
Module FEM-earthquake - Theoretical grounds

1. Basic equations of finite element method accounting for seismic events

The basic equation describing the vibration of a discrete system with N degrees of freedom

is written as

Mr̈(t) + Cṙ(t) + Kr(t) = F (t) , (1)

Equation (1) represents a system of N second order differential equations of motion, where

ṙ =
dr

dt
and r̈ =

d2r

dt2
represent the velocity and acceleration in the direction of the i-th degree

of freedom (i = 1, . . . , N). In the framework of the finite element method (FEM), the N × 1

vector r stores the components of unknown nodal displacements. The N × N matrices M, C

and K stand for the mass, damping and stiffness matrix, respectively. The N × 1 vector F

stores the nodal components of the external actions.

The current version of the GEO5 FEM program limits its attention to seismic actions caused

by earthquake being represented by the prescribed acceleration of underground longitudinal

(pressure P) and transverse (shear S) waves. It is assumed that these waves travel from the

bottom boundary of the FEM model towards the terrain surface. The resulting acceleration

field in space and time ü(x, t)1 can be conveniently expressed as a sum of the acceleration

prescribed to all nodes of the numerical model a(t) and a component üR(x, t) relative to a(t).

ü(x, t) = a(t) + üR(x, t). (2)

1.1. How to introduce a(t) into analysis

The overall displacement at an arbitrary point of the model is equal to the sum of the

displacement uu corresponding to a wave traveling upwards and the displacements ud associated

with a wave traveling downwards, i.e.

u(x, t) = uu(x, t) + ud(x, t). (3)

The seismic motion is typically monitored on the free surface. Such a motion is denoted as

the outcrop motion, see Fig. 1. To correctly predict the acceleration measured on the terrain

(target motion) requires the acceleration a(t), prescribed on the bottom boundary, be suitably

1In the case of 2D analysis the vector u = {u, v} represents displacements in the direction of coordinate axes

x, y.
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Obrázek 1: Prescribing acceleration.

adjusted in correspondence to the outcrop motion to account for the type of layers representing

the subsoil.

Considering the monitoring point m1 and the bottom boundary in the bedrock (point a1)

or at the soil-bedrock interface (point a2) would probably allow us to assume aa1,2 ≈ ü1.
2

Providing the bottom boundary is located at points b1 a b2, the value of displacement ub1,2 may

considerably differ from both u1 and u2, i.e. ab1,2 6= ü1,2. For point m2 one may even expect

aa1,2 6= ü2. To correctly adjust the prescribed acceleration a(t) so that the predicted motion

approximates the target motion with sufficient accuracy, it is possible to employ the SHAKE

software [1]. Further details are available in [2].

1.2. Definition of boundary conditions on model bottom boundary

Given the fact that on free surface the amplitude of the upcoming wave equals the one of

the reflected wave allows us to write the overall displacement on the terrain surface as twice the

displacement of the upcoming wave u(x, t) = 2uu(x, t). For a general point within a soil body

one may adopt Eq. (3). If limiting attention to the bottom boundary this equation receives the

form

u(x, t)|x=xBB
= uI(x, t)|x=xBB

+ uO(x, t)|x=xBB
, (4)

2The speed of a seismic wave is proportional to the stiffness of a soil/rock layer through which it propagates.

In the rock layer the wave velocity can be of the order of magnitude higher in comparison to the soft soil layer.
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where BB denotes the bottom boundary of the numerical model, uI and uO represent the inco-

ming wave (wave entering the model) and outgoing wave (wave leaving the model), respectively.

The above relations will be now exploited to define the prescribed acceleration a depending

on the choice of the boundary conditions specified on the bottom boundary of the numerical

model. The GEO5 FEM programs allows the user to define to types of boundary conditions,

i.e. fixed and absorbing (quiet) boundary conditions.
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Obrázek 2: a) Fixed (kinematic) boundary conditions, b) Absorbing (traction) boundary conditions.

