

PAROI MOULÉE EN BÉTON ARMÉ AVEC UN NIVEAU DE TIRANTS

Programme : GEO5 2020 – Vérification des Soutènement

Fichiers : NFP94-282-Ex2-ELS.gp2 ; NFP94-282-Ex2-ELU1.gp2 ; NFP94-282-Ex2-ELU2.gp2

Contexte

L'application de l'Eurocode 7 se complète par une annexe nationale. En France, le choix a été fait de rédiger une norme d'application pour chacun des types d'ouvrages géotechniques. Pour les écrans, la norme NF P94-282 est applicable. Un comité d'expert sous l'égide du CEREMA a rédigé un guide d'application. Nous nous basons ici sur l'exemple 2 de ce guide pour appliquer le programme GEO5 – Vérification des soutènements. Dans la suite, il sera cité comme "Référence".

Table des matières

1	HYP	POTHESES	2
	1.1	Géométrie	2
	1.2	Données géotechniques	2
	1.3	Démarche de calcul	3
2	CAL	CUL MISS	4
	2.1	Définition du modèle	4
	2.2	Première phase : Etat de contraintes initiales	8
	2.3	Seconde phase – Excavation à -2 m	10
	2.4	Troisième phase – Mise en place des tirants	11
	2.5	Quatrième phase – Excavation à -4 m	12
	2.6	Passage des calculs	12
	2.7	Résultats de la phase 4	13
3	CAL	CUL ELU 1	14
	3.1	Item "Paramètres"	14
	3.2	Passage des calculs	15
	3.3	Résultats de la phase 4	15
4	CAL	CUL ELU 2	16
	4.1	Item "Paramètres"	16
	4.2	Passage des calculs	16
	4.3	Résultats de la phase 4	17
5	SYN	ITHESE	18
	5.1	Efforts dans l'écran et dans le tirant	18
	5.2	Vérification du rapport butée mobilisée / butée mobilisable (GEO)	18
	5.3	Justification du tirant (STR)	19

1 HYPOTHESES

1.1 Géométrie

- Soutènement : paroi moulée en béton armé de 0,8 m d'épaisseur.
- Tirants : horizontaux à 2 m du sommet de l'écran ; acier de construction, HA de diamètre 32 mm, diamètre de forage de 120 mm ; longueur totale de 20 m dont 10 m de longueur libre (pas de précontrainte).

1.2 Données géotechniques

	Epaisseur (m)	Poids volumique γ (kN/m3)	Angle de frottement φ' (°)	Cohésion c' (kPa)	Module pressiométrique <i>E_M</i> (MPa)	Coefficient rhéologique α
Remblais argileux	2	18	18	0	2,5	0,5
Limons	1	19	25	5	5	0,5
Sable	4	20	30	0	20	0,33
Marne compacte	>10	20	30	30	50	0,66

1.3 Démarche de calcul

On fait le choix d'un modèle de calcul aux états limites (MEL) ou d'un modèle d'interaction solstructure (MISS) et d'une distribution de coefficients partiels.

Le modèle MEL est adapté aux écrans en consoles (on utiliserait alors le programme GEO5 – Conception des soutènements). Ce n'est pas le cas présent, on va ici utiliser le programme GEO5-Vérification des soutènements qui peut traiter les deux approches.

On va réaliser :

- Un calcul MISS avec vérification du rapport de 1.89 entre butée mobilisable et butée mobilisée.
- Un calcul MEL avec pondération des actions par 1.35 et des résistances par 1.4
- Un calcul MEL avec pondérations des résistances par 1.4 x 1.35 = 1.89.

2 CALCUL MISS

2.1 Définition du modèle

2.1.1 Item "Paramètres"

Cliquer sur "Edition" pour régler les paramètres : en situation permanente tous les coefficients sont 1.0.

lition des paramètres de l'étude actu	elle : Vérification des soutènements	X
Matériaux et normes Calcul des pre	sions Ancrages	
Calcul de la pression active :	Absi	Editer les paramètres de
Calcul de la pression passive :	Absi 🔹	calcul du
Méthode de calcul :	pressions dépendantes 🔹	Stabilité
Calcul du cóisme :	Mananahe Okahe	des
Module de réact. du sol de fond. :	pressiomètre PMT 🔹	pentes
Réduire le module de réaction d	u sol de fondation pour la paroi berlinoise	
Input different structure/soil fric	tion angles for active and passive pressures	
Tassement du terrain :	méthode parabolique 🔹	
Méthode de vérification :	calcul selon EN 1997 🔹	
Approche de calcul :	2 - réduction de la charge et de la résistance 🔹	
Situation de calcul permanente Sit	uation de calcul transitoire Situation de calcul accidentelle Situation de calcul au séisme	
Confficient de séduction de la d		
- Coefficient de reduction de la ci	Défenerable Exercise	
Charge permanente :	$\gamma_c = 1.00 [-]$ 1.00 [-]	
Charge variable :	$\gamma_{0} = 100 \text{ fm} = 0.000 \text{ fm}$	
Action de l'eau :	ν = 100 r-1	
Soulèvement hydraulique (HVD) :	$r_{\rm W} = 100$ (-) 100 (-)	
Coefficient de réduction de la ré	sistance (R)	
Coefficient de réduction de la stab	lité de l'ancrage ' $\gamma_{\rm ev} = 100$ (-)	
Coefficient de réduction de la résir		
coefficient de reddenon de la resis		
		✓ OK
		X Annuler

