

中国规范版

目录

前言	1
第一章 【分析设置】与【分析设置管理器】	2
引言	2
任务	2
计算	3
结论	6
第二章 悬臂式挡土墙的设计	8
任务	8
计算	8
结论	15
第三章 重力式挡土墙的验算	19
任务	19
计算	19
结论	27
第四章 悬臂式支挡结构的设计(基坑)	28
任务	28
计算	28
结论	34
第五章 锚拉式支挡结构的设计(基坑)	
任务	36
计算	36
结论	38
第六章 单支占锚拉式排桩基坑支护分析	39
任务	
计算	39
结论	48
第七章 多支占锚拉式排桩基坑支护分析	40 49
任条	<u>49</u>
计算	50
结论	56
第八音 · 力· 协利完性分析	60
4条 在多	60
ロフ	60
и <i>开</i>	68
第172 第九章 支挡开挖的边塘趋完性分析	60
和九军 又归川2的起极心足口万仞	09
ロカー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	09
1	05
海心····································	, , , , 77
アーキ リ 水空叫的以口	/ / 77
11.方 计質	/ /
비 牙	/ / 00
57 化	02
	I

第十一章 扩展基础的沉降验算	83
任务	83
计算	83
结论	84
第十二章 路堤固结沉降分析	86
引言	86
任务	86
计算	86
结论	92
第十三章 有限元——沉降计算	
任务	93
计算	93
结论	98
第十四章 有限元——隧道衬砌分析	100
任务	100
计算	100
结论	110
第十五章 有限元——深基坑结构分析	112
任务	112
计算	112
结论	126
第十六章 有限元——边坡稳定性分析	127
任务	127
计算	127
结论	134

前言

GEO5 岩土软件套装的主要学习材料包括:

— **GEO5 用户手册**: 详细介绍 GEO5 中各选项的功能以及计算理论,即 GEO5 中的帮助文档。 下载地址: <u>http://www.geo5.cn/a/jiaochengziliao/wdjc/</u>

— GEO5 视频教程:视频演示 GEO5 的基本操作和运用。

下载地址: <u>http://www.geo5.cn/a/jiaochengziliao/shipinjiaocheng/</u>

— GEO5 工程设计手册: 演示如何使用 GEO5 解决具体的工程问题。

下载地址: <u>http://www.geo5.cn/a/jiaochengziliao/wdjc/</u>

— GEO5 验算手册:对比手算或其他软件的计算结果,验证 GEO5 计算结果的可靠性。 下载地址: <u>http://www.geo5.cn/a/jiaochengziliao/wdjc/</u>

其中,《GEO5 工程设计手册》是学习 GEO5 的一套新材料,除了第一章主要用于介绍【分析设置】的相关操作外,手册的每一章都详细介绍了如何运用 GEO5 中的某一软件模块计算具体的工程实例,从而为用户提供参考。

每一章可分为以下几部分:

- 引言:对该类问题的理论介绍(只出现于第一、十二章)。

一 任务:给出待计算的工程实例,以及在计算中用到的各种参数。

— 计算:详细地演示如何通过 GEO5 计算"任务"中的工程实例。

— 结论:根据计算结果,分析设计方案是否满足要求,如不满足,需要哪些改进。

《GEO5 工程设计手册》的第一章阐述了怎样选择国家规范和分析方法,该章内容适用于所有的 GEO5 软件模块。在选定规范之后,软件将根据该规范对工程问题进行验算。

手册中的例题源文件可以在这里下载:

http://pan.baidu.com/s/1gdKg70f

第一章 【分析设置】与【分析设置管理器】

本章将介绍【分析设置】界面的使用,包括如何选择"规范"、"分项系数"以及"验算方法"等, 这是使用所有 GEO5 软件模块的前提。

引言

GEO5 软件在全球 120 多个国家都得到了广泛地使用。无论在哪个国家,工程设计的目标都是: 得出的方案是安全的、合理的、经济的。

岩土结构的基本要素(例如: 挡墙的形状, 坡面地形, 锚杆的布局等)在世界各地都是相同的, 不同的是结构安全程度的验算方法和分析原理。层出不穷的新理论以及在理论分析中采用的分项系 数,使用户在设计时需要输入大量的参数,让分析设计过程变得十分复杂和繁琐。从 GEO5_v15 版开 始,我们添加了【分析设置】功能,使以上参数设置过程得到了大大简化。

在【分析设置】中,用户可以自定义"规范"、"验算方法"和"安全系数"等一系列内容。当然, 前提是用户已经了解【分析设置】中各个选项的意义(或用户有能力为某一具体的工程问题自定义一 套分析方法)。在接下来的操作中,用户几乎不必返回【分析设置】界面进行再次设置和修改。下面 通过一个简单的重力式挡墙算例,进一步说明如何使用【分析设置】功能。

任务

验算如图 1.1 所示重力式挡墙的倾覆滑移稳定性,需要用到以下规范(v18 版):

- 中国一国家标准(GB)
- 德国 EN-1997
- 美国 LRFD 2012(荷载和抗力系数法)

图 1.1 重力式挡土墙算例

计算

在以下界面中输入基本参数:【墙身截面尺寸】、【岩土材料】和【指定材料】。其他界面在本例中 不使用。

						7
- 墙身截面尺寸示意图:	墙身截面	i尺寸				
K 1	k1 =	1.00 [m]	k6 =	[m]	s ₁ =	0.00 [-]
	k2 =	2.00 [m]	k7 =	[m]	s ₂ =	0.00 [-]
k ₂ s ₁ :1	k3 =	0.50 [m]	k8 =	[m]	s ₃ =	0.00 [-]
	k4 =	1.00 [m]	k9 =	[m]		
k ₃	k5 =	[m]				
1:s2	注释:数值	4(自动计算墙身下音	8 尺寸)			

图 1.2 【墙身截面尺寸】界面

选择【岩土材料】界面→【添加】,根据已知的岩土参数(表 1.1)定义岩土材料,并在【指定材料】 界面中将岩土材料赋予土层。

表 1.1 计算所需的岩土参数

岩土材料	砾质粉土
天然容重 $\gamma(kN/cm^3)$	19.0
内摩擦角 $\varphi_{e\!f}(\circ)$	30.0

粘聚力 $C_{ef}(kPa)$ 0

结构和土体间摩擦角 $\delta(\circ)$ 15.0

饱和容重
$$\gamma_{sat}(kN/cm^3)$$
 19.0

注:一般情况下,工程场地包含多种土层,因此计算时需定义多种不同的【岩土材料】。选择【指定材料】界面后,软件自动将用户定义的第一种岩土材料赋给所有土层,用户可根据实际地质状况进

一步修改。本算例中只有一种岩土材料,因此无需改动。

基本参数设置完毕后,选择计算依据的规范。

选择【分析设置】界面→【选择分析设置】,如图 1.3,选择"中国一国家标准(GB)":

J 分析设置列			
编号	名称		
2	标准 - 极限状态法	全部	
5	欧洲 - EN 1997 - DA3	全部	
6	美国 - LRFD 2003	全部	
7	标准 - 不折减参数	全部]
8	捷克共和国 - 旧规范 CSN (73 1001, 73 1002, 73 0037)	全部]
11	波兰 - EN 1997	全部	
12	波兰 - EN 1997,水作用的分项系数=1.0	全部	=
14	德国 - EN 1997	全部	
18	希腊 - EN 1997	全部	
29	巴西	全部	
42	俄罗斯	全部	
43	中国 - 国家标准 (GB)	全部	
44	中国 - 公路行业(町)	全部	☑ 确定
45	中国 - 铁路行业(TB)	全部	
45	市国 支払行法 (の)	会会の	- 4X/A

图 1.3 【选择分析设置】界面

注: 该列表中的规范仅为【分析设置管理器】中勾选了"可见"复选框的规范。如果用户需要选用的 规范不在分析设置列表中,请打开【分析设置管理器】进行设置(更多信息请见帮助文件——F1)。

完成【分析设置】后,选择【倾覆滑移验算】界面,验算该算例。如图 1.4,结构的抗倾覆稳定 性安全系数为 SF=2.32,抗滑移稳定性安全系数为 SF=2.08。

图 1.4 依据"中国-国家标准(GB)"的验算结果

注:点击右侧【详细结果】,用户可在该窗口中读得结构相应的安全系数。GE05 软件中总共有6种验算方法:中国规范、安全系数法(ASD)、极限状态法(LSD)、欧洲规范 EN 1997、美国规范 LRFD 2003(荷载和抗力系数法)、美国规范 LRFD 2012(荷载和抗力系数法)。安全系数法采用"安全系数" (如边坡系列软件)或"安全系数+结构利用率"(如挡土墙系列软件)来表征结构的稳定程度。

返回【分析设置】界面→【选择分析设置】,选择"德国 EN-1997"规范。接下来,选择【倾覆 滑移验算】界面,得到结构抗倾覆和抗滑移的利用率分别为 77.8%和 69.7%。

同样地,将规范改为"美国 LRFD 2012 (荷载和抗力系数法)",进行倾覆滑移验算,得到抗倾覆和抗滑移的结构利用率分别为 73.1%和 95.6%

"中国一国家标准(GB)"采用"安全系数法+极限状态法"的方式对结构进行验算,岩土部分 采用安全系数法,结构部分依据混凝土结构设计规范采用极限状态法。用户也可自定义采用"极限状 态法(LSD)"进行验算。用户选择"中国一国家标准(GB)"后,选择【分析设置】界面→【编辑当 前设置】,将"验算方法"一栏改为"极限状态法(LSD)",然后设置各个分项系数。

编辑当前分析设置:重力式挡土墙设计软件		×
材料和规范 挡墙分析		
		修改该软件中的
主动土压力计算方法:	Coulomb理论 🔽	77111111111111111111111111111111111111
被动土压力计算方法:	Coulomb理论 💽	✓ 土质边坡稳持
地震荷载分析:	JTJ 004-89 中国公路工程抗震设计规范	出 扩展基础设i
1 土楔的形状:	倾斜 💽	
容许偏心率:	0.250 [-]	
验算方法:	极限状态法 (LSD) 🛛 🔽	
□ 折减基底与土体间强度参数		
L 糸数 Ymp 折瑊内摩擦角 ♥ 的正切值		
· · · ·······························	受设计状况	
- 材料性能的分项系数		
内摩擦角的分项系数: γ _{mφ} =	1.10 [-]	
粘聚力的分项系数: γmc =	1.40 [-]	
泊松比的分项系数: γ _{mν} =	1.00 [-]	
结构后方岩土重度的分项系数: γ _{my} =	1.00 [-]	
结构前方岩土重度的分项系数: γ _{my} = はせるおようなごか。	1.00 [-]	
- 地基本執力的分坝系数		
	1.10 [-]	
	1.10 [-]	
	1.00 [-]	
		☑ 确定
		▶ ▶ ▶ ▶ ▶ ▶ ▶