1.2.1. Fixed boundary conditions

The fixed boundary condition can be safely used only in the case when the bottom boundary

is found at soft soil/stiff rock interface. Then the incoming wave is “fully” reflected back into

the model. Taking into account Eqns. (4) and (2) gives

u(x, t) = u(t)|x=xBB
+ uR(x, t), uR(x = xBB, t) = 0, a(t) = ü(t)x=xBB

. (5)

As evident from Fig. 2(a) the value of a relative displacement at the bottom boundary BB

is equal to zero. Thus the fixed boundary conditions are prescribed along this boundary. The

magnitude of the prescribed acceleration a thus corresponds to the total motion at BB given

by Eq. (3). Recall that for the monitoring point m1 and the bottom boundary located at point

a2 in Fig. 1 it is possible to consider as the prescribed motion the outcrop motion a ≈ ü1.
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1.2.2. Absorbing boundary conditions

Consider Fig. 2(b) with the bottom boundary within a layer below the AA interface. In

accord with Eqns. (3) and (2) the value of the displacement at an arbitrary point of the layer

bounded by the AA and BB interfaces is given by

u(x, t) = uI(x, t) + uO(x, t) = uIBB(t) + uR(x, t), (6)

where uIBB represents the incoming wave at the bottom boundary BB. Because this interface

is found within a homogeneous layer the outgoing wave must freely pass this interface. The

theoretical model assumes an infinite half-space below this interface. Therefore, the outgoing

wave will never return and must be on BB fully damped.

The outgoing wave uO

uO(x, t) = uIBB(t) + uR(x, t)− uI(x, t), (7)

satisfies on the BB boundary the radiation condition
∂uO(x, t)

∂x
∂vO(x, t)

∂y


x=xBB

=


1

cs
0

0
1

cp




duO(x, t)

dt
dvO(x, t)

dt


x=xBB

, (8)

where cp a cs represent the velocities of the propagating P and S waves and are provided by

cp =

√
Eoed
ρ
, cs =

√
G

ρ
(9)

where ρ, Eoed, G are the density, the oedometric modulus and the shear modulus of a given sub-

soil layer. With reference to Eqns. (6) and (2) it is, however, necessary to express condition (8)

in terms of a relative displacement uR. Approach described in [3] introduces a static boundary

condition in the form px = τxy

py = σy


x=xBB

=

 G 0

0 Eoed




∂uR(x, t)

∂x
∂vR(x, t)

∂y


x=xBB

=

 ρcs 0

0 ρcp




duR(x, t)

dt
− duIBB(t)

dt
dvR(x, t)

dt
− dvIBB(t)

dt


x=xBB

. (10)

A graphical representation of this conditions is seen in Fig. 2(b) as a dashpot with the viscosity

ρcs and ρcp, respectively. Given Eqns. (6) and (2) the prescribed acceleration reads

a(t) = üIBB(t). (11)
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Obrázek 3: Comparing response of homogeneous layer generated by fixed and absorbing boundary conditions.

Thus if limiting attention to the monitoring point m1 in Fig. 1 and the bottom boundary at

point a1 it appears possible to consider the prescribed acceleration to the half of the outcrop

motion, i.e. a ≈ 1
2
ü1.

It is also worth noting that the definition of absorbing boundary conditions assumes that

layer above the BB boundary behaves linearly elastic. Therefore, the nonlinear response should

be allowed for the top layers only.

For illustration, we compare in Fig. 3 the response of a homogeneous 50 m thick layer

with either fixed or absorbing boundary conditions subjected to the prescribed horizontal ac-

celeration. Clearly, when the fixed boundary conditions are used the outgoing wave is trapped

in the model. Thus for and undamped system the vibration will continue infinitely long. On

the other hand, the absorbing boundary will damp the outgoing wave and once the prescri-

bed acceleration ceases the vibration gradually stops. Further details regarding the influence of

boundary conditions on the subsoil response can be found in [4, 5].

1.3. Definition of boundary conditions along lateral boundaries

Suppose that both geometrical and material properties of the subsoil do not change in the

horizontal direction, see Fig. 4. The response of such a system to the prescribed seismic action

will be the same along any vertical section. This corresponds to so called Free field conditions.