On n'oubliera pas de vérifier les réglages suivants :

- utiliser les coefficients partiels pour les calculs de pression,
- considérer une pression dimensionnante minimale.

Paramètres du calcul : (saisie pour l'étude actuelle)		♣ Sélectionner	Calcul d'utilisateur des pressions limites :	réduire selon les paramètres 🔻
Structures en béton : Coefficients EN 1992-1-1 : Structures en acier :	EN 1992-1-1 (EC2) standard EN 1993-1-1 (EC3)	Gérer paramètres	Nombre de sections du mur en EF : — Calcul des pressions — Considérer la pression dimensionnante minimale	100
Coefficient partiel de capacité portante de la section en acier Structures en bois : Coefficient partiel des propriétés du bois : Coefficient de l'effet de charge et d'humidité (bois) :	: γ _{M0} = 1.00 EN 1995-1-1 (EC5) γ _M = 1.30 kmod = 0.50	Ajouter dans le gestionnaire	Coef. partiel de la pression dimensionnante minimale (\u03c3 _{a,min} =k\u03c3 ₂)	-kσ ₂): k = 0.10 [-]
Coefficient de la largeur de section en glissement (bois) : Calcul de la pression active : Absi Calcul de la pression passive : Absi Méthoda de calcul : presections dénandantes	k _{cr} = 0.67	4 Edition		

2.1.2 Item "Profil"

La cote de surface est établie à la cote de 0 m. On ajoute 4 couches d'épaisseurs :

t1 = 2 m

t2 = 1 m

t3 = 4 m

t4 = 12 m

Num.	Epaisseur de la couche	Profondeur	+ 🖬 Ajouter	- Information sur la p	osition
	t [m]	z [m]		Cote de surface :	[m]
1	2.00	0.00 2.00			
2	1.00	2.00 3.00		Coordonnees GPS	Afficher
3	4.00	3.00 7.00		GPS : (n'est pas saisi)	sur la carte
4	12.00	7.00 19.00			
5	-	19.00 ∞			

2.1.3 Item "Module Kh"

On règle ici la méthode de calcul sur "NF P94-282", et le module sera défini comme un paramètre de sol plutôt que d'être interpréter un essai pressiométrique.

— Paramètres ———		
Méthode de calcul :	NF P 94-282	•
Module de Ménard :	saisir comme un paramètre du sol	•

2.1.4 Item "Sols"

On définit ici les 4 types de sol qui constitue le massif.

On intègre les valeurs de frottement actif $(2/3\phi)$ et passif $(-1/2\phi)$.

	Poids volumique γ (kN/m3)	Angle de frottement φ' (°)	φa (°)	φp (°)	Cohésion c' (kPa)	Module pressiométrique <i>E_M</i> (MPa)	Coefficient rhéologique α
Remblais argileux	18	18	12	9	0	2,5	0,5
Limons	19	25	16.67	12.5	5	5	0,5
Sable	20	30	20	15	0	20	0,33
Marne compacte	20	30	20	15	30	50	0,66

Edition des propriétés des sols					×
- Identification					— Affichage —
Nom : Remblais argileux					Catégorie des échantillons :
					GEO 👻
— Données de base ——					Chercher :
Poids volumique :	γ =	18.00	[kN/m ³]		Sous-catégorie :
Etat de contraintes :	effectives		-		Sols (1 - 16) 👻
Angle de frottement interne :	φef =	18.00	[°]		Echantillon :
Cohésion du sol :	Cef =	0.00	[kPa]		
Angle de frottement actif :	δ _{act} =	12.00	[°]		-
Angle de frottement passif :	δ _{pas} =	9.00	[°]		1100m
— Pression au repos ——				?	Couleur
Sol :	pulvérulent		-		Couldui :
	di -				Arrière-plan :
— Soulèvement hydraulig	ue			?	saisir la couleur 👻
Calcul soulèvem. hydraulique :	standard		-		
Poids volumique du sol saturé	: Ysat =	18.00	[kN/m ³]		
	1300				
— Module de réaction du	sol de fondatio	on (Ménard)		2	
Module pressiométrique :	Eva -	2 50	[MDa]		
Coefficient rhéologique :		0.50	[11]		
coencient meologique .	u =	0.50	[-]		
	1				
Classer Suprimer					OK + 🤚 🖌 OK 🗙 Annuler