图 1.5 【编辑当前设置】界面

当分项系数设置完毕后,点击【确定】,此时规范的名称变为"为当前任务输入的分析设置"。选择【倾覆滑移验算】界面,得出结构的抗倾覆利用率为 53.1%,抗滑移利用率为 66.5%(如图 1.6)。

验算:								(¥细结果
	(A) //	в	<u> </u>	D PER	E	▼ F z: #4	倾覆滑移验算 倾覆稳定性验算:	猫足要求	(53,1%)
编写 作用力	1FH1/J	F _X [kN/m]	rz [kN/m]	1FH x [m]	3 z [m]	赤剑 [-]	滑移稳定性验算:	满足要求	(66.5%)
> 1	墙体自重	0.00	57.50	0.50	-1.25	1.000	^		
2	主动土压力	-19.38	4.70	1.00	-0.83	1.000			

图 1.6 极限状态法(LSD)下的计算结果

对于以上自定义的分析方法,如果用户希望在以后的工作中继续使用,可以选择【分析设置】界

面→【添加到管理器】,输入"名称",点击【添加】。此时,用户便成功存储了该自定义分析设置。

E动土压力计算方法:	Coulomb理论				
做动土压力计算方法:	Coulomb理论				
▲「「」」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「	Mononobe Okabo	.IIII:个			
5.636元で1934、	17010100E-0Kabe	-1至16			
	1005年				
☑具万法: 	极限状态法 (LSE))			
□ 折减基底与土体间接	轰触面参数				
■系数 Ymp 折減内摩擦	இ角 ♥的正切値			_	
永久设计状况 短暂设	设计状况 偶然设	计状况 地震设	计状况	5	
一材料性能的分项系数	汝				
内摩擦角的分项系数:	N 1	γmφ =	1.10	[-]	
粘聚力的分项系数:		γmc =	1.40	[-]	
		0 00 0			
泊松比的分项系数:		γmv≡	1.00	E	
泊松比的分项系数: 结构后方岩土容重的分	分项系数:	γ _{mv} = γ _{my} =	1.00	н	
泊松比的分项系数: 结构后方岩土容重的分 结构前方岩土容重的分	分项系数: 分项系数:	γmv = γmy = γmy =	1.00 1.00 1.00	[-] [-]	
泊松比的分项系数: 结构后方岩土容重的分 结构前方岩土容重的分 一承载力的分项系数	分项系数: 分项系数:	γmv = γmy = γmy =	1.00 1.00 1.00	H H	
泊松比的分项系数: 结构后方岩土容重的分 结构前方岩土容重的分 一承载力的分项系数 抗倾覆稳定性分项系数	分项系数: 分项系数: 数:	γmv = γmy = γmy = γo =	1.00 1.00 1.00		
泊松比的分项系数: 结构后方岩土容重的分 结构前方岩土容重的分 一承载力的分项系数 抗倾覆稳定性分项系数 抗滑移稳定性分项系素	分项系数: 分项系数: 数: 数:	Ymv = Ymy = Ymy = Ymy = Yo = Ys =	1.00 1.00 1.00 1.10	н н н н	

图 1.7 【添加到管理器】界面

接下来,在【选择分析设置】中,用户便可直接调用该自定义的分析设置。

🕗 分析设置列表	表			×
编号	名称			
8	捷克共和国 - 旧规范 CSN (73 1001, 73 1002, 73 0037)	全部		
11	波兰 - EN 1997	全部	1	
12	波兰 - EN 1997,水作用的分项系数=1.0	全部	1	
14	德国 - EN 1997	全部	1	
18	希腊 - EN 1997	全部		
29	巴西	全部		
42	俄罗斯	全部		
43	中国 - 国家标准(GB)	全部		
44	中国 - 公路行业(町)	全部	=	
45	中国 - 铁路行业(TB)	全部		
46	中国 - 水利行业(SL)	全部		
47	中国 - 安全系数法(ASD)	全部		
48	中国 - 极限状态法法(LSD)	全部		🗹 确定
U 1	重力式挡土墙一自定义	重力式挡土墙设计软件	-	🗵 取消

图 1.8 【分析设置列表】中自定义的分析设置

结论

表 1.2 依据不同规范进行倾覆滑移验算所得结构利用率

规范	抗倾覆安全系数/利用率	抗滑移安全系数/利用率
中国一国家标准(GB)	2.32/69.0%	2.08/62.6%
德国 EN-1997	- /77.8%	-/69.7%
美国 LRFD 2012(荷载和抗力系数法)	-/73.1%	-/95.6%
重力式挡墙-自定义	-/53.1%	-/66.5%

注:对于挡土结构的验算,依据不同规范得出的计算结果具有可比性。但对基础进行验算时,由

于不同规范计算得出的上部作用荷载(该荷载是进一步验算所需的基本参数)不同,此时,即使初始 条件相同,不同规范的验算结果也不具可比性。

由表 1.2 可知, 挡墙的设计方案满足相应国家规范的要求。

第二章 悬臂式挡土墙的设计

本章将详述关于悬臂式挡土墙的验算。

例题源文件请在这里下载: <u>http://pan.baidu.com/s/1pJJkqPd</u>

任务

根据"中国一国家标准(GB)",设计高 4.0m 的悬臂式挡土墙。墙后坡面水平,地下水埋藏深度为 2.0m。墙后填土表面分布着宽 5.0m,荷载集度为 10.0kN/m²的条形超载。地基土为砂质粉土,硬塑, Sr<0.8,容许承载力为 175.0kPa。墙后填土为中密、含细粒土砂。悬臂式挡土墙的墙身为钢筋混凝土材料,混凝土强度等级为 C30。

图 2.1 悬臂式挡土墙算例

计算

为解决图 2.1 中的问题,选择"GEO5 悬臂式挡土墙设计"模块(v18 版),我们将一步步讲解如 何对该算例进行验算。

首先,选择【分析设置】界面→【选择分析设置】,选择"中国一国家标准(GB)"。

旁山甲科技有限公司 PANGOLIN TECHNOLOGY CO., LTD.

3 分析设置列	表。 ····································			×
编号	名称			
1	标准 - 安全系数法	全部	_	
2	标准 - 极限状态法	全部		
5	欧洲 - EN 1997 - DA3	全部		
6	美国 - LRFD 2003	全部		
7	标准 - 不折减参数	全部		
8	捷克共和国 - 旧规范 CSN (73 1001, 73 1002, 73 0037)	全部	=	
11	波兰 - EN 1997	全部		
12	波兰 - EN 1997,水作用的分项系数=1.0	全部		
14	德国 - EN 1997	全部		
18	希腊 - EN 1997	全部		
29	巴西	全部		
42	俄罗斯	全部		
43	中国 - 国家标准(GB)	全部		🗹 确定
44	中国 - 公路行业(丌)	全部		
AE	市国 建酸得退 (四)	合却	-	<u>₩</u> 4X/Ħ

图 2.2 【选择分析设置】界面

下一步,选择【墙身截面尺寸】界面来设置挡土墙的截面形状和尺寸。

图 2.3 【墙身截面尺寸】的设置

下一步,选择【剖面土层】界面→【添加】,输入第一个土层的底面至地表的距离 4.0m。

■回졜 层顶z坐标 土层线 # [m] ▶ 1 0.00 ▲	 ● 添加 ● 编辑 ● 删除 	Z轴原点标高: 	[m] 原点标高
		添加土层线 工坐标	Z =4 [m] ● 添加

- 图 2.4 【剖面土层】的设置
- 下一步,选择【材料】界面,输入挡土墙墙身材料:

墙身重度: γ =	25.00 [kN/m ³]
混凝土	纵筋 目录 自定义
C30 f _{ck} = 20.10 MPa f _{tk} = 2.01 MPa	HRB335 f _{yk} = 335.00 MPa

图 2.5 【材料】的设置 下一步,选择【岩土材料】界面→【添加】,按照给定的岩土材料参数设置墙后填土和地基土。

穿山田科技有限公司

添加岩土材料		-	
岩土类别 名称: 中密、含	细粒土砂		显示 颜色
基本参数 天然重度: 应力状态: 内摩擦角: 粘聚力: 结构和土体间摩擦角:	$\gamma =$ 17.50 [kN/m ³] 有效应力 $\varphi_{有效} =$ 28.00 [°] $c_{有效} =$ 0.00 [kPa] $\delta =$ 18.50 [°]		图例类别 中国规范YS 5204-200 ▼ 图例 Z , Z , Z , Z , Z , Z ,
静止土压力		?	
君工材料: 浮重度的计算模式: 饱和重度:	无柏性工 标准(饱和重度、水重度) ▼ γ _{sat} = 18.00 [kN/m ³]	2	土的分类 分类 ● 删除 ● 添加 区 取消

图 2.6 墙后填土材料

注:主动土压力的大小也与结构和土体间的摩擦角有关,而结构和土体间摩擦角可由土体的内摩擦角 大致得出,一般有 $\delta \approx (1/3 \sim 2/3) \times \varphi$ 。

注:对于静止土压力的计算,软件提供了多种方法。通常情况下,我们只有在考虑墙前土体抗力时才 会用到静止土压力(严格限制结构位移时也会考虑结构后方作用静止土压力),也就说如果整个计算 过程中未用到静止土压力(通常中国规范中不要求考虑墙前土体抗力),那么静力土压力计算参数无 论选择粘性土、非粘性土都没有任何影响。如果已知静止土压力系数,也可以直接输入系数的值。各 种静止土压力计算方法的介绍请查看帮助文档——F1。

岩土类别 名称:	砂质粉土			显示 颜色
基本参数 天然重度: 应力状态: 内摩擦角: 粘聚力:		γ = 18.00 [kN/m ³] 有效应力 Φ _{有效} = 26.50 [°] c _{有效} = 30.00 [kPa]	9	图例类别 中国规范YS 5204-200 ▼ 图例
结构和土体间摩排 一静止土压力 岩土材料: 泊松比: 一浮重度	察角:	δ = 17.50 [°] 粘性土 マ ν = 0.35 [-]	0	土的分类 分类 删除
浮重度的计算模; 饱和重度:	đ:	标准(饱和重度、水重度) ▼ γ _{sat} = 18.00 [kN/m ³]		确定 + ▲ 确定 + ▼ ☑ 确定 ☑ 确定
		图 2.7 地基土材料 表 2.1 岩土材料参数		
	士材料	中密,含细粒土	砂	砂质粉土
地目	刘 面 (m)	0040		>4.0