Such a task can be solved with the help of a one-dimensional (1D) Free field column (FF) model.

Solving such a task using a two-dimensional (2D) model truncated in the horizontal direction
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Obrázek 4: 2D infinite strip of subsoil and 1D Free field model.

by lateral boundaries (LB), see Fig. 4, calls for introducing suitable boundary conditions along

these boundaries to force the response predicted by the 2D model be identical to that of the

1DFF model. In a special case of horizontal motion generating S waves only, the use of standard

kinematic conditions in Fig. 4 would be sufficient. However, this is no longer possible when the

P and S waves interact. In this general case, the static (traction) boundary condition in terms

of the prescribed vertical tractions corresponding to the shear stress τFFxy provided by the 1DFF

analysis proved useful, see Fig. 5.

Providing the Free field conditions are disturbed due to, e.g., excavation (Fig. 4), the part

of the motion, corresponding to the difference between the real incoming wave and the one

produced by the FF analysis, will have to be damped. This is achieved similarly to the absor-

bing boundary conditions on the BB boundary (Section 1.2) by introducing radiation (static)

boundary conditions as displayed in Fig. 53. For more details the interested reader is referred

to [3]. A detailed study of the influence of boundary conditions prescribed on lateral boundaries

has been performed in [4].

Assuming the fixed boundary conditions and a 2D analysis, Fig. 5(a), yields the resulting

form of Eq. (1) as

MüR + CMu̇R +KuR + CLBu̇R|x=0,L

= −Mü0 − CMu̇0 + CLBu̇FFR |x=0,L −Rτ |x=0 +Rτ |x=L, (12)

3Waves approaching the LB boundary in a certain angle not equal to 90◦ will be damped only partially.
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(a)

(b)

Obrázek 5: Boundary conditions on lateral boundaries assuming a) fixed and b) absorbing boundary conditions

on bottom boundary. 1D Free field column model and 2D model.

where u0 = u(xBB). For absorbing boundary conditions, Fig. 5(b), we get

MüR + CMu̇R +KuR + CBBu̇R|y=0 + CLBu̇R|x=0,L

= −MüIBB − CMu̇IBB + CBBu̇IBB|y=0 + CLBu̇FFR |x=0,L −Rτ |x=0 +Rτ |x=L. (13)

The damping matrix will thus split into the contribution due to material damping (CM) and

the influence of absorbing boundary conditions along the BB (CBB) and LB (CLB) boundaries,

respectively. The load vector F (t) corresponds to the action of inertia forces, the fist term on

the right hand side of Eqns. (12) and (13).

1.4. Direct integration of equations of motion

To determine unknown displacements r requires integrating Eq. (1) in time4. The GEO5

FEM program employs the implicit Newmark method, which gives the following relationship

4In GEO5 FEM we solve Eq. (12) or (13) for unknown displacements uR
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between displacements, velocities, and accelerations at n + 1 integration step providing they

are known at step n [6, 7]

rn+1 = rn + ∆tṙn +
∆t2

2
[(1− 2β)r̈n + 2βr̈n+1] , (14)

ṙn+1 = ṙn + ∆t [(1− γ)r̈n + γr̈n+1] , (15)

where ∆t represents the time step and β, γ the method parameters to specify the displacement

and velocity vectors, respectively. In the light of standard incremental solution in static analysis

we modify Eqns.(14) and (15) by introducing the increment of the displacement vector ∆r =

rn+1 as

r̈n+1 = b1∆r − b2ṙn − b3r̈n, (16)

ṙn+1 = b4∆r − b5ṙn − b6r̈n, (17)

rn+1 = rn + ∆r. (18)

where parameters b1 − b6 are provided by

b1 =
1

β∆t2
, b2 =

1

β∆t
, b3 =

1− 2β

2β
,

b4 =
γ

β∆t
, b5 =

γ

β
− 1, b3 =

γ − 2β

2β
∆y.