Boite de dialogue pour saisie des paramètres du remblais argileux

IdentificationAffichageNom :LimonsCatégorie des échantillons :Nom :LimonsGEODonnées de base?GEOPoids volumique : $\gamma = 19.00$ [kN/m³]GEOEtat de contraintes :effectives \checkmark Angle de frottement interne : $\varphi ef = 25.00$ [']Chercher :Cohésion du sol : $cef = 5.00$ [kPa]GeoAngle de frottement actif : $\delta_{act} = 16.67$ [']Echantillon :Angle de frottement passif : $\delta_{pas} = 12.50$ [']1 LoamPression au repos?Couleur :Sol:pulvérulent?Calcul soulèvem. hydraulique?Calcul soulèvem. hydraulique :standardPoids volumique du sol saturé : $\gamma_{sat} = 19.00$ [kN/m³]- Module de réaction du sol de fondation (Ménard)?Module pressiométrique :EM = 5.00 [MPa]Coefficient rhéologique : $\alpha = 0.55$ [-]	Edition des propriétés des sols					>
Nom : Limons Catégorie des échantillons : Obids volumique : $\gamma = 19.00 \text{ [kN/m^3]}$ GEO Poids volumique :: $\gamma = 19.00 \text{ [kN/m^3]}$ Catégorie des échantillons : Poids volumique :: $\gamma = 19.00 \text{ [kN/m^3]}$ Catégorie des échantillons : Poids volumique :: $\gamma = 19.00 \text{ [kN/m^3]}$ Catégorie : Etat de contraintes : effectives \checkmark Angle de frottement interne : $\varphi ef = 25.00 \text{ [r]}$ Cohésion du sol : Cef = 5.00 [kPa] Angle de frottement actif : $\delta_{act} = 16.67 \text{ [r]}$ Angle de frottement passif : $\delta_{pas} = 12.50 \text{ [r]}$ Pression au repos ? Couleur : Couleur : Sol : pulvérulent \checkmark Arrière-plan : Salisir la couleur salisir la couleur Salisir la couleur Calcul soulèvem. hydraulique : $\gamma_{sat} = 19.00 \text{ [kN/m^3]}$ \land Module de réaction du sol de fondation (Ménard) ? \land Module pressiométrique : $\alpha = 0.50 \text{ [-]}$ \land	- Identification					— Affichage —
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Nom :	Limons				Catégorie des échantillons :
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						GEO
Poids volumique : $\gamma =$ 19.00 [kN/m³] Sous-catégorie : Etat de contraintes : effectives \checkmark Angle de frottement interne : $\varphi ef =$ 25.00 [°] Cohésion du sol : $Cef =$ 5.00 [kPa] Angle de frottement actif : $\delta_{act} =$ 16.67 [°] Angle de frottement passif : $\delta_{pas} =$ 12.50 [°] 1 Pression au repos ? Couleur : Couleur : Sol: pulvérulent ? Arrière-plan : Saisir la couleur saisir la couleur saisir la couleur Calcul soulèvem. hydraulique : $\gamma_{sat} =$ 19.00 [kN/m³] Module de réaction du sol de fondation (Ménard) ? . Module pressiométrique : $E_{M} =$ 5.00 [MPa] Coefficient rhéologique : $\alpha =$ 0.50 [-]	— Données de base ——					Chercher :
Etat de contraintes : effectives Angle de frottement interne : $\varphi_{ef} = 25.00$ (°] Cohésion du sol : $c_{ef} = 5.00$ [kPa] Angle de frottement actif : $\delta_{act} = 16.67$ (°] Angle de frottement passif : $\delta_{pas} = 12.50$ (°] Pression au repos Sol : pulvérulent Sol : pulvérulent Calcul soulèvem. hydraulique : standard Poids volumique du sol saturé : $\gamma_{sat} = 19.00$ [kN/m ³] Module de réaction du sol de fondation (Ménard) Poids volumique : $E_{M} = 5.00$ [MPa] Coefficient rhéologique : $\alpha = 0.50$ [–]	Poids volumique :	γ =	19.00	[kN/m ³]		Sous-catégorie :
Angle de frottement interne : φ_{ef} = 25.00 [°]Echantillon :Cohésion du sol : C_{ef} = 5.00 [kPa]Image: Constant of the second secon	Etat de contraintes :	effectives		-		Sols (1 - 16)
Cohésion du sol : c_{ef} = 5.00 [kPa] Angle de frottement actif : δ_{act} = 16.67 [°] Angle de frottement passif : δ_{pas} = 12.50 [°] - Pression au repos ? Couleur : Sol : pulvérulent - Soulèvement hydraulique ? Arrière-plan : Calcul soulèvem. hydraulique : standard Poids volumique du sol saturé : γ_{sat} = 19.00 [kN/m³] - Module de réaction du sol de fondation (Ménard) ? . Module pressiométrique : E _M = 5.00 [MPa] Coefficient rhéologique : α = 0.50 [-]	Angle de frottement interne :	φef =	25.00	[°]		Echantillon :