岩土材料	中密,含细粒土砂	砂质粉土
地层剖面 (<i>m</i>)	0.0-4.0	>4.0
天然容重 $\gamma(kN/cm^3)$	17.5	18.0
内摩擦角 $\varphi_{ef}(\circ)$	28.0	26.5
粘聚力 $C_{ef}(kPa)$	0	30.0
结构和土体间摩擦角 $\delta(\circ)$	18.5	17.5
饱和容重 $\gamma_{sat}(kN/cm^3)$	18.0	18.0

下一步,点击【基础】界面,基础类型选择输入岩土和基底之间的岩土参数。

图 2.8 【基础】界面

下一步,点击【墙后坡面】界面,选择水平坡面。

墙后坡面示意图	
β=0	

图 2.9 【墙后坡面】界面

墙后地下水深 2.0米,点击【地下水】界面,选择与结构中地下水分布状况相同的地下水类型。

图 2.10 【地下水】的设置

下一步,定义结构中的超载。选择【超载】界面,将【类型】设置为"条形超载",【作用类型】 设置为"永久作用",【位置】选择"坡面"。

	A REAL PROPERTY OF A REAL PROPER
超報名称	177 # F
名称:	酒 理事別
超载参数	
类型:	条形超载 ▼
作用类型:	永久作用
位置:	坡面 ▼
起点:	x =0.00 [m]输入方案
长度:	l = 5.00 [m]
─ 超载大小 大小:	q = 10.00 [kN/m ²]
	确定 + ▲ 确定 + ▼ ④ 确定 ◎ 强定

图 2.11 【超载】的设置

在【墙前抗力】界面中,选择相应的"墙前坡面形状",并根据图 2.11 设置其他参数。

- 墙前坡面示意图	- 墙前抗力参数							
	抗力类型:	不考虑 ▼						
	岩土材料:	中密、含细粒土砂 🔹						
	墙前土层厚度:	h = 1.00 [m]						

图 2.12 【墙前抗力】界面

注:

在本例中,未考虑墙前抗力(抗力类型设为不考虑),故计算结果偏保守。墙前抗力的类型取决于墙前岩土体的性质以及结构的容许位移。当墙前土为原状土或压实土时,墙前抗力为静止土压力;当结构容许产生位移时,墙前抗力为被动土压力或折减的被动土压力。(更多信息请见帮助文件—F1)

 第一个选项(红叉)等效于抗力类型为不考虑时的情况。当抗力类型为不考虑时,界面下方的各参数值对计算没有任何影响。此处不选择第一个选项的原因在于有些用户希望在设计图中绘制出 墙前坡面。

下一步,选择【工况阶段设置】界面,选择"持久设计状况"。由于本例中假定挡墙可以产生位移,将"作用到墙身上的土压力"设置为"墙身可以移动(主动土压力)"。从悬臂式挡墙受力历史的

角度考虑,我们认为墙后达到过的最大土压力为静止土压力,因此,截面验算这里采用静止土压力。

设计状况:	◆ 持久设计状况
作用到墙身的土压力 ● 墙身可以移动(主动土压力) ● 墙身不可以移动(静止土压力) ● 墙身上作用主动土压力(包括截面验算)	

图 2.13 【工况阶段设置】

现在,点击【倾覆滑移验算】界面,对结构进行抗倾覆滑移验算。

倾覆滑移									2	详细结果
回回回 编号 作用力	作用力	В F _x [kN/m]	C Fz [kN/m]	D 作用 x [m]	E 月点 z〔m〕	▼F 系数 [-]		倾顴滑移验算 倾覆稳定性验算: 滑移稳定性验算:	満足要求 不満足要求	(71.0%) (156.6%)
> 1 2	墙体自重 土楔自重	0.00	61.00 23.55	0.87	-1.38 -1.54	1.000 1.000	^			
4	主动土压力 水压力 经 (2)	-42.28	60.25 0.00	1.80	-1.46	1.000				
6	170年7月 超载	-7.99	8.67	1.61	-4.00	1.000				

图 2.14 【倾覆滑移验算】验算结果

注: 点击右侧【详细结果】选项, 会弹出一个含有更详细的分析结果的窗口。 验算结果不满足规范要求, 详细结果如下:

倾覆滑移稳定性验算

倾覆稳定性验算 抗倾覆力矩 M_{res} = 206.38 kNm/m 倾覆力矩 M_{ovr} = 91.53 kNm/m

安全系数 = 2.25 > 1.60 倾覆稳定性验算 满足要求

滑移稳定性验算 抗滑水平分力 H_{res} = 58.32 kN/m 滑动水平分力 H_{act} = 70.27 kN/m

安全系数 = 0.83 < 1.30 滑移稳定性验算 不满足要求

倾覆滑移验算 不满足要求

图 2.15 倾覆滑移验算详细结果

结论

为了让结构设计满足规范要求,我们可以做如下几方面的改进:

- 采用岩土性质较好的墙后填土
- 锚固基底

— 弯曲基底以增大摩擦力

— 锚固墙体

以上改进方案施工技术较为复杂且投资较大,最高效的方法是改变墙身截面形状,在墙踵设置一 个凸榫。

改进设计方案:改变墙体截面形状

返回【墙身截面尺寸】界面,如图 2.15,改变墙体截面形状。为了增加墙体的抗滑阻力,选择墙 踵带有凸榫的截面形状。

图 2.16 【墙身截面尺寸】(改进方案)

注:一般将凸榫视为倾斜基底进行分析。如果将凸榫产生的作用力当做墙前抗力,则分析时认为挡墙 基底是水平的,并在凸榫的位置施加等效的墙前抗力。(更多信息请见帮助文件—F1)

再次选择【倾覆滑移验算】界面,验算优化后的设计方案。

图 2.17 【倾覆滑移验算】(改进方案)

现在,挡墙的抗倾覆与抗滑移稳定性均满足规范要求。

接下来,进行【承载力验算】界面。输入修正后的地基承载力特征值 175kPa,并进行验算。

<u> 穿Ш甲科技有限公司</u> PANGOLIN TECHNOLOGY CO., LTD.

4.00			
	1		
 輸入修正后的地基承載力特征值 	把基承载力验算		羊细结果
 ◎ 运行 訂 聚基础设计 软件计算 地基承载力 ○ 不需要计算地基承载力 (位于 桩基础上) 	偏心距验算: 地基承载力验算:	满足要求 满足要求	(82.5%) (74.3%)
修正后的他耳承载力转征值· D = 172.00 [Pos]			

图 2.18【承载力验算】(改进方案)

注:在本算例中,我们给定修正后的地基承载力特征值,并据此对地基承载力进行验算。该特征值一般由经验得出,或通过原位测试得到。因此,更一般的方法是采用 GE05"扩展基础设计"软件计算 地基土的承载力,该软件在计算时还能考虑一些其他因素如荷载倾角、基础深度等的影响。

接下来,点击【截面强度验算】界面,选择"墙身验算",设置钢筋为5¢20,经验算,该设计满 足截面承载力和《混凝土结构设计规范 GB 50010-2010》对钢筋混凝土结构的设计要求。采用同样的 方法,可以依次再对其它的危险截面进行验算。

- 截面位置						
李白顺公智		-	1			
间科迦甘		•				
+D						
──截血参数						
混凝土存填屋・	20.0	[mm]	寂静粉冊・		E 00	[_]
北の北上(木))「云・	30.0	from d	TIMUEX E.		5.00	1.1
载云军度.	1.00	[m]	钢轮古尔.		20.0	[mm]
- 1181-11921月25	1.00	Lind	***********		20.0	[[[]]]
]				
计算配筋面积:		1	1	262.2	mm	2
计算配筋面积: 实配钢筋面积:		1	1	262.2 570.8	mm mm	2 2
计算配筋面积: 实配钢筋面积:]	1 1	262.2 570.8	mm mm	2 2
计算配筋面积: 实配钢筋面积: 墙身验算		1	1 1	262.2 570.8	mm mm	2 2
计算配筋面积: 实配钢筋面积: 墙身验算 齿前哈算·	L]	1 1 二 二 二 二	262.2 570.8	mm mm	2 2
计算配筋面积: 实配钢筋面积: 墙身验算 抗剪验算:]	1 1 満足要求	262.2 570.8	mm mm	2 2
计算配筋面积: 实配钢筋面积: 墙身验算 抗剪验算: 抗弯验算:		1	1 1 满足要求 满足要求	262.2 570.8 (2 (8	mm mm (5.0%) (1.1%)	2 2
计算配筋面积: 实配钢筋面积: 墙身验算 抗剪验算: 抗弯验算: 瓦箭验算:		1	1 第足要求 第足要求	262.2 570.8 (2 (8	mm mm (5.0%) (1.1%) (9.4%)	2 2

图 2.19【截面验算】(改进方案)

然后,选择【外部稳定性】界面,将运行"土质边坡稳定分析"软件,对挡墙进行整体稳定性分析。在本算例中,采用 Bishop 法计算稳定性,得出相对保守的计算结果。设置滑动面为"圆弧","分析类型"选择"自动搜索",然后进行分析,如图 2.19。

分析	•	[1]											
滑动	ā: 圆弧	•	▣ 重新输入	🔳 删除	2	专为折线滑动面	9折线滑动面						
			圆弧滑动面						分析				
圆心: x = z = 半径: R =).91).64 5.77	[m] [m] 角度: α ₁ = [m] α ₂ =	 ● 修改 -50.89 83.63 	[°] [°]	分析方法: 分析类型: 搜索区域 未: □ 假定锚杆无 ■ 开始分析	毕肖普法(Bishop) 自动搜索 輸入 課代 f	•	边坡稳定性验算 (毕肖普法(Bishop)) 潛面上下滑力的总和: F _a = 163.31 kWm 滑面上抗滑力的总和: F _p = 482.33 kWm 署は功矩: M _a = 942.33 kWm/m 抗滑力矩: M _p = 2783.03 kWm/m 安全系数 = 2.95 > 1.30 边坡稳定性 滿足要求				

图 2.20【外部稳定性】(改进方案)

在完成所有分析之后,点击【确定】按钮关闭"土质边坡稳定分析"模块,所有的计算结果以及 截图都将自动导入到"悬臂式挡土墙设计"模块的计算书中。

由以上验算结果可知,改进后的悬臂式挡土墙设计方案满足规范要求。

第三章 重力式挡土墙的验算

在本章中,验算了重力式挡墙在"持久设计状况"和"偶然设计状况"下的稳定性,并对验算结 果进行了说明。

例题源文件请在这里下载: http://pan.baidu.com/s/1CjlXc

任务

采用"中国 - 公路行业 (JT)"分析重力式挡土墙的整体稳定性、抗倾覆和抗滑移稳定性。

路面交通对挡墙的作用等价于 10kPa 的条形超载。汽车冲撞护栏相当于 50kN/m 偶然荷载,且该荷载水平作用于墙顶以上 1m 高处。挡墙的尺寸和形状如图 3.1 所示,墙后坡面的倾角 $\beta = 10^\circ$,地基