(19)

Adopting the above equations renders the incremental form of Eq. (1)(
b1M + b4C + Kk

)
∆r = F n+1 + (b2M + b5C) ṙn + (b3M + b6C) r̈n −Rk, (20)

where F n+1 represents the loading at n+ 1 integration step and Rk (R0 = Rn) is the vector of

internal nodal forces in the k-th iteration of a given step. The parameters β, γ can be chosen

such that the method is stable. Providing the stability does not depend on the size of ∆t the

method is unconditionally stable. It then holds [7]

2β ≤ γ ≤ 1

2
. (21)

One of the most widely used methods is the average acceleration method obtained by setting

β =
1

4
, γ =

1

2
, (22)

This setting is also generally recommended.

Apart from stability, one should also be concerned with the accuracy of integration. In [7] two

specific accuracy measures are introduced to address numerical dissipation and dispersion. The

8



measure of numerical dissipation is the algorithmic damping ratio ξ̄ = ξ+ AD and the measure

of dispersion is the relative period error RPE =
T− T

T
. The parameter ξ is the material

damping ratio, see Section 4), AD represents the amplitude decay attributed to the selected

numerical integration scheme, T is the real period of vibration and T is the period associated

with the discrete system. Providing γ =
1

2
, we get AD=0. In such a case, the amplitude decay,

if not assuming the absorbing boundary conditions, will be caused by the material damping

only (the matrix CM, e.g. in Eq. (12)) driven by the value of ξ.

However, in the solution of a discrete system it is often desirable to have AD 6= 0 to filter

out high-frequency modes, which are artifacts of the discretization into finite elements, while

keeping good accuracy in the load modes. To that end, the algorithm introduced in [8] and

termed the α-method deserves particular attention. This method modifies the original Eq. (20)

as [
b1M + (1 + α)b4C + (1 + α)Kk

]
∆r = (23)

F n+1 + [b2M + ((1 + α)b5 + α) C] ṙn + [b3M + (1 + α)b6C] r̈n −Rk,

where tn+α = tn+1 + α∆t. For α = 0 we recover Eq. (20).

For the method to be unconditionally stable and second order accurate requires

α ∈
[
−1

3
, 0

]
, β =

1− α2

4
, γ =

1− 2α

2
. (24)

Clearly, increasing α decreases the amount of numerical damping. For α = 0 we get γ =
1

2
, i.e.

AD=0.

Both the average acceleration method and α-method are unconditionally stable. The selected

integration time step thus determines the accuracy, or vice versa. To a large extent, this is

affected by material properties and the type of finite element mesh (type and size of the element,

local mesh refinement). Thus in general settings, to define an optimal time step is not an easy

task.

For conditionally stable Newmark method (γ ≤ 1

2
, β ≤ γ), the time step ∆t must comply

with following condition [7]

∆t ≤ ∆tcrit, ∆tcrit =
Ωcrit

ωeq
, (25)

Ωcrit =
ξ
(
γ − 1

2

)
+
[
γ
2
− β + ξ2

(
γ − 1

2

)2] 1
2

γ
2
− β

, (26)
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where Ωcrit is the critical sampling frequency and ωeq is the maximum natural frequency of

the discrete system, which can be bounded by the maximum frequency of individual elements5.

Perhaps the most widely used unconditionally stable Newmark method is the central difference

scheme (β = 0, γ = 1
2

and for ξ = 0 is Ωcrit = 2). For the diagonal mass and damping matrices,

this method is explicit. To minimize the period error it is recommended to combine the diagonal

mass matrix (lumped mass matrix) with the central scheme, while the consistent mass matrix

should be used with the average acceleration method [7]. Because the GEO5 FEM program

assumes the consistent mass matrix for all types of elements, the use of central difference

scheme is not recommended.

The list of ∆tcrit for the 1D linear and quadratic rod elements considering both the lumped

and consistent mass matrices is available, e.g. in [7]. Further examples can be found in [9].

The PLAXIS [10] program exploits for triangular higher order elements the estimates of ∆tcrit

presented in [11].

To conclude, point out that in the case of earthquake the maximum time step depends on

the acceleration record, which in general assumes sampling in the interval of ∆t ∈ [0.005, 0.01] s.

