "Geometria", ponieważ w tej ramce będzie wykonywane automatyczne projektowanie wymiarów. Z tego powodu musimy najpierw zdefiniować wszystkie pozostałe parametry.

W ramce "Podłoże fundamentowe" pozostawiamy wybraną opcję domyślną "grunt z profilu geologicznego".

Podłoże fund. :	grunt z profilu geologicznego 🔹	
-----------------	---------------------------------	--

Ramka "Podłoże fundamentowe"

Nie będziemy definiować podsypki piaskowo-żwirowej w ramce "Podsypka PŻ", gdyż w pod podstawą fundamentu w naszym zadaniu zalega przepuszczalny grunt niespoisty.

Uwaga: Podsypki piaskowo-żwirowe nie są już tak często stosowane, ponieważ w wielu przypadkach na terenach o gruntach spoistych doszło do znacznego podmoczenia dna fundamentów pod wpływem wód gruntowych.

Przejdź do ramki "Materiał" i wprowadź charakterystyki materiałowe fundamentu.

Ciężar objęt. konstrukcji : γ =	23,00 [kN	//m³]			
- Beton		— Zbrojenie podłużne —		— Zbrojenie poprzeczne	
<u>K</u> atalog	<u>U</u> żytkownika	K <u>a</u> talog	U <u>ż</u> ytkownika	Ka <u>t</u> alog	Uż <u>v</u> tkownika
$\label{eq:constraint} \begin{array}{rcl} \textbf{C 20/25} \\ f_{ck} &=& 20,00 \ \text{MPa} \\ f_{ctm} &=& 2,20 \ \text{MPa} \\ \textbf{E}_{cm} &=& 30000,00 \ \text{MPa} \end{array}$		B500B f _{yk} = 500,00 MPa		B500B f _{yk} = 500,00 MPa	

Ramka "Materiał"

Pomiń ramkę "Obciążenie" – w zadaniu nie występuje obciążenie naziomu w pobliżu fundamentu.

Uwaga: Obciążenie naziomu w pobliżu fundamentu wpływa na obliczenia osiadań i obrotu fundamentu, natomiast nie ma wpływu na obliczenia nośności. Podczas obliczania nośności pionowej fundamentu obciążenie naziomu nie jest uwzględniane, gdyż działa zawsze korzystnie i zwiększałoby nośność pionową.

Następnie przejdź do ramki "Ustawienia fazy" i wybierz trwałą sytuację obliczeniową.

Sytuacja obliczeniowa :	trwała (-

Ramka "Ustawienia fazy"

Projekt wymiarów fundamentu bezpośredniego

Teraz przejdź do ramki "Geometria" i wybierz opcję "Wyznacz wymiary". W ten sposób program wyznaczy minimalne wymagane wymiary fundamentu. Wyznaczone wymiary będzie można edytować w dalszej pracy w programie.

Okno dialogowe "Wyznaczanie wymiarów fundamentu" pozwala na wprowadzenie wytrzymałości gruntu pod fundamentem lub wybranie opcji "Wyznacz". W tym przypadku wybierz z listy rozwijanej opcję "Wyznacz". Program automatycznie określi ciężar stopy i warstw gruntu poniżej fundamentu a następnie obliczy minimalne wymagane wymiary fundamentu.

🔁 Wyznaczenie wymiarów fundame	ntu		×
Wytrzym. gruntu pod fundam. :	wyznacz 🔻		
— Wyznaczenie wymiarów fundamo	entu		
Wyznaczone wymiary fundamentu	x =	2,00 [m] y =	2,00 [m]
Mimośród słupa :	dx =	0,00 [m] dy =	0,00 [m]
Ciężar własny fundamentu :	G =	92,00 [kN]	
Ciężar objętościowy gruntu nad fund	amentem : Z =	75,00 [kN]	
Naprężenie kont	aktowe σ = 532,59	kPa < 545,22 kPa	
		✓ OK	🗙 Anuluj

Okno dialogowe "Wyznaczanie wymiarów fundamentu"

Akceptujemy projekt przyciskiem "OK" i wszystkie wymiary przenoszone są do pól wejściowych w lewej dolnej części ramki. Dodatkowo, obydwa wymiary kolumn zdefiniujemy jako 0,5 m.

— Typ fundamentu ————	— Wymiary podsta	wowe -		
osiowa stopa fundamentowa 👻	Wymiar całkowity :	x =	2,000	[m]
1 <u> </u>	Wymiar całkowity :	y =	2,000	[m]
	Kształt słupa :	prosto	kạtny	•
	Wymiar słupa :	c _x =	0,50	[m]
	Wymiar słupa :	c _y =	0,50	[m]
Wyznacz wymiary	Obrót fundamentu	: α=	0,00	[°]

Ramka *"Geometria*"

Uwaga: Projektowanie osiowych i mimośrodowych stóp fundamentowych polega na dobraniu możliwie najmniejszych wymiarów stopy fundamentowej, przy której spełniony jest warunek nośności pionowej. Opcja "Definiuj" w oknie dialogowym "Wyznaczanie wymiarów fundamentu" spowoduje wyznaczenie wymiarów fundamentu na podstawie zdefiniowanej przez użytkownika wartości wytrzymałości gruntu pod fundamentem.

Uwaga: W przypadku niewymagającej konstrukcji (konstrukcje na prostych fundamentach) możemy wprowadzić tabelaryczną nośność Rd. W innych bardziej skomplikowanych przypadkach zawsze należy wyznaczać nośność Rd.

W kolejnym kroku sprawdzimy zaprojektowany fundament w ramce "1. SG". W tej analizie nie uwzględnimy Odporu gruntu.

Ramka "1. SG "

– Nośność pionowa: 97,7 % $R_d = 545.22 > \sigma = 532.59$ [kPa] SPEŁNIA WYMAGANIA

Wymiarowanie zbrojenia fundamentu bezpośredniego

Po sprawdzeniu nośności fundamentu zaprojektujemy zbrojenie stopy fundamentowej w ramce "Wymiarowanie". Załóżmy takie samo zbrojenie stopy w obu kierunkach (X, Y) w postaci 18 prętów o średnicy 14 mm. Otulina zbrojenia wynosi 60 mm. Sprawdzimy przyjęte zbrojenie dla najbardziej niekorzystnej kombinacji obciążeń ("Wybierz maksyma automatycznie").

Ramka "Wymiarowanie"

Podsumowanie:

Zaprojektowany fundament bezpośredni o wymiarach 2,0 x 2,0 m spełnia wymagania projektowe.