土由粉砂构成,结构和土体间摩擦角为 $\delta=18^\circ$,土压力计算方法采用有效应力法。

该任务中不对地基承载力和墙身截面强度进行验算,具体验算方法请参考第二章(<u>悬臂式挡土墙</u>的设计)。

图 3.1 重力式挡墙工程算例

计算

选择"GEO5重力式挡土墙设计"软件(v18版)对算例进行分析,分析过程包括如下两个工况 阶段:

工况阶段[1]——分析路面交通荷载对挡墙的作用

工况阶段[2]——分析汽车的偶然冲撞荷载对挡墙的影响

工况阶段[1]: 基本参数输入

选择【分析设置】界面→【选择分析设置】,选择"中国 - 公路行业(JT)"。

<u> 异山甲科技有限公司</u>

J 分析设置列	表现的方法,在这些方法的方法,并且这些方法的方法。			
编号	名称	适用于	Π	
5	欧洲 - EN 1997 - DA3	全部	-	
6	美国 - LRFD 2003	全部	1	
7	标准 - 不折减参数	全部		
8	捷克共和国 - 旧规范 CSN (73 1001, 73 1002, 73 0037)	全部		
11	波兰 - EN 1997	全部		
12	波兰 - EN 1997,水作用的分项系数=1.0	全部		
14	德国 - EN 1997	全部		
18	希腊 - EN 1997	全部	_	
29	巴西	全部	=	
42	俄罗斯	全部		
43	中国 - 国家标准(GB)	全部		
44	中国 - 公路行业(JT)	全部		
45	中国 - 铁路行业(TB)	全部		🗹 确定
46	中国 - 水利行业(SL)	全部		区取消

GEO5 岩土工程设计手册(一)

图 3.2 【选择分析设置】界面

接下来,在【墙身截面尺寸】界面,选择重力式挡墙的截面形状,并设置各种形状参数。这里需 要提到的一个技巧是,用户可以直接在图中修改截面的形状参数。

图 3.3 【墙身截面尺寸】界面

下一步,选择【材料】界面,输入墙身材料。墙身容重 $\gamma = 24kN/m^3$,墙身是由C30的混凝土和 HRB335 的钢筋铸造而成。

墙身重度:	γ = 24.00	[kN/m ³]	
混凝土 <u>目</u> 录 • C30 f _{ck} = 20.10 MPa f _{tk} = 2.01 MPa	自定义	纵筋 <u>目</u> 录 自定义 HRB335 f _{yk} = 335.00 MPa	

设置墙后【剖面土层】,然后定义【岩土材料】,在【指定材料】界面中将定义好的岩土材料指定

表 3.1 岩土材料参数

给相应的土层。

岩土材料	粉砂
天然容重 $\gamma(kN/cm^3)$	18.0
内摩擦角 $\varphi_{_{\!\!e\!f}}(\circ)$	26.5
粘聚力 C _{ef} (kPa)	12.0
结构和土体间摩擦角 δ(°)	18.0
泊松比 <i>ν</i>	0.35
饱和容重 $\gamma_{sat}(kN/cm^3)$	20.0

图 3.5 【添加岩土材料】界面

注:主动土压力的大小也与结构和土体间的摩擦角大小有关,而结构和土体间摩擦角可由土体的 内摩擦角大致得出,一般有 $\delta \approx \left(\frac{1}{3} \sim \frac{2}{3}\right) \bullet \varphi_{fx}$ 。在本例中,取 $\delta = \frac{2}{3}\varphi_{ef} = 18^{\circ}$ 。对于静止土压力,如果验算不涉及静止土压力,例如不考虑墙前抗力,则可以随意选择静止土压力的计算方法,此时可以选择无粘性土,则无需输入泊松比。(更多信息请见帮助文档—F1)

下面。在【基础】界面中,选择"输入"岩土和基底之间的强度参数,如图 3.6 所示:

21

Г

GEO5 岩土工程设计手册(一)

基础类型:	输入岩土和基底之间	的强度参数		•
参数 【输入岩土对基底的摩擦系数	•	μ =	0.38	[-]
岩土对基底的粘结力:		a =	0.00	[kPa]

图 3.6【基础】界面

接下来,在【墙后坡面】界面中,选择墙后坡面的形状并设置相应的参数,如图 3.7:

图 3.7 【墙后坡面】界面

然后,选择【超载】界面,输入路面交通产生的"条形荷载",大小为10kN/m²,并将"超载类型"设置为"可变作用"类型。

超载名称	
名称:	超载
超载参数	
类型:	条形超载 ▼
作用类型:	永久作用
位置:	坂面
起点:	x =0.00 [m] 输入方案
长度 <mark>:</mark>	l = 5.00 [m]
超载大小 大小:	q = 10.00 [kN/m ²]
	确定 + ▲ 确定 + ▼ ④ 确定 ▲ ▲ ▲ ▲ ▲ ▲ ▲

图 3.7 【超载】界面

下一步,在【墙前抗力】界面中,选择墙前的坡面形状并设置其他各项参数。如图 3.8。

图 3.8 【墙前抗力】界面

注:

1. 在本例中,未考虑墙前抗力(抗力类型设为不考虑),故计算结果偏保守。墙前抗力的类型取决于墙前岩土体的性质以及结构的容许位移。当墙前土为原状土或压实土时,墙前抗力为静止土压力; 当结构容许产生位移时,墙前抗力为被动土压力或折减的被动土压力。(更多信息请见帮助文件—F1)

2. 第一个选项(红叉)等效于抗力类型为不考虑时的情况。当抗力类型为不考虑时,界面下方的各参数值对计算没有任何影响。此处不选择第一个选项的原因在于有些用户希望在设计图中绘制出 墙前坡面和挡墙埋置深度。

GEO5 岩土工程设计手册(一) 异山甲科技有限公司

下一步,在【工况阶段设置】界面中,将"设计状况"设置为"持久设计状况"。

设计状况:

持久设计状况

Ŧ

图 3.9 【工况阶段设置】界面

下一步,选择【倾覆滑移验算】界面,验算重力式挡土墙的抗倾覆与抗滑移稳定性。

倾覆滑移	验算: 💽 添加 📃 圖除 [1]								🔤 🕄 ì	羊细结果
	A	В	С	D	E	▼ F		倾覆滑移验算		
编号	作用力	Fx	Fz	作用	冱	系数		倾覆稳定性验算: 洞辺の主体は対象	満足要求	(37.0%)
作用力		[kN/m]	[kN/m]	x [m]	z [m]	[-]		滑移稳定性验算:	満足要求	(91.3%)
> 1	墙体自重	0.00	472.20	2.46	-3.36	1.000	~			
2	主动土压力	-118.92	38.64	3.80	-2.08	1.000				
3	超载-1	-19.21	6.98	3.80	-3.25	1.000				
							-			1

图 3.10 【抗倾覆滑移验算】——工况阶段[1]

注: 点击右侧【详细结果】选项, 会弹出一个含有更详细分析结果的窗口。

倾覆滑移稳定性验算

倾覆稳定性验算

抗倾覆力矩 M_{res} = 1336.24 kNm/m 倾覆力矩 M_{ovr} = 309.26 kNm/m

安全系数 = 4.32 > 1.60 倾覆稳定性验算 满足要求

滑移稳定性验算

抗滑水平分力 H_{res} = 196.77 kN/m 滑动水平分力 H_{act} = 138.13 kN/m

安全系数 = 1.42 > 1.30 滑移稳定性验算 满足要求

倾覆滑移验算 满足要求

图 3.11 【详细信息】界面

下一步,选择【外部稳定性】界面,运行"土质边坡稳定分析"模块,分析重力式挡土墙的外部 稳定性。本算例采用"Bishop"法进行分析,得出相对保守的结果。设置滑动面为"圆弧滑面",分 析类型选择"自动搜索",然后进行分析,如图 3.12。

分析:	•	1		
滑动面	: 圆弧 🔹		■ 删除	2 转为折线滑动面
		圆弧滑动面		分析
圆心:			🕑 修改	分析方法: 毕肖著法(Bishop) マ 边域稳定性验算(毕肖普法(Bishop)) 漫面上下受力的印刷: Fa = 576.38 kM/m
x =	-3.71	[m]		分析类型: 自动搜索 💽 滑面上抗滑力的总和: Fp = 980.70 kV/m
z =	1.99	[m] 角度:		搜索区域 未输入 滑动力矩: Ma = 5600.70 kNm/m 抗滑力矩: Ma = 10434.69 kNm/m
半径:		α ₁ =	-37.07 [?] □ [候定通杆无限长 [安全系数 = 1.66 > 1.30]
R =	10.64	ŧ [m] α ₂ =	82.11 [2 一 开始分析 边玻想定性 满足要求

图 3.12 【外部稳定性】——工况阶段[1]

在完成所有分析之后,点击【确定】按钮关闭"土质边坡稳定分析"模块,所有的计算结果及截 图都将自动保存至"重力式挡土墙设计"模块的计算书中。

工况阶段[1]: 计算结果

倾覆稳定性验算	SF=4.32>SF _S =1.60	满足要求
滑移稳定性验算	SF=1.42>SF _S =1.30	满足要求
外部稳定性验算	SF=1.86>SF _S =1.30	满足要求

工况阶段[2]: 基本参数输入

在屏幕左上方的【工况阶段】工具栏中,点击"+",添加工况阶段[2]。

工况阶段: 📃 🖃 [1] [2]

图 3.13 【工况阶段】工具栏

在本工况阶段中,定义汽车冲撞护栏产生的作用力。选择【作用力】界面,"作用类型"选择"偶然作用",作用力大小为 50kN/m,方向水平。具体设置如图 3.14。

图 3.14 【作用力】——工况阶段[2]

•

下一步,选择【工况阶段设置】界面,将 "设计状况" 改为 "偶然设计状况"。

GEO5 岩土工程设计手册(一)

设计状况:

偶然设计状况

```
图 3.15 【工况阶段设置】——工况阶段[2]
```

由于该工况阶段与工况阶段[1]输入的其他参数(如岩土参数等)相同,因此用户无需再次输入, 可直接选择【倾覆滑移验算】界面。

图 3.16 【倾覆滑移验算】——工况阶段[2]

倾覆滑移稳定性验算

倾覆稳定性验算 抗倾覆力矩 M_{res} = 1336.24 kNm/m 倾覆力矩 Movr = 759.26 kNm/m

安全系数 = 1.76 > 1.20 倾覆稳定性验算 满足要求

滑移稳定性验算

抗滑水平分力 H_{res} = 196.77 kN/m 滑动水平分力 H_{act} = 188.13 kN/m

安全系数 = 1.05 < 1.10 滑移稳定性验算 不满足要求

倾覆滑移验算 不满足要求

图 3.17 工况阶段[2]详细结果

工况阶段[2]: 计算结果

从工况阶段[2]的分析结果可知,当有汽车冲撞时,挡墙不满足抗倾覆滑移验算要求: 倾覆稳定性验算 $SF=1.76>SF_{S}=1.20$ 满足要求 滑移稳定性验算 不满足要求 $SF=1.05 < SF_{S}=1.10$ 提示:当偶然设计状况没有特殊要求时,可以把偶然设计状况归为地震设计状况。