2. Solution of eigenvalue problem

The GEO5 FEM program allows for the determination of eigenvalues (natural frequencies)

and eigenvectors (mode shapes) of a discrete problem by solving the generalized eigenvalue

problem of an undamped system in the form

(M− λαK)φα = 0, λα = ω2
α, (27)

where φα is the eigenvector associated with the eigenvalue λ (natural frequency ωα). During

analysis, the eigenvectors are normalized with respect to the mass matrix as

φα =
φα[

φT
αMφα

] 1
2

unit

[
1√
t

]
. (28)

For the sake of visual presentation, the eigenvectors are further scaled by the maximum total

nodal displacement (k-node number, Nn-total number of nodes) as

φα =
φα
Amaxα

[−], Amaxα = maxNnk=1

(√
(φxα,k)

2 + (φyα,k)
2
)
. (29)

5It is seen that for γ =
1

2
, the viscous damping has no effect on stability.
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The GEO5 FEM program solves Eq.. (27) for the selected number of the lowest eigenvalues

using standard method of subspace iteration [6, 7, 12]. To solve this task one may choose either

the Jacobi method or the Gram Schmidt orthogonalization method. In each iteration step, the

Jacobi method solves the reduced eigenvalue problem. This analysis is, however, very effective

and the total number of required global iterations is typically less than when using the Gram

Schmidt orthogonalization method. However, the Jacobi method does not guarantee that the

first K eigenvalues will always be found.

S + P S P

Obrázek 6: Kinematic boundary conditions available for solving the eigenvalue problem.

When solving the eigenvalue problem the GEO5 FEM program allows the user to consider

three types of kinematic boundary conditions, see Fig. 6. The first case (S+P) does not account

for a specific vibration mode. On the contrary, the second and the third option makes preference

of a horizontal (S) and vertical (P) vibration mode, respectively. Nevertheless, it is recommended

to make a visual check prior to selecting the desired vibration mode, e.g. for the calculation

of parameters of material damping described in Section 4. An additional hint for choosing the

vibration mode might the Modal participation factor and Modal effective mass.

2.1. Modal participation factor

We limit our attention to 2D plane-strain analysis with no account for rotational degrees

of freedom. The modal participation factor Γα,i for mode α in the direction (i ≡ x or i ≡ y) is

given by

Γα,i =
{φα}T [M] {Ii}

mα

unit
[√

t
]
, (30)

and indicates how strongly the motion in the direction of the coordinate axis x, y is represented

in the eigenvector {φα}. The vector {Ii} is the influence vector associated with either the

horizontal (i ≡ x, {Ix}T = {1, 0, 1, 0, . . . , 1, 0}) or vertical (i ≡ y, {Iy}T = {0, 1, 0, 1, . . . , 0, 1})

component of the vibration. The generalized mass mα is written as

mα = {φα}T [M] {φα} [−]. (31)

11



Because the eigenvectors in the GEO5 FEM program are normalized with respect to the mass

matrix, we get mα = 1.

2.2. Modal effective mass

Another parameter representing participation of a given eigenvector in either horizontal or

vertical component of the vibration is the modal effective mass

mα,i = (Γα,i)
2mα unit [t]. (32)

This parameter can be adopted to determine the minimum number of eigenvectors to be used

in application of modal analysis to solve Eq. (1). It holds that the sum of modal effective masses

mα,i of all modes in any particular direction (i ≡ x or i ≡ y) is equal to the total mass, except

for the mass associated with kinetically constrained degrees of freedom. The program provides

the total modal effective mass in either direction as

TMEMi =
M∑
α=1

mα,i, (33)

where M is the number of adopted (determined) modes. The minimum number of eigenvectors

is typically determined such as the TMEMi value exceeds the 90% of the total mass. If this value

is considerably smaller than the total mass, it means that the modes that have a significant

participation in that direction have not been extracted.