Angle de frottement actif : $\delta_{act} = 16.67$ [°] Angle de frottement passif : $\delta_{pas} = 12.50$ [°] Pression au repos Sol : pulvérulent Sol : pulvérulent Module verient hydraulique Sol : y _{sat} = 19.00 [kN/m ³] Module de réaction du sol de fondation (Ménard) Module pressiométrique : $E_{M} = 5.00$ [MPa] Coefficient rhéologique : $\alpha = 0.50$ [–]	Cohésion du sol :	Cef =	5.00	[kPa]		
Angle de frottement passif : δ_{pas} = 12.50 ['] 1 Loam Pression au repos ? Couleur : Sol : pulvérulent ? - Soulèvement hydraulique ? Arrière-plan : Calcul soulèvem. hydraulique : standard ? Poids volumique du sol saturé : γ_{sat} = 19.00 [kN/m³] - Module de réaction du sol de fondation (Ménard) ? ? Module pressiométrique : E _M = 5.00 [MPa] Coefficient rhéologique : α = 0.50 [-]	Angle de frottement actif :	δ _{act} =	16.67	[°]		
Pression au repos ? Couleur : Sol : pulvérulent \land Sol soulèvement hydraulique ? Arrière-plan : Calcul soulèvem. hydraulique : standard ? Calcul soulèvem. hydraulique : standard ? Poids volumique du sol saturé : γ_{sat} = 19.00 [kN/m³] Module de réaction du sol de fondation (Ménard) ? ? Module pressiométrique : E_M = 5.00 [MPa] Coefficient rhéologique : α = 0.50 [-]	Angle de frottement passif :	δnas =	12.50	[°]		
Sol: $pulvérulent$ - Soulèvement hydraulique Calcul soulèvem. hydraulique : standard Poids volumique du sol saturé : $\gamma_{sat} = 19.00$ [kN/m ³] - Module de réaction du sol de fondation (Ménard) Module pressiométrique : $E_{M} = 5.00$ [MPa] Coefficient rhéologique : $\alpha = 0.50$ [–]	- Pression au repos	-pus			2	1 Loam
Arrière-plan : Soulèvement hydraulique Calcul soulèvem. hydraulique : standard Poids volumique du sol saturé : γ_{sat} = 19.00 [KN/m³] Module de réaction du sol de fondation (Ménard) ? Module pressiométrique : E _M = 5.00 [MPa] Coefficient rhéologique : α =	Sol :	pulvérulent		-		Couleur :
- Soulèvement hydraulique ? Calcul soulèvem. hydraulique : standard Poids volumique du sol saturé : γ_{sat} = 19.00 [kN/m³] - Module de réaction du sol de fondation (Ménard) ? Module pressiométrique : E_M = 5.00 Coefficient rhéologique : α = 0.50						Arrière-plan ·
Calcul soulèvem hydraulique : standard Poids volumique du sol saturé : $\gamma_{sat} =$ 19.00 [kN/m ³] Module de réaction du sol de fondation (Ménard) ? Module pressiométrique : $E_M =$ 5.00 [MPa] Coefficient rhéologique : $\alpha =$ 0.50 [-]	- Soulàvament hydraulic				2	saisir la couleur
Poids volumique du sol saturé : $\gamma_{sat} = 19.00 \text{ [kN/m^3]}$ — Module de réaction du sol de fondation (Ménard) ? Module pressiométrique : $E_M = 5.00 \text{ [MPa]}$ Coefficient rhéologique : $\alpha = 0.50 \text{ [-]}$	Colord and branching and and	lue		_	·	
Poids volumique du sol sature : $\gamma_{sat} =$ 19.00 [kN/m²] - Module de réaction du sol de fondation (Ménard) ? Module pressiométrique : $E_M =$ 5.00 [MPa] Coefficient rhéologique : $\alpha =$ 0.50 [-]	Calcul soulevem. hydraulique :	standard	10.00	•		
— Module de réaction du sol de fondation (Ménard) ? Module pressiométrique : E _M = 5.00 [MPa] Coefficient rhéologique : α = 0.50 [-]	Poids volumique du sol saturé	: γ _{sat} =	19.00	[kN/m ²]		
Module de réaction du sol de fondation (Ménard) $?$ Module pressiométrique : $E_M = 5.00$ [MPa] Coefficient rhéologique : $\alpha = 0.50$ [-]					-	
Module pressiométrique : EM = 5.00 [MPa] Coefficient rhéologique : α = 0.50 [–]	 Module de réaction du 	sol de fondation	n (Ménard)		? ·	
Coefficient rhéologique : $\alpha = 0.50$ [–]	Module pressiométrique :	EM =	5.00	[MPa]		
	Coefficient rhéologique :	α =	0.50	[-]		
Classer Suprimer OK + 🏠 OK + 🕹 🗸 OK	Classer Suprimer				OK + 🟫	OK + 🖖 🗸 OK 🗙 Annuler