结论

本算例中的重力式挡土墙在工况阶段[1]中(路面交通荷载的作用下)满足验算。在工况阶段[2] 中,当挡墙上部承受5吨的汽车撞击荷载时,不满足验算要求。为了解决算例中挡土墙在工况阶段[2] 的稳定性问题,可以在墙后土体中施加锚杆,增加墙后土体的稳定性;或者将护栏设置在公路边,以 避免汽车撞击直接作用在挡墙上。

第四章 悬臂式支挡结构的设计(基坑)

在本章中,将为用户演示在"永久荷载"和"偶然荷载"(洪水)的作用下,悬臂式支挡结构的 设计与验算。

例题源文件请在这里下载: http://pan.baidu.com/s/1gdf4WIP

任务

根据"中国一国家标准(GB)",设计非均质地层中的悬臂式支挡结构。本算例中以"排桩"的 设计验算为例。基坑的开挖深度为 2.5m,地下水埋藏深度为 1.0m。除分析正常情况下结构的稳定性 之外,还需分析在偶然设计状况下,即地下水位超出排桩顶部 1.0m 时(临时的防水屏障会安装在排 桩上面以阻止水流入基坑)结构的稳定性。

图 4.1 排桩基坑支护算例

计算

为了解决"任务"中提出的问题,我们将采用"GEO5 深基坑支护结构设计"软件(v18 版)进行分析,分析过程包括如下两种设计状况:

工况阶段[1]——持久设计状况

工况阶段[2]——偶然设计状况

工况阶段[1]: 基本参数输入

点击【分析设置】界面→【选择分析设置】,选择"中国一国家标准(GB)"。

<u> 穿山甲科技有限公司</u> PANGOLIN TECHNOLOGY CO., LTD.

×

☐ 分析设置列表

编号	名称	适用于		
5	欧洲 - EN 1997 - DA3	全部	-	
6	美国 - LRFD 2003	全部		
7	标准 - 不折瑊参数	全部		
8	捷克共和国 - 旧规范 CSN (73 1001, 73 1002, 73 0037)	全部		
11	波兰 - EN 1997	全部		
12	波兰 - EN 1997,水作用的分项系数=1.0	全部		
14	德国 - EN 1997	全部		
18	希腊 - EN 1997	全部	_	
29	巴西	全部	=	
42	俄罗斯	全部		
43	中国 - 国家标准(GB)	全部		
44	中国 - 公路行业 (丌)	全部		
45	中国 - 铁路行业(TB)	全部		🗹 确定
46	中国 - 水利行业(SL)	全部		🔽 माःभ
U			+	

图 4.2 【选择分析设置】界面

下一步,根据给定信息,设置【剖面土层】。

图 4.3 土层剖面设置

然后,定义【岩土材料】,在【指定材料】界面中,根据表 4.1,将定义好的岩土材料指定给相应的土层。

添加岩土材料			×
- 岩土类别 名称: 含細粒土砂	(SF)、中密		显示 颜色
基本参数 天然重度: 应力状态: 内摩擦角: 粘聚力: 结构和土体间摩擦角:	γ = 17.50 [kN/m ³] 有效应力 Φ _{有效} = 29.50 [°] C _{有效} = 0.00 [kPa] δ = 14.00 [°]		图例类别 中国规范YS 5204-200 ▼ 图例 Z Z Z Z Z Z P Z Z
一浮重度 浮重度的计算模式: 饱和重度:	标准(饱和重度、水重度) ▼ γ _{sat} = 17.50 [kN/m ³]	- 9 -	 土的分类 分类 刪除 ● 添加 区 取消

图 4.4 【添加岩土材料】界面 表 4.1 岩土材料参数表

岩土材料	含细粒土砂	粘土质砂	低塑性粘土
地层剖面 m	0-1.5	1.5-2.5	>2.5
天然容重 $\gamma(kN/cm^3)$	17.5	18.5	21.0
内摩擦角 φ_{d} (॰)	29.5	27.0	19.0
粘聚力 $C_{ef}(kPa)$	0	8.0	12.0
结构和土体间摩擦角 $\delta(\circ)$	14.0	14.0	14.0
饱和容重 $\gamma_{sat}(kN/cm^3)$	17.5	18.5	21.0

下一步,选择【尺寸】界面,指定基坑的深度以及基坑底部坡面的形状。

图 4.5【尺寸】界面

注: 只有当分析排桩时才考虑"坑底土压力折减系数",对于板桩、地下连续墙或无间距的连续排桩, 该系数取值为 1.0。根据中国规范,分析排桩时也可取值为 1.0,帮助文档中的建议取值方法为国外排 桩设计理论(更多信息请见帮助文件—F1)。

在本算例中,我们不使用【锚杆】,【内支撑】,【支座】,【坑外土压力】,【超载】和【作用力】界 面。由于该算例的基坑不处于抗震设防区,也不使用【地震荷载】界面。

基坑外地面水平。	故	【墙后坡面】	选择水平;	在	【地下水】	界面中,	地下水深度为1.0m。
----------	---	--------	-------	---	-------	------	-------------

参数示意图	地下水位参数 桩墙后地下水位: 桩墙前地下水位:	h1 = h2 =	1.00 [m]
	■ 张梨隙 张梨隙深度:	ht =	[m]

图 4.6 【地下水】设置——工况阶段[1]

下一步,【工况阶段设置】,选择"持久设计状况"。

设计状况:	持久设计状况	-
	コルノロンローマー	

图 4.7 【工况阶段设置】界面

下一步,选择【分析】界面,然后点击界面右上角【分析】按钮执行分析操作。

注:按照中国规范,结构的嵌固深度用安全系数法来计算,对于一级结构,安全系数取 1.25。对于结构的配筋,采用极限状态法计算,因此不能采用安全系数法计算内力。所以计算嵌固深度和内力时应 采用不同的验算方法,分为两个分析工况。嵌固深度取值按分析工况[1](如图 4.8),输入安全系数 法;内力标准值取值按分析工况[2](如图 4.9),输入被动土压力折减系数。

注:当土层为粘性土时,各个国家的规范都建议设置截面最小土压力。软件默认截面最小土压力系数为 0.2,即作用在支挡结构上的最小土压力不小于自重应力的 0.2 倍。根据"中国——国家标准(GB)",此处取该系数值为 0。

图 4.9【分析】界面——分析工况[2]

工况阶段[1]: 计算结果

在悬臂式支挡结构设计中,我们关心的是支挡结构的嵌固深度及其内力分布。工况阶段[1]的计算 结果如下:

	—	排桩长	:度	4.35m	(分析工况1)	
	—	嵌固深	医度	1.85m	(分析工况1)	
	—	最大弯	矩标准值	$M_{max} = 18.8$	3kNm/m * 1.5 m = 28.2kNm	(分析工况2)
	—	最大剪	了力标准值	$Q_{max} = 50.7$	kN/m * 1.5m = 76.05kN	(分析工况 2)
注:	对于	-排桩,	内力还应乘	以桩间距才是每	F根桩的实际内力。	

在下一工况阶段,我们将计算偶然荷载作用下,结构所需的嵌固深度,以及相应的内力值。

工况阶段[2]: 基本参数输入

在屏幕左上方的【工况阶段】工具栏中,点击"+",添加工况阶段[2]。

图 4.10 【工况阶段】工具栏

在工况阶段[2]下,选择【地下水】界面,将地下水位线位置改为 z = -1.0m(位于排桩桩顶上方 1.0m 处)。

1阶段: 🖻 😑 🛛 [1] 📘

			(1.00) 		
参数示意图 h ₁	地下水位参数 桩墙后地下水位: 桩墙前地下水位:		h 1 = h2 =	-1.00 [m]	
图 4.11【地下水】设置——工况阶段[2] 下一步,选择【工况阶段设置】界面,选择"偶然设计状况"。					
设计状况:			偶然设计状况		•

图 4.12 【工况阶段设置】界面——工况阶段[2]

由于该工况阶段与工况阶段[1]输入的其他参数(如岩土参数等)相同,因此用户无需再次输入,可直接选择【分析】界面。对于偶然设计状况,计算嵌固深度的安全系数这里取值为1.1。

图 4.13 【分析】界面——工况阶段[2]——分析工况[1]

4.14【分析】界面——工况阶段[2]——分析工况[2]

工况阶段[2]:计算结果

_	排桩长度	6.82m	(分析工况1)	
	嵌固深度	4.32m	(分析工况 1)	
	最大弯矩标注值	$M_{max} = 141.892$	kNm/m * 1.5m = 212.83kNm	(分析工况 2)
—	最大剪力标准值	$Q_{max} = 185.891$	kN/m * 1.5m = 278.83kN	(分析工况 2)

结论

由工况阶段[1]与工况阶段[2]的计算结果可知:

排桩所需最小嵌固深度: 4.32m 排桩的最大弯矩标准值: M_{max} = 212.83Nm 排桩的最大剪力标准值: Q_{max} = 278.83kN

在验算排桩的截面强度时,应当采用内力设计值,即标准值乘以基本组合综合分项系数 γ_F ,再乘以结构重要性系数 γ_0 。对于一级结构, $\gamma_F = 1.25$, $\gamma_0 = 1.1$ 。

第五章 锚拉式支挡结构的设计(基坑)

本章我们将为用户介绍如何设计锚拉式支挡结构。 例题源文件请在这里下载: http://pan.baidu.com/s/1bn0BOkB

任务

在基坑中,采用排桩加一排锚杆的支护形式构成锚拉式支挡结构。根据"中国一国家标准(GB)", 对排桩和锚杆进行设计。本算例中,基坑开挖深度为 5.0m,锚杆位于地面以下 1.5m 处,岩土材料、 剖面地层、地下水位线和坑内地形尺寸均和第四章算例相同,但地下水位(埋藏深度 1m)在整个计 算过程中不变。

图 5.1 支锚式排桩工程算例

计算

为了解决该问题,我们采用"GEO5 深基坑支护结构设计"软件(v18 版)进行分析,分析过程 包括如下两部分:

分析工况[1]: 持久设计状况——底部固支的锚拉式支挡结构(等值梁法)

分析工况[2]: 持久设计状况——底部铰支的锚拉式支挡结构(静力平衡法)