3. Response spectrum - generation of artificial accelerograms

To describe a seismic motion we generally use accelerograms, i.e. the time variation of

ground acceleration. In 2D analysis, such a motion considers two components of the acceleration

vector. One component serves to describe motion in the horizontal direction, the other one in

the vertical direction. The Eurocode 8 (EC8) allows for the description of seismic motion the

application of artificial, real or simulated accelerograms.

The real accelerograms follow from the measurements of real earthquakes by seismographic

stations installed all over the world. Simulated accelerograms are obtained by simulating both

the source of a seismic activity and mechanism of transport of seismic waves. However, the

interest of structural engineers is usually shifted towards artificial accelerograms. This is why

we address this issue in the next subsections in more details.
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3.1. Elastic response spectrum

The elastic response spectrum of an accelerogram is represented by the graph of a function

a(T ) the value of which is defined as the maximum acceleration of a harmonic oscillator with

a single degree of freedom having the natural period T and being exited by this accelerogram.

The physical model adopted to compute the response spectrum is plotted in Fig. 7. Each

oscillator i with the mass mi, the spring stiffness k1, and the coefficient of viscous damping

ci has the natural frequency ω0,i =
√
ki/mi and the coefficient of proportional damping ξi =

ci/(2
√
miki). Providing its base is exited by the acceleration, the corresponding mass will move

with the acceleration ai(t). The maximum absolute value of ai(t) represents the value of response

spectrum Se(ai) plotted as a function of Ti = 2π/ω0,i. An example of the design response

spectrum appears in Fig. 8.

Obrázek 7: Principle of computation of elastic response spectrum: harmonic oscillators with various natural

frequencies exited by accelerogram a0(t) and monitored response ai(t).

3.2. Artificial accelerograms

An artificial accelerogram has to be generated such as to correspond to the elastic response

spectrum with the viscous damping ξ = 0.05defined in the Eurocode 8. This standard further

determines the minimum duration of the acceleration and their minimum number used to

address the response of a structure to seismic actions.

The algorithm to generate artificial accelerograms is taken from [13] and consists from the

following steps:

1. The Fourier spectrum with constant spectral amplitudes and random phase shifts is ge-

nerated.

2. The Fourier transform is then used to get the corresponding time variation of acceleration.

3. For this accelerogram, the elastic response spectrum of single degree of freedom systems

with frequencies corresponding to frequencies used in the Fourier spectrum is computed.
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Obrázek 8: Comparing design response spectrum defined by EC8 and response spectrum extracted from gene-

rated accelerogram, adopted from [5].

4. The contribution of the design elastic response spectrum specified by EC8 and the con-

tribution due to the generated accelerogram are computed for each frequency.

5. Spectral amplitudes of the original Fourier spectrum are adjusted based on the contribu-

tions acquired in the previous step. The phase shifts remain the same.

6. The steps 2–5 are repeated for the adjusted Fourier spectrum until the calculated response

spectrum matches the design elastic response spectrum due to EC8 up to an error less

than 10 %, see Fig. 8.

The accelerogram obtained from this algorithm complies with the EC8 conditions, but it

is stationary and lacks characteristic stages typical of real measured accelerograms, see the

stationary distribution in Fig. 9.

For this accelerogram to contain an amplification stage, a region of strong motion, followed

by gradual decay it is necessary to multiply the stationary accelerogram by an envelope function

E (t) [14]

E(t) = atbe−ct, (34)
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Obrázek 9: Comparing stationary and non-stationary (modulated) artificial accelerograms, adopted from [5].

with coefficients

a =

(
e

εTw

)b
, (35)

b =
−ε lnµ

1 + ε(ln ε− 1)
, (36)

c =
b

εTw
. (37)

where Tw the specific earthquake duration. The parameter ε determines at what time instant of

Tw the envelope function attains its maximum value. The parameter µ determines the reduction

factor of the envelope function at time Tw with respect to ts maximum value.

The accelerogram is generated such to get zero velocity and displacement at time Tw, while

zero initial velocity and displacement contained already by the stationary accelerogram are

retained. The impact of the application of envelope function on the time variation of the gene-

rated acceleration is illustrated in Fig. 9, compare stationary and non-stationary accelerograms.