Boite de dialogue pour saisie des paramètres des limons

Edition des propriétés des sols					×		
- Identification					— Affichage —		
Nom :	Sables				Catégorie des échantillons :		
					GEO 👻		
— Données de base ——				? ·	Chercher :		
Poids volumique :	γ =	20.00	[kN/m ³]		Sous-catégorie :		
Etat de contraintes :	effectives		•		Sols (1 - 16) 💌		
Angle de frottement interne :	φef =	30.00	[°]		Echantillon :		
Cohésion du sol :	Cef =	0.00	[kPa]				
Angle de frottement actif :	δ _{act} =	20.00	[°]				
Angle de frottement passif :	δ _{pas} =	15.00	[°]		11.0am		
— Pression au repos ——				? ·	Couleur :		
Sol :	pulvérulent		•				
					Arrière-plan :		
— Soulèvement hydrauliq	ue				saisir la couleur 💌		
Calcul soulèvem. hydraulique :	standard		•		•		
Poids volumique du sol saturé	: γ _{sat} =	20.00	[kN/m ³]				
— Module de réaction du	- Module de réaction du sol de fondation (Ménard)						
Module pressiométrique :	EM =	20.00	[MPa]				
Coefficient rhéologique :	α =	0.33	[-]				
2.1.5.							
Classer Suprimer]			0K + 🔶	OK + 🚽 🥒 OK 🎽 Annular		
Suprimer				UK T			

Boite de dialogue pour saisie des paramètres des sables

- Identification					— Affichage —	
Nom :	Marnes compactes				Catégorie des échar	ntillons :
					GEO	
— Données de base ——				- ? ·	Chercher :	
Poids volumique :	γ =	20.00 [k	:N/m ³]		Sous-catégori	e :
Etat de contraintes :	effectives		*		Sols (1 - 16)	
Angle de frottement interne :	φef =	30.00 [°]		Echantillon :	
Cohésion du sol :	Cef =	30.00 [k	Pa]			
Angle de frottement actif :	δ _{act} =	20.00 [°]			
Angle de frottement passif :	δ _{pas} =	15.00 [°	1		11.0am	[[[[]]]]
Pression au repos				- ? -	Couleur :	
Sol :	cohérent		•			
Coefficient de Poisson :	V =	0.30 [-	-]		Arrière-plan	:
- Soulèvement hydraulic	lue			- ? ·	saisir la couleur	
Calcul soulèvem. hydraulique :	standard		•			
Poids volumique du sol saturé	: y _{sat} =	20.00 [k	:N/m ³]			
— Module de réaction du	sol de fondatior	n (Ménard) —		- ? -		
Module pressiométrique :	E _M =	50.00 [N	/Pa]			
Coefficient rhéologique :	α =	0.66 [-	-]			

Boite de dialogue pour saisie des paramètres des marnes compactes

2.1.5 Item Géométrie

La paroi en béton armé de 0.8m d'épaisseur et de 7.65 m de profondeur est ici définie.

Edition du tronçon	×
Type de la paroi :	Paroi rectangulaire en béton armé 🔹 🔻
Identification de la section :	Mur en béton armé h = 0.80 m Personnaliser
Long. du tronçon :	l = 7.65 [m]
— Géométrie ———	
Epaisseur de la paroi :	h = 0.80 [m]
- Information	
A = 8.00E-01 [m ² /m]	I = 4.27E-02 [m ⁴ /m]
∑ _∎ • <u>C</u> atalogue d'utilisateu	r OK X Annuler

2.1.6 Item Matériau

Un béton C20/25 est choisi.

2.1.7 Item "Assignation"

On associe ici chaque couche du profil avec un des sols renseignés.

///			Assignation par le clic gauch Remblais argileux
Num.	Epaisseur [m]	Sol assigné	
1	2.00	Remblais argileux	
2	1.00	Limons	▼
3	4.00	Sables	▼ 2//////////
4	12.00	Marnes compactes	▼ 1////////////////////////////////////
5		Marnes compactes	-

2.2 Première phase : Etat de contraintes initiales.

On reproduit le phasage de construction en supposant la paroi en place. Aussi, on commence avec un état de contraintes initiales.