分析工况[1]: 基本参数输入

【分析设置】,【剖面土层】,【岩土材料】,【墙后坡面】以及【地下水】界面中的参数均和第四章 算例的工况阶段[1]相同。如果用户直接采用第四章算例的文件,请删除其中的工况阶段[2],并作如 下修改:

选择【尺寸】界面,设置基坑深度为5.0m。

选择【锚杆】界面→【添加】,在本算例中,设置深度1.5m,锚杆水平间距为2.5m,倾角为15°, 并设置锚固段和自由段的长度(GE05v18中暂不对锚杆的抗拔和抗拉进行验算,因此,锚杆长度值对

"深基坑支护结构设计"软件的计算结果并无影响,仅仅是为了视图需要。当然,进行整体稳定性分 析时,锚杆自由段的长度有可能对整体稳定性分析结果产生影响。)。

■回回 编号	锚杆 新建	深度 z [m]	自由段长度 [m]	锚固段长度 lk [m]	倾角 α.[°]	水平间距 b [m]		■ 添加
							*	

图 5.2 【锚杆】界面

在【工况阶段设置】界面中,选择"持久设计状况"。

下一步,选择【分析】界面,将支座类型设置为"固支",然后点击【分析】,得出计算结果,如 图 5.3。

图 5.3 【分析】界面——计算结果(分析工况1)

分析工况[1]: 计算结果

- 排桩长度 8.81m
- 嵌固深度 3.81m
- 锚固力标准值 115.36kN
- 最大弯矩标准值 61.28kNm/m * 1.5m = 91.92kNm
- 最大剪力标准值 110.82kN/m*1.5m=166.23kN

接下来,添加分析工况[2],将支座类型为"铰支",然后对比分析工况[1]、[2]的计算结果,给出 最终设计值。

分析工况[2]: 基本参数输入

在图形窗口下方水平工具栏上点击:【添加】,添加分析工况[2]。

分析:	• 添加	🔳 🖩	[1] [2]
分析尚未进	桁		
一支座类型,	(结构底端) ————		
◎ 固支			
◎ <u>铰</u> 支			
一分析参数一			
被动土压力	折瑊系数:		1.00 [-]
☑ 截面最小	心土压力		
截面最小土	压力系数:		0.00 [-]

图 5.4 【分析工况】工具栏

在此分析工况内,"支座类型"设置为"铰支",然后点击【分析】,进行分析工况[2]的计算:

图 5.5 【分析】界面——计算结果(分析工况 2)

分析工况[2]: 计算结果

—	排桩长度	6.79m
—	嵌固深度	1.79m
—	锚固力标准值	144.85kN
—	最大弯矩标准值	76.08kNm/m * 1.5m = 114.12kNm
—	最大剪力标准值	49.20kN/m * 1.5 m = 73.8 kN

结论

计算时,固支类型支座采用"等值梁法"进行计算,铰支类型支座采用"静力平衡法"进行计算。 在实际工程中,支护结构的支座类型介于固支与铰支之间,因此,支挡结构总长度也应处于"H_{圈支}—H _{铰支}"之间。当支挡结构底端支座类型为固支时,所需支挡结构长度较长,但锚固力较小;支座类型为 铰支时则相反。所以锚固力越大,所需支挡结构长度越小;锚固力越小,所需支挡结构长度越长。用 户可根据具体情况进行桩长、桩身截面和锚固力的初步设计,得出设计方案。在第六章中,我们会将 该基坑支护的设计方案导入"深基坑支护结构分析"软件中进行进一步验算分析。

需要说明的一点是,对于支撑式支护结构,其计算原理和锚拉式基本相同。

第六章 单支点锚拉式排桩基坑支护分析

本章中,将为用户介绍如何设计和验算单支点锚拉式基坑支护结构。验算内容包括锚杆的内部稳 定性、结构的截面强度以及结构的整体稳定性。

例题源文件请在这里下载: <u>http://pan.baidu.com/s/1fFjH0</u>

任务

进一步分析算例5中设计的支锚式排桩结构设计方案。

计算

为了解决该问题,我们采用"GEO5 深基坑支护结构分析"软件(v18 版)进行计算,分析过程 包括如下两个工况阶段:

工况阶段[1]: 排桩尺寸设计+基坑开挖 2.5m 工况阶段[2]: 在 1.5m 深处,添加锚杆 工况阶段[3]: 基坑开挖至 5.0m

工况阶段[1]: 基本参数输入

为了计算方便,可以直接将算例 5 中的数据复制过来,具体操作为:在"GEO5 深基坑支护结构 设计"软件中选择【编辑】→【复制数据】,然后在"GEO5 深基坑支护结构分析"软件中,选择【编 辑】→【粘贴数据】。此时,大部分计算所需数据都已成功导入。

文件	编辑	输入	分析	截图	设置	帮助
		复制截日	된 Ctrl+	+C	桊 显	7
工況時		复制数	居			
图	6. 1	【编辑	】 复制	间数据	与粘贴	数据
	入数10元岩指地地剖墙据14元百元	入 信材材水荷土坡 载层面				
		(🗹 硝	锭	🗵 💵	肖

图 6.2 粘贴数据时的界面

在【分析设置】界面中,依然选择"中国一国家标准(GB)",最小主动土压力系数设为0,结构 重要性系数为1.1。

下一步,选择【水平反力系数 Kh】界面,选择"依据 Schmitt(施密特) 法计算"。此法所得土的水平反力系数值取决于土的侧限压缩模量以及结构的刚度(更多信息请见帮助文件—F1)。

图 6.3 【水平反力系数 Kh】界面

注:

 土的水平反力系数是采用弹塑性共同变形法(弹塑性非线性模型)进行分析时的一个重要参数。水平反力系数 Kh 的值影响着土体的变形,而土体的变形又影响着土压力的大小,且主动 土压力与被动土压力分别对应着土体不同的变形区间(更多信息请见帮助文件——F1)。

采用 Schmitt 法计算土的水平反力系数时,需要输入泊松比。通常情况下中国的勘察报告中没有泊松比而只有压缩模量。这里的泊松比仅仅是用于变形模量和压缩模量的转换,也就是说,当我们以压缩模量输入时,泊松比的取值对计算结果不会有任何影响。

下一步,选择【岩土材料】界面,双击每个材料进行【编辑】,输入泊松比和压缩模量(这两个参数在"GE05 深基坑支护结构设计"软件中未输入,故在此补充),具体参数见表 6.1。

岩土材料	含细粒土砂,中密	粘土质砂	低塑性粘土, 硬塑
泊松比 ν	0.30	0.35	0.40
侧限压缩模量 E _{oed} [MPa]	21.0	12.5	9.5
岩土特性	无粘性土	无粘性土	粘性土

表 6.1 泊松比和压缩模量

注: 计算静止土压力时, 输入的岩土材料类型(粘性土或无粘性土)不同,采用的计算公式也不同。 值得注意的是,即使是典型的无粘性土,用户也可按照粘性土的计算公式来计算其静止土压力,只需 将岩土材料设置为"粘性土"即可;反之,当用户按照无粘性土的静止土压力计算公式来计算粘性土 时,除了将岩土材料类型设置为"无粘性土"之外,还需在计算中采用其等效内摩擦角(更多详细内 容请见帮助文件——F1)。

在【尺寸】界面中,"结构类型"设置为"排桩",根据第五章的计算结果,选择铰支结果作为设计桩长,取*l=7m*,桩的其他参数如图 6.4:

注:如果无法判断桩底支座为铰支还是固支,则选择较长的桩长作为设计桩长。例如,该例题也可以选择参照固支计算结果,取1=9m。

新建截面		-		×
]
结构类型:	排桩			•
截面名称:	排桩 d = 1.00 m	m; a = 1.50 n	ı	🔲 自定义
截面长度:		=	7.00	[m]
坑底以下土压力:	折瑊系数:		1.00	[-]
尺寸				
桩直径:		d =	1.00	[m]
桩距:		a =	1.50	[m]
		1.50	→ ↓ 1.50	
─信息 A = 5.24	E-01 [m ² /m]	I =	3.27E-02	[m ⁴ /m]
	录		• 添加	🛛 取消

图 6.4 【尺寸】的设置

下一步,选择【开挖】界面,工况阶段[1]的开挖深度为 2.50m。

下一步,选择【分析】,求得工况阶段[1]的分析结果。

图 6.8 【分析】结果——工况阶段[1], 位移+内力

添加工况阶段[2]: 添加锚杆

图 6.9 添加工况阶段[2]

在工况阶段[2]中,模拟排桩的锚固。【分析设置】,【剖面土层】,【水平反力系数】,【岩土材料】, 【尺寸】界面在此工况阶段无法使用,因为在所有工况阶段中,这些参数都应当是相同的。

选择【锚杆】界面→【添加】,我们将在 1.5m 深处添加一排锚杆。锚杆直径 50.0mm,总长度 9.0m,间距 2.5m,倾角为 15°,轴向预应力为 240kN。

图 6.10 【锚杆】的参数设置

注: 在进行该工况阶段的分析时,将对锚杆的刚度加以考虑,因为进一步开挖后,支挡结构会产生位移,锚杆的内力也将随之改变。

下一步,选择【分析】界面,得到锚杆锚固后的计算结果。

图 6.11 【分析】——工况阶段[2], kh+土压力与位移

添加工况阶段[3]: 开挖至 5.0m

图 6.12 添加工况阶段[3]

选择【开挖】界面,将"基坑深度"设为5.0m。

下一步,选择【分析】界面,得到工况阶段[3]的分析结果。

图 6.13 【分析】——工况阶段[3], kh+土压力与位移

图 6.14 【分析】——工况阶段[3], 内力

图 6.15 【分析】——工况阶段[3], 位移+土压力

注:可以注意到,锚杆锚固力因为排桩的变形从初始的 240kN 预应力,变为了 313.20kN。

截面强度验算

选择【截面强度验算】界面,就可以进行截面承载力和配筋率的验算,如图 6.16 所示:

图 6.16 【截面强度验算】验算结果

排桩内力值根据桩间距 1.5m, 截面承载力的分项系数 1.25 和结构重要性系数 1.1 得到:

排桩最大弯矩设计值: $M=1.25\gamma_0M_{max}=1.25\times1.5\times1.1\times62.15=128.18KNm$

排桩最大剪力设计值: V=1.25 $\gamma_0 V_{max}$ =1.25×1.5×1.1×61.75=127.37*KN*

采用钢筋直径 30mm, 8 根钢筋, 混凝土保护层厚度 40mm 的配筋方案, 截面强度验算结果满足 要求, 点击"详细结果"按钮, 可以得到更详细的信息。

验算钢筋混凝土结构截面 (排桩 d = 1.00 m; a = 1.50 m) 对所有工况阶段进行分析。 截面承载力的分项系数 = 1.25

截面配筋: 钢筋数重8 钢筋直径30.0 mm; 保护层厚度 40.0 mm 结构类型 (配筋率) : 按梁计算

GEO5 岩土工程设计手册(一)