Further details regarding the response spectrum and accelerograms in connection to EC8 are

available in [15, 16]. For details on the use of envelope function the interested reader is referred

to [13].
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4. Introducing material damping

The most simple approach to constructing the damping matrix CM, adopted also in the

GEO5 FEM program, is based on the assumption of proportional damping. In such a case it

holds

ΦTCMΦ = 2Ωd, (38)

where Φ is the modal matrix the columns of which are represented by individual eigenvectors

of the vibrating system, recall Section 2. The matrix Ωd is diagonal with the components

ωdi = ξiωi, where ωdi denotes the damped frequency and ξi is the coefficient of proportional

damping associated with the natural frequency ωi. Then, the eigenvectors are orthogonal also

to the damping matrix CM. In case of modal decomposition the solution of Eq. (1) splits into

the system of n independent differential equations, where n is the number of used eigenvectors,

which considerably simplifies the analysis.

Formulation of proportional damping (38) is very simple, but it assumes the knowledge of

the coefficients of proportional damping ξi for all the frequencies. This can hardly be achieved

in practice. Additional hypothesis allowing for the determination of all ξi on the basis of just a

few constants is therefore needed. In this regard, it is convenient to consider in most practical

applications the Rayleigh damping which assumes the damping matrix CM in the form of linear

combination of the mass and stiffness matrices as

CM = αM + βK, (39)

where α, β are the parameters of proportional damping6. The fact that the eigenvectors in the

GEO5 FEM program are normalized with respect to the mass matrix provides upon multiplying

Eq (39) from the left by ΦT and from the right by ΦT

2Ωd = αI + βΩ2 −→ 2ωdi = 2ξiωi = α + βω2
i , (40)

where I is the identity matrix. The spectral matrix Ω is similar to Ωd diagonal and collects on

the diagonal the squares of natural frequencies.

It is evident from Eq. (40) that to determine parameters α, β it is sufficient to know two

eigenfrequencies ωi and their corresponding coefficients ξi. If we accept that both frequencies

6These parameters should not be confused with the parameters α, β, γ introduced in Section 1.4.
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ωa and ωb are damped by the same coefficient of proportional damping, i.e. ξa = ξb = ξ, we get

α =
2ξωaωb
ωa + ωb

, β =
2ξ

ωa + ωb
. (41)

However, most often we have at our disposal only one value of the coefficient of proportional

damping for the lowest natural frequency ω1. If we accept the hypothesis that this frequency is

damped the least, then using Eq. (40) gives

dξ

dωi
=

1

2

(
− α

ω2
i

+ β
)

= 0. (42)

Introducing ωi = ω1 into Eq. (42) yields

α = ω2
1β. (43)

Back substitution for α from Eq. (43) into Eq. (40) finally provides

α = ξ1ω1 , β =
ξ1
ω1

. (44)

Further details can be found in [6].

4.1. Example of calculating α, β

Details regarding the presented example including the geometry of the numerical model and

material properties of individual layers of subsoil are available in [5]. Henceforth, we limit our

attention to a brief description of the potential way of calculating the parameters of Rayleigh

damping α, β.
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Obrázek 10: a) Subsoil model, b) Response spectrum.

Eurocode 8 offers a single values of proportional damping ξ = 0.05 (5%) only. The presented

example will show, how strongly are individual natural frequencies damped in dependence on
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the way of calculating the parameters α, β. For illustration, we consider a simple model displyed

in Fig. 10(a). The impact of material damping is best evaluated on the basis of fixed boundary

conditions on the BB boundary (FBB). To allow for relating the natural frequencies of the

system to the prescribed acceleration we shall consider the accelerogram in Fig. 3 generated on

the grounds of the design reponse spectrum plotted in Fig. 10(b), recall Section 3.

This accelerogram introduces the horizontal (shear) seismic waves only. Thus to determine

the first few natutral frequencies, we considered the kinematic boundary conditons on the lateral

boundaries in accordance with Fig. 10(a), recall also Section 2 and Fig. 6. To identify purely

shear dominated mode shapes we employed the Modal participation factor Γα,x.