2.2.1 Item "Excavation"

Pour cette étape l'excavation est donc nulle.

2.2.2 Item "Eau"

On définit la nappe à la surface. On choisit le cas permettant de définit les paramètres de la nappe devant et derrière la paroi.

\times =			
h	Paramètres de la nappe phréatique ———		
h	Nappe d'eau derrière la structure : h ₁ =	0.00	[m]
¹¹²	Nappe d'eau devant la structure : h ₂ =	0.00	[m]
	- Fissure de traction		
	Profondeur de fissure de traction : $h_t =$		[m]

2.3 Seconde phase – Excavation à -2 m

On ajoute une nouvelle phase de construction.

2.3.1 Item "Excavation"

On établit la profondeur de fouille à 2m.

2.3.2 Item "Eau"

On rabat la nappe au niveau du fond de fouille, donc à 2 m.

\times =			
h ₁	— Paramètres de la nappe phréatique ———		
	Nappe d'eau derrière la structure : h ₁ =	0.00	[m]
"2	Nappe d'eau devant la structure : $h_2 =$	2.00	[m]
	- Fissure de traction		
	Profondeur de fissure de traction : $h_t =$		[m]

2.4 Troisième phase – Mise en place des tirants

On ajoute une nouvelle phase de construction.

2.4.1 Item "Ancrages"

Le fenêtre d'édition des ancrages est détaillée pour renseigner tout type de tirant.

On choisit la barre précontrainte pour pouvoir définir une longueur libre et une longueur scellée. On laisse la force de précontrainte nulle.

On notera que les résistances à la rupture et à l'arrachement sont des données précalculées pour pouvoir mener la vérification STR de l'ancrage (voir chapitre "Synthèse).

Edition de l'ancrage										×
Type de tirant d'ancrage	e:		barre (précontrainte				-	14	
Ligne de produits :			utilisat	teur				•		
Nom :									⊢	^l k
 Paramètres de l'ancra 	age				- Résistance à la r	upture				
Profondeur : z	=	2.00	[m]	PTTTTTTTTTTTT	saisir		•	R _t =	400.00	[kN]
Longueur libre : I	=	10.00	[m]	b	- Résistance à l'ar	rachement du sol				
Long. du scellement : I _k	=	10.00	[m]		saisir		-	R _e =	191.00	[kN]
Inclin.: α	=	0.00	[°]	A	 Résistance à l'ar 	rachement du coulis de	ciment			
Distance entre : b	=	1.00	[m]		saisir		•	R _c =	133.00	[kN]
- Rigidité										
Type de saisie :		saisir le diamèt	re 🔻							
Diamètre : d _s	=	32.0	[mm]							
Module d'élast. : E	=	210000.00	[MPa]							
Force précontrainte : F	=	0.00	[kN]							
						ОК + ∲	+ -Ū-	V OK	X Ar	nnuler

2.5 Quatrième phase – Excavation à -4 m

On ajoute une nouvelle phase de construction.

2.5.1 Item "Excavation"

On établit la profondeur de fouille à 4m.

2.5.2 Item "Eau"

On rabat la nappe au niveau du fond de fouille. Donc à 4 m.

\times =			
h	Paramètres de la nappe phréatique		
h	Nappe d'eau derrière la structure : h ₁ =	0.00	[m]
"2	Nappe d'eau devant la structure : h ₂ =	4.00	[m]
	- Fissure de traction		
	Profondeur de fissure de traction : $h_t =$		[m]

2.6 Passage des calculs

En cliquant sur "Calculs", les quatre phases sont calculées. Leur affichage en vert signifie que le calcul s'est correctement déroulé (aucune instabilité rencontrée par exemple).

2.7 Résultats de la phase 4

Le cadre du bas affiche si le calcul a été réalisé et les principaux résultats à analyser.

Résultats			
Le calcul a	été effectué correctem	ent.	
Intensité	maximale des forces	internes appliquées à	la structure
Force mot	rice maximale = 64.41	l kN/m	
Moment m	naximal = 50.55	5 kNm/m	
Déformation	on maximale = 10.3	3 mm	
Forces de	s ancrages		
Nie	Profondeur	Déformation	Force de l'ancrage
ivum.	[m]	[mm]	[kN]
1	2.00	-7.7	91.92

2.7.1 Affichage "Efforts internes"

3 CALCUL ELU 1

Par rapport au calcul précédent, il suffit de définir un nouveau jeu de paramètres.

3.1 Item "Paramètres"

Cliquer sur "Edition" pour régler les paramètres : pondération des actions par 1.35 et des résistances par 1.4.