配筋率 ρ = 0.360 % > 0.200 % = ρ_{min}

桩顶竖向荷载 : N = 0.00 kN (受拉) ; M = 128.18 kNm 承载力 : Nu = 0.00 kN; Mu = 760.00 kNm

桩配筋设计 满足要求

截面 满足要求

注:截面强度验算时,对于一级结构,需要在分析设置界面中设置"结构重要性系数"为1.1。包络 图给出的是作用标准组合得到的内力值,当验算配筋时,根据《建筑基坑支护技术规程》(JGJ 120-2012),需要设置截面承载力的分项系数(即"作用基本组合的综合分项系数")为1.25。

内部稳定性验算

选择【内部稳定】界面,可知锚杆的内部稳定性不满足设计要求,这意味着锚杆的锚固力足以使 岩土体产生破裂并将一部分岩土块体拔出。

注:锚杆内部稳定性验算并不是锚杆的抗拔和抗拉验算。中国规范并不对此进行验算,但是欧美规范 对此均有规定。该验算主要验算岩土体是否会因锚杆锚固力过大而产生内部破裂,从而导致阴影部分 岩土块被直接拔出(不同于锚杆的单独拔出)。具体计算理论请参阅帮助文档——F1。

图 6.17 【内部稳定】验算结果

由于锚杆过短,导致岩土体为锚杆提供的抗拉承载力偏小。因此,可以通过增加锚杆的长度来解 决该问题,如图 6.18:

图 6.18 更改【锚杆】长度——工况阶段[2]

再次进行【内部稳定】验算,如图 6.19,此时锚杆满足内部稳定性验算。

图 6.19 【内部稳定】第二次验算结果

整体稳定性验算

选择【外部稳定性分析】, 启动"土质边坡稳定分析"模块,选择【分析】界面,设置好初始滑动面、分析方法和分析类型,点击【开始分析】。

	(2) 叶圳珀木
日本 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
圆弧滑动面 分析	
國心: 伊 修政 分析方法: 毕肖普法(Bishop) 边坡稳定性耸算(华肖普法(Bishop)) x = -1.09 [m] 分析方法: 毕肖普法(Bishop) 通正「常力的总和1:Fa = 390.95 kV/m z = 1.99 [m] 角度: 溜面正「常力的总和1:Fa = 551.30 kV/m 半径: a1 = -43.27 [7] 假定瞄杆无限长 R = 9.60 [m] a2 = 78.04 [7]	*

图 6.20 【外部稳定性】计算结果

由计算结果可知,整体稳定的安全系数为:

SF=1.41>SF_s=1.30 满足要求

结论

支护结构的最终位移最大值为18.1mm,满足一般基坑的设计要求。

注:如果在某一工况阶段内,软件提示无法得到计算结果,则表示结构位移过大,无法收敛,不能满 足设计要求。此时用户需要更改一些设计参数,如增加支护结构长度、增加支护结构刚度、增大锚固 预应力、改变锚杆的位置等

其他验算结果:截面强度、内部稳定性、整体稳定性均满足要求。

对于初步设计,在没有锚杆现场拉拔试验结果的基础上,可以根据计算得到锚固力、相应的锚杆 杆体和锚固体经验参数验算锚杆的抗拔、抗拉是否满足要求。锚杆极限承载力验算可以参考《建筑基 坑支护技术规程》(JGJ 120-2012)中第 4.7.4 条的规定。

如果存在渗流,软件中还需要验算渗流稳定性。

第七章 多支点锚拉式排桩基坑支护分析

本章将为用户介绍如何进行多支点锚拉式排桩基坑支护结构的设计和验算。 例题源文件请在这里下载: <u>http://pan.baidu.com/s/1hq3PzJQ</u>

任务

验算一个多支点锚固的排桩在基坑支护中的稳定性。支护桩为 21.0m 长的排桩。基坑深度为 15.0m,墙后坡面水平。超载为 25.0kN/m²的永久荷载,坑外地下水深 10.0m。

图 7.1 多支点锚拉式排桩支护算例 表 7.1 岩土材料参数

岩土材料	低塑性粘土 硬塑	砂质粘土 硬塑	岩石 1	岩石 2	岩石 3	岩石 4	岩石 5
剖面地层	0.0-2.0	2.0-4.5	4.5-12.0	12.0-16.6	16.6-17.4	17.4-25.0	>25.0
天然重度	19.5	19.5	21.0	22.0	19.0	21.0	21.0
内摩擦角	20.0	22.0	27.5	40.0	24.0	30.0	40.0
粘聚力	16.0	14.0	30.0	100.0	20.0	35.0	100.0
变形模量	6.0	7.0	40.0	50.0	40.0	55.0	400.0
泊松比	0.4	0.35	0.3	0.25	0.3	0.25	0.2
静止土压力计算	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土

所有土层中,结构与岩体间的摩擦角均为 7.5°,饱和重度与天然重度相等,且算例计算中还采用了岩土体的变形模量。

锚杆 编号	深度 z [m]	自由 段长度1 [m]	锚固 段长度 l _k [m]	倾角 [°]	锚杆 水平间距 b [m]	轴向 预应力 kN	
1	2.5	9	4	15.0	4.0	300.0	
2	5.5	7	4	17.5	4.0	500.0	
3	8.5	6	4	20.0	4.0	800.0	
4	11.0	5	4	22.5	4.0	850.0	
5	13.0	5	4	25.0	4.0	900.0	

表 7.2 锚杆的位置和尺寸

所有锚杆的截面直径都是 d=32.0mm, 弹性模量 E=210.0GPa, 锚杆水平间距为 b=4.0m。

计算

为解决该算例中的问题,使用"GEO5 深基坑支护结构分析"软件(v18 版),选择【分析设置】 界面→【选择分析设置】,选择"中国一国家标准(GB)"。

分析设置列				
编号	名称	适用于		
1	标准 - 安全系数法	全部		
2	标准 - 极限状态法	全部		
5	欧洲 - EN 1997 - DA3	全部		
6	美国 - LRFD 2003	全部		
7	标准 - 不折瑊参数	全部		
8	捷克共和国 - 旧规范 CSN (73 1001, 73 1002, 73 0037)	全部		
11	波兰 - EN 1997	全部	=	
12	波兰 - EN 1997,水作用的分项系数=1.0	全部		
14	德国 - EN 1997	全部		
18	希腊 - EN 1997	全部		
29	巴西	全部		
42	俄罗斯	全部		
43	中国 - 国家标准(GB)	全部	☑ 确定	
44	中国 - 公路行业 (町)	全部		-
AF	市田 純敗(行北 (市)			

图 7.2 【选择分析设置】界面

下一步,选择【尺寸】界面→【添加】(若软件已随机给出一种材料,选择【编辑】),如图 7.3 设置排桩截面:

编辑截面				×		
]		
结构类型:	排桩			•		
截面名称:	排桩 d = 1.00 n	n; a = 1.50 m		🔲 自定义		
截面长度:		I =	21.00	[m]		
坑底以下土压力	〕折瑊系数:		1.00	[-]		
尺寸		_				
桩直径:		d =	1.00	[m]		
桩距:		a =	1.50	[m]		
信息 A = 5.2	4E-01 [m ² /m]	I =	3.27E-02	[m ⁴ /m]		
「「「」」「「」」「」」「」」「」」「」」「」」「」」「」」「」」」「」」」	∃录		3 确定	🛛 取消		

图 7.3 【尺寸】的设置

注: 坑底土压力折减系数用于折减坑底的土压力(包括坑内和坑外)。对于经典挡土结构(无间距),该系数为1。对于有间距的挡土结构(例如排桩、型钢桩横挡板),该系数往往小于等于1,具体取值取决于桩的尺寸和间距。根据中国规范,分析排桩时也可取值为1.0,帮助文档中的建议取值方法为国外排桩设计理论(更多信息请见F1帮助文件)。

接下来,我们将分阶段模拟基坑的开挖与支护,使计算更接近于实际的工程状况。在每个工况阶段内,都需要关注结构的内力和变形情况,如果支护结构在某个工况阶段变形过大,我们需要改进设 计方案,例如增长支护桩、减少开挖深度或增大锚杆锚固力等。

按照表 7.1 给出的岩土参数,定义【岩土材料】,在【指定材料】界面中将不同的岩土材料指定 给相应的【剖面土层】。

岩土材料												
	A	₩ B										
编号	土层厚度	岩土材料										
土层	[m]											
> 1	2.00	低液限粘土 (CL,CI), 液性指数硬塑										
2	2.50	含砂粘土 (CS), 液性指数硬塑										
3	7.50	岩石1										
4	4.60	岩石2										
5	0.80	岩石3										
6	7.60	岩石4										
7		岩石5										

图 7.4 将岩土材料指定给相应的地层

选择【地下水】界面,设置基坑内外的地下水埋藏深度均为10m。

图 7.5 【地下水】界面

下一步,选择【超载】界面,如图7.6,设置坑外超载。

超载名称 名称:	坑外超载
超载参数 类型: 作用类型 :	均布面超载 ▼ 永久作用 ▼
	输入方案
超载大小 大小:	q =[klV/m ²]
	💽 添加 🛛 🖾 取消

GEO5 岩土工程设计手册(一)

图 7.6 【超载】界面

坑内土示意图	基坑深度: 坑内超载: □ 位内土 加固土: 十层厚度:	未指定材料	h = 3.00 [m] f = 0.00 [kPa]	-	
	-19472,		0.30		

图 7.7 【开挖】界面——工况阶段[1]

接下来,在各个工况阶段,需要做如下设置与分析: 工况阶段[1]:基坑开挖深度 3.0m; 工况阶段[2]:在 2.5m 深处,设置编号 1 锚杆; 坑内外地下水位不变。

在工况阶段[1],设置开挖深度为 3.0m。

工况阶段[3]: 基坑开挖深度 6.5m; 工况阶段[4]: 在 5.5m 深处,设置编号 2 锚杆; 坑内外地下水位不变。

•	- 모 대 编号	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	杆 补张拉	深度 z [m]	自由段长度	锚固段长度 lk [m]	倾角 α[°]	水平间距 b [m]	锚杆直径 d [mm]	锚杆截面积 A [mm ²]	弹性模量 E [MPa]	锚固力 F [kN]	● 添加
	> 1	否	否	2.50	9.00	4.00	15.00	4.00	32.0		210000.00	343.13	● 编辑
	2	是		5.50	7.00	4.00	17.50	4.00	32.0		210000.00	500.00	- 2001-07
													😑 🖮除

图 7.9 工况阶段[4]