The following three variants of the calculation of parameters α, β are presented for illustration:

1. The least damped is the first natural frequency. The parameters α, β follow from Eq. (44).

2. The least damped frequecies are found between the first and third7 natural frequency. The

third natural frequency was adopted according to recommendations presented in [10]. The

parameters α, β follow from Eq. (41).

3. The least damped frequencies are found between the first and the the most dominant

frequency ωRS of the design response spectrum, see Fig. 10(b). The parameters α, β follow

from Eq. (41).

Tabulka 1: Parameters of Rayleigh damping for ξ = 5%, adopted from 1

Damping ω α β

Typ 1 ω1 0.1875 0.0133

Typ 2 ω1 + ω3 0.3143 0.0043

Typ 3 ω1 + ωRS 0.2888 0.0061

The resulting values of natural frequencies and parameters α, β are summarized in Table 1.

A graphical representation of the amount of damping is provided in Fig. 11. Clearly, only the

chosen frequncies are damped with ξ = 5%. Apart from identifying the domain of the least

damped frequecies we also absored that particularly high frequecies of the design spectrum are

damped the most8.

7More specifically, the third frequency from the list of purely shear mode shapes.
8The abscissa represents natural periods T = 2π

ω .
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Obrázek 11: Proportional damping ratio as a function natural period.
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Obrázek 12: Comparing response of homogeneous layer assuming fixed and absorbing boundary conditions to

evaluate influnce of material damping.

Finally, to judge the influence of material damping we compare the influnce of fixed and

absorbing (ABB) bounary conditions on the response of a homogeneous layer exited by the hori-

zontal seismic waves generated from the design response spectrum in Fig. 10(b). For simplicity,

we consider the Free field column analysis depicted in Fig. 10(a). The resulting distributions

of the relative horizontal displacement at point A are seen in Fig. 12. The impact of material

damping is evident and in the case of FBB conditions it repersents the only way how to bring he

vibrating system to rest once the applied acceleration ceases. For ABB conditions, the material

damping does not play a significant role.
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5. Solution process

It is clear from the previous text that earthquake analysis requires a certain sequence of

calculations. In particular:

1. Static analysis in a given stage to get the initial stress state prior to application of

dynamic load (prescribed acceleration).

2. Solution of the eigenvalue problem to acquire natural frequencies and mode

shapes. The program determines the first M eigenfrequencies ω1 < ω2 < . . . < ωM , where

M the required number set by the user. Depending on the solution setting it may happen

that not all requested eigenfrequencies were extracted or some of them were missed. When

employing the Jacobi method the program searches for more frequencies than requested

so that the number frequencies found typically exceeds the number specified by the user.

The program offers a table collecting not only all converged frequencies but also the ones

found with the error larger than the one specified in the solution setting. The maximum

error associated with the highest frequency is provided. The table also lists for each

eigenfrequency the Modal participation factor and Modal effective mass identifying which

of the basic vibration modes (vibration either horizontal or vertical directions) prevails in

the given eigenvector. A visual check is available by animating the particular eigenvector.

The extracted eigenfrequencies can be used to determine the parameters of α, β of the

Rayleigh damping when specifying the coefficient of proportional damping ξ in the ma-

terial setting. The solution process can be terminated after completing the eigenvalue

analysis to verify, either visually or numerically, the expected range of frequencies used

in the calculation of α, β, recall Section 4.

3. Free field column analysis. The Free field column analysis provides the time variation

of traction boundary conditions prescribed on lateral boundaries of the computational

model, see Section 1.3. On both boundaries, the analysis is carried out simultaneously.

The material models in individual layers, boundary conditions on the BB boundary, the

prescribed acceleration, and the initial time step comply with the 2D analysis. The results

of this analysis cannot be visualized.

4. Two-dimensional earthquake analysis pertinent to given calculation stage. The

analysis provides a time variation of all quantities. These can be presented in an arbitrary

time step, visualized step by step or animated.
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