Edition des paramètres de l'étude act	uelle : Vérification des soutènements							×
Matériaux et normes Calcul des pro	essions Ancrages							
Colcul de la pression active :	Absi	-	Ĩ					Editer les
Calcul de la pression active :	Absi	-						calcul du
Calcul de la pression passive :	ADSI	•						programme :
Methode de calcul :	pressions dependantes	•						Stabilité
Calcul du séisme :	Mononobe-Okabe	•						des pentes
Module de réact. du sol de fond. :	pressiomètre PMT	•						· · · · · · · · · · · · · · · · · · ·
Réduire le module de réaction	du sol de fondation pour la paroi berl	inoise						
Input different structure/soil fri	iction angles for active and passive pre	ssures	1					
l'assement du terrain :	methode parabolique							
Méthode de vérification :	calcul selon EN 1997							
Approche de calcul :	2 - réduction de la charge et de la ré	sistance •						
Situation de calcul permanente	ituation de calcul transitoire Situation	n de calcul accident	telle Situatio	on de calcul au séi	sme			
Coefficient de réduction de la	charge (F)							
	(Défavor	able	Favorable				
Charge permanente :		γ _G =	1.35 [-]	1.00	[-]			
Charge variable :		γ _Q =	1.50 [-]	0.00	[-]			
Action de l'eau :		γ _w =	1.35 [-]					
Soulèvement hydraulique (HYD) :	() () () () () () () () () ()	γ _h =	1.35 [-]	0.90	[-]			
Coefficient de réduction de la	résistance (R)					<u> </u>		
Coefficient de réduction de la sta	bilité de l'ancrage :	γ _{Ris} =	1.10 [-]					
Coefficient de réduction de la rés	istance du sol :	γ _{Re} =	1.40 [-]]		
								🗸 ОК
								V Annular
							 	Annuler

3.2 Passage des calculs

En cliquant sur "Calculs", les quatre phases sont calculées. Leur affichage en vert signifie que le calcul s'est correctement déroulé (aucune instabilité rencontrée par exemple).

3.3 Résultats de la phase 4

Le cadre du bas affiche si le calcul a été réalisé et les principaux résultats à analyser.

Ici les résultats en déformation n'ont pas de signification.

Résultats					
Le calcul a	été effectué correc	temen	it.		
Intensité	maximale des for	rces in	ternes appliquées à	la structure	
Force mot	rice maximale = 1	17.11	KIN/M		
Moment m	naximal = 1	31.80	kNm/m		
Déformation	on maximale =	27.8	mm		
Forces de	s ancrages	28	X		
	Profondeur		Déformation	Force de l'ancrage	
Num.	[m]		[mm]	[kN]	
1	2.	00	-20.3	154.24	

3.3.1 Affichage "Efforts internes"

4 CALCUL ELU 2

Par rapport au calcul précédent, il suffit de définir un nouveau jeu de paramètres.

4.1 Item "Paramètres"

Cliquer sur "Edition" pour régler les paramètres : pondérations des résistances par 1.4 x 1.35 = 1.89.

Edition des paramètres de l'étude act	tuelle : Vérification des soutènements			×
Matériaux et normes Calcul des pr	essions Ancrages			
Calcul de la pression active :	Absi	•		Editer les paramètres de
Calcul de la pression passive :	Absi	•		calcul du
Méthode de calcul :	pressions dépendantes	•		programme.
Calcul du séisme :	Mononobe-Okabe	-		des Stabilite
Module de réact. du sol de fond. :	pressiomètre PMT	•		pentes
Réduire le module de réaction	du sol de fondation pour la paroi berlinois	e		
✓ Input different structure/soil fr	iction angles for active and passive pressur	es		
Tassement du terrain :	méthode parabolique	•		
Méthode de vérification :	calcul selon EN 1997	•		
Approche de calcul :	2 - réduction de la charge et de la résista	nce 🔻		
Situation de calcul permanente	ituation de calcul transitoire Situation de	calcul accidentelle	Situation de calcul au séisme	
Coefficient de réduction de la	charge (F)			
		Défavorable	Favorable	
Charge permanente :	· · · · · · · · · · · · · · · · · · ·	r _G = 1.00	[-] 1.00 [-]	
Charge variable :		o = 1.00	[-] 0.00 [-]	
Action de l'eau :		- 1.00	[-]	
Soulèvement hydraulique (HYD) :		/ _b = 1.00	[-] 0.90 [-]	
Coefficient de réduction de la	résistance (R)			
Coefficient de réduction de la sta	bilité de l'ancrage : γ	is = 1.89	[-]	
Coefficient de réduction de la rés	istance du sol : γ	a = 1.89	[-]	
				✓ ОК
				X Annuler

4.2 Passage des calculs

En cliquant sur "Calculs", les quatre phases sont calculées. Leur affichage en vert signifie que le calcul s'est correctement déroulé (aucune instabilité rencontrée par exemple).

4.3 Résultats de la phase 4

Le cadre du bas affiche si le calcul a été réalisé et les principaux résultats à analyser.

Ici les résultats en déformation n'ont pas de signification.

Kesultats -				
Le calcul a	été effectué correctem	ent.		
ntensité	maximale des forces	internes appliquées à	la structure	
Force moti	rice maximale = 87.15	5 kN/m		
Moment m	naximal = 96.62	2 kNm/m		
Déformatio	on maximale = 19.5	5 mm		
Forces des	s ancrages			
	Profondeur	Déformation	Force de l'ancrage	
Num.	[m]	[mm]	[kN]	
	2.00	10.1	117 /2	

4.3.1 Affichage "Efforts internes"

5 SYNTHESE

5.1 Efforts dans l'écran et dans le tirant

		Moment (kN.m/ml)	Effort tranchant (kN/ml)	Effort de traction dans le tirant (kN/ml)
ELU 1		132	117	154
Référence		134	123	164
ELU2		97	87	117
Référence		99	90	121
ELS (E _k)	GEO	50.5	64.5	92
Référence		51.1	66	97
E _{ELU} = 1.35 x E _K	STR	68	87	124
Référence		69	89	131

5.2 Vérification du rapport butée mobilisée / butée mobilisable (GEO)

En l'état du logiciel (version 2020), cette vérification doit être menée manuellement en exploitant les résultats du tableau de la note de calcul.

Diagramme des pressions calculées

Pour illustration, on mène ce calcul pour plusieurs fiches de paroi.

Hauteur de	B _{t;k} (kN/ml)	B _{m;k} (kN/ml)	B _{m;k} / B _{t;k}	B _{m;k} / B _{t;k}
paroi				>1.89?
7.65	195.00	376.78	1.93	ok
7.6	189.20	362.51	1.92	ok
7.55	183.55	348.35	1.90	ok
7.5	186.76	334.30	1.79	non

5.3 Justification du tirant (STR)

5.3.1 Justification de la résistance interne

La charge appliquée au tirant est P_d = 131 kN

La résistance à la traction du tirant est : $R_{t,d} = (f_{y,k} \times A_g) / 1 = (500 \times 800.10^{-6}) / 1 = 400 \text{ kN}$

Ainsi on vérifie que $P_d < R_{t;d}$.

5.3.2 Justification géotechnique

Pour cette vérification, on peut utiliser les résultats du calcul ELS ou utiliser le programme.

Pour utiliser le programme, il faut intervenir à 2 endroits :

- Définir les coefficients partiels pour l'ancrage.

dition des paramètres	de l'étude actuelle : V	érification des soutènemer	nts		
Matériaux et normes	Calcul des pressions	Ancrages			
Méthode de vérifica — Coefficient de réc	tion : états limites duction de la capacité	▼ portante			
Coefficient de fiabilité de l'acier :			γ _s =	1.35	[-]
Coefficient de réduction à l'arrachement du sol :			γ _e =	1.00	[-]
Coefficient de réduction à l'arrachement du coulis de ciment :			$\gamma_c =$	1.00	[-]

Type de tirant d'ancrage :		barre précontrain	ie au	*	lde -
Ligne de produits :		utilisateur			
Nom :					<u>∣ ^Ik</u>
Paramètres de l'ancrage —			Résistance à la rupture		
Profondeur : z =	2.00	[m]	saisir	✓ R _t =	400.00 [kN]
.ongueur libre : I =	10.00	[m] b	- Résistance à l'arrachement du	sol	
.ong. du scellement : I _k =	10.00	[m]	saisir	✓ R _e =	191.00 [kN]
nclin.: α =	0.00	[*]	- Résistance à l'arrachement du	coulis de ciment	
Distance entre : b =	1.00	[m]	saisir	✓ R _c =	133.00 [kN]
Rigidité					
Type de saisie : s	saisir le diamètre 💌				
Diamètre : d _s =	32.0	[mm]			
Module d'élast. : E =	210000.00	[MPa]			
Force précontrainte : F =	0.00	[kN]			
			OK + Ŷ	ок на в	X Annule

Définir les valeurs de résistance lors de l'édition de l'ancrage.

La justification des tirants est donnée comme hypothèse du document de référence :

- $R_{ELU;k} = 21 \text{ kN/ml}$
- $R_{ELS;k} = 16 \text{ kN/ml}$

D'où :

- $R_{ELU;d} = R_{ELU;k} / \gamma_{a; ELU} = 21 \times 10 / 1.1 = 191 \text{ kN} > 131 \text{ kN}$
- $R_{ELS;k} = R_{ELS;k} / \gamma_{a;ELS} = 16 \times 10 / 1.2 = 133 > 97 \text{ kN}$