工况阶段[5]: 基坑开挖深度 9m; 工况阶段[6]: 在 8.5m 深处,设置编号 3 锚杆; 坑内外地下水位不变。

· ·		锚	杆	深度	自由段长度	锚固段长度	倾角	水平间距	锚杆直径	锚杆截面积	弹性模量	锚固力		● 添加
	编号	新建	补张拉	z [m]	l [m]	l _k [m]	α [°]	b [m]	d [mm]	A [mm ²]	E [MPa]	F [kN]		CD 246/94
	1	否	円	2.50	9.00	4.00	15.00	4.00	32.0		210000.00	337.74	~	€ 编辑
	> 2	否	否	5.50	7.00	4.00	17.50	4.00	32.0		210000.00	533.75		
	3	是		8.50	6.00	4.00	20.00	4.00	32.0		210000.00	800.00		■ 删除

图 7.10 工况阶段[6]

工况阶段[7]: 基坑开挖深度 11.5m, 坑内地下水位降为 12m; 工况阶段[8]: 在 11m 深处,设置编号 4 锚杆;

GEO5 岩土工程设计手册(一)

7.11 工况阶段[8]

工况阶段[9]: 基坑开挖深度 13.5m, 坑内地下水位降为 15.5m; 工况阶段[10]: 在 13m 深处,设置编号 5 锚杆;

•		し 回 編号	锚杆 新建 补张		深度 z [m]	自由段长度 [m]	锚固段长度 lk [m]	倾角 α [°]	水平间距 b [m]	锚杆直径 d [mm]	锚杆截面积 A [mm ²]	弹性模里 E [MPa]	锚固力 F [kN]		● 添加
	ПĒ	1	否	否	2.50	9.00	4.00	15.00	4.00	32.0		210000.00	337.44	^ [€ 编辑
		> 2	否	否	5.50	7.00	4.00	17.50	4.00	32.0		210000.00	527.03		
		3	否	否	8.50	6.00	4.00	20.00	4.00	32.0		210000.00	863.84		■ 删除
	10	4	否	否	11.00	5.00	4.00	22.50	4.00	32.0		210000.00	857.83		
	10	5	是		13.00	5.00	4.00	25.00	4.00	32.0		210000.00	900.00		

7.12 工况阶段[10]

在工况阶段[11]中,基本开挖至15m深,且开挖之后不再增设锚杆,坑内地下水位为15.5m,坑 外地下水位为10.0m。

图 7.13 工况阶段[11]

注:当支护桩产生变形时,锚杆(或支撑)内力也随之改变,且变化值取决于锚杆的刚度和变形。在 此过程中,锚固力可能增大,也可能减小(预应力损失),用户可在设置该锚杆后的任一工况阶段内 采用"锚杆补张拉"选项来更改锚杆锚固力的大小,如图 7.14。

编辑锚杆	×
锚杆参数	
深度:	z = 2.50 [m]
自由段长度:	I = 9.00 [m]
锚固段长度:	l _k = 4.00 [m]
倾角:	α = 15.00 [°]
锚杆水平间距:	b = 4.00 [m]
锚杆刚度	
◎ 锚杆直径:	d = 32.0 [mm]
◎ 锚杆截面积:	
弹性模里:	E = 210000.00 [MPa]
☑ 锚杆补张拉	
锚固力:	F = 313.45 [kN]
	确定 + 🔊 确定 + 💌 🗹 确定 🛛 取消
	图 7.14 锚杆补张拉

计算结果:

图 7.15 为最后一个工况阶段——工况阶段[11]的分析结果:

图 7.15 工况阶段[11]分析结果——"kh+土压力与位移"

图 7.17 工况阶段[11]分析结果——"位移+土压力"

所有工况阶段的分析均顺利完成,这意味着在所有工况阶段内,支挡结构都能正常发挥其功能, 且基坑也能在开挖过程中保持稳定。用户在设计时,应根据基坑的实际容许变形,判断计算结果是否 满足要求,并且通过"内部稳定"界面验算锚杆最大容许锚固力是否满足要求。

结论

支护结构在施工完成后的位移最大值为 3.4mm,满足一般基坑的设计要求。 注:如果在某一工况阶段内,分析无法顺利完成,则支护结构不满足设计要求。此时用户需要更改一 些设计参数,如增加支护结构长度、增大锚固预应力、改变锚杆的位置或数量等。

选择工况阶段[11],在右侧模式菜单栏选择【截面强度验算】。从包络图中读得所有工况内,弯矩、 剪力和位移的最大值:

图 7.18 所有工况阶段的包络图

由包络图可知,在基坑开挖过程中,最大位移为4.9mm,满足一般基坑的变形设计要求。排桩内力设计值根据桩间距1.5m,截面承载力的分项系数1.25和结构重要性系数1.1得:

排桩最大弯矩设计值: $M = 1.25\gamma_0 M_{max} = 1.25 \times 1.5 \times 1.1 \times 149.01 = 307.32 KNm$

排桩最大剪力设计值: $V = 1.25\gamma_0 V_{max} = 1.25 \times 1.5 \times 1.1 \times 145.01 = 299.24 KN$

采用钢筋直径 30mm, 8 根钢筋, 混凝土保护层厚度 40mm 的配筋方案, 截面强度验算结果满足 要求, 点击"详细结果"按钮, 可以得到更详细的信息。

> 验算钢筋混凝土结构截面(排桩 d = 1.00 m; a = 1.50 m) 对所有工况阶段进行分析。 截面承载力的分项系数 = 1.25
> 截面函載力的分项系数 = 1.25
> 截面配筋: 钢筋数量8 钢筋直径30.0 mm; 保护层厚度 40.0 mm 结构类型(配筋率): 按梁计算
> 配筋率 p = 0.360 % > 0.215 % = p_{min}
> 桩顶竖向荷载: N = 0.00 kN (受拉); M = 307.34 kNm 承载力: N_u = 0.00 kN (受拉); M = 307.34 kNm
> 椪配筋设计 满足要求
> 截面 满足要求

注:截面强度验算时,对于一级结构,需要在分析设置界面中设置"结构重要性系数"为1.1。包络 图给出的是作用标准组合得到的内力值,当验算配筋时,根据《建筑基坑支护技术规程》(JGJ 120-2012),需要设置截面承载力的分项系数(即"作用基本组合的综合分项系数")为1.25。

内部稳定性验算:

选择【内部稳定】界面,可知各个工况内,锚杆的最大容许锚固力满足要求。

GEO5 岩土工程设计手册(一)

	锚固力	容许最大锚固力	安全	内部稳定性验算		结果	
锚杆#	[kN]	[kN]	系数			容许安全系数= 1.80 🚯 详细结果	
> 1	313.00	1518.44	4.85	满足要求	^	验算锚杆:	
2	500.70	2354.09	4.70	满足要求		锚杆编号:3	
3	796.30	3028.63	3.80	满足要求		安全系数 = 3.80	
4	848.20	3466.97	4.09	满足要求			
5	907.98	5186.23	5.71	满足要求		T SE SE SE	

图 7.19 锚杆内部稳定性验算

验算外部稳定性:

选择【外部稳定性分析】界面,启动"土质边坡稳定分析"模块,选择【分析】界面,按照图 7.20设置滑动面、分析方法和分析类型,点击【开始分析】。

分析:	•	Ī					الآ) آ	洋细结果
滑动	lā:圆弧 ▼	● 重新输入	■ 删除 🛛 🔁	转为折线滑动面	ā			
		圆弧滑动面				_	分析	
圆心:			🕑 修改	分析方法:	毕肖普法(Bishop)		边坡稳定性验算 (毕肖普法(Bishop)) 海西上下海力的单和,E383_34 kN/m	~
x =	-6.61	[m]		分析类型:	自动搜索	▼	滑面上抗滑力的总和: F _p = 6516.79 kN/m	
z =	2.09	[m] 角度:		搜索区域 🦻	卡输 入		得动力矩: Ma = 74123.57 kNm/m お姿力45・ M- = 156663.73 kNm/m	
半径:		α ₁ =	-44.69 [°]	□ 假定锚杆	无限长		安全系数 = 2.11 > 1.30	
R =	24.04	[m] α ₂ =	85.01 [°]	🚪 🖻 开始分	析		边被稳定性 满足要求	-

图 7.20 【外部稳定性】计算结果

由计算结果可知,支挡结构的安全系数为

SF=2.11>SFs=1.30 满足要求

注: 在"土质边坡稳定分析"模块中,软件并不显示锚杆的锚固段部分,因为 GE05v18 版并不验算锚

杆的抗拔抗拉,因此,并不考虑滑面穿过锚固段的情况。如果需要考虑滑面穿过锚固段,可以将自由 端设置的长一些即可。实际的锚杆抗拔抗拉,根据锚固力手动验算一下就可。

注:本算例给出的设计方案只在安全上满足设计要求,不一定是经济适用的。用户在设计过程中要结 合实际的工程造价、周边环境等因素,对设计方案进一步完善。

第八章 边坡稳定性分析

在本章中,我们将为用户介绍边坡稳定性的验算。假设边坡滑面为圆弧或者是折线形,搜索其中 的最危险滑面,得出验算结果,并对比不同分析方法的区别。

例题源文件请在这里下载: <u>http://pan.baidu.com/s/1i3BUUu5</u>

任务

如图 8.1,该边坡为持久设计工况。边坡中无地下水存在,设计安全系数为 1.30。

图 8.1 【边坡稳定性】算例

计算

采用"GEO5土质边坡稳定分析"软件(v18版)进行验算,并按如下几个步骤进行分析:

- 分析 1: 搜索最危险圆弧滑面(Bishop法)
- 分析 2: 对指定滑面运用所有方法验算边坡的稳定性
- 分析 3: 搜索最危险折线形滑面(不平衡推力法(隐式))

选择【分析设置】界面→【选择分析设置】,选择"中国一国家标准(GB)"。

🥝 分析设置列录	Ę.			×
编号	名称	适用于	\square	
11	波兰 - EN 1997	全部	-	
12	波兰 - EN 1997,水作用的分项系数=1.0	全部	1	
14	德国 - EN 1997	全部	1	
29	巴西	全部	1	
33	美国 - LRFD 2012	全部		
36	法国 - EN 1997	全部		
37	法国 - EN 1997,水作用的分项系数=1.0	全部	1	
38	保加利亚 - EN 1997	全部		
39	保加利亚 - EN 1997, 水作用的分项系数 = 1.0	全部		
42	俄罗斯	全部		
43	中国 - 国家标准(GB)	全部		
44	中国 - 公路行业(丌)	全部		
45	中国 - 铁路行业(TB)	全部		🗹 确定
46	中国 - 水利行业(SL)	全部		
47	市国	会会	1 -	<u>∽</u> 4x/fl

图 8.2 选择分析设置

在剖面图中, 土层之间的分界面、土层与结构的分界面均为多段线, 而每条多段线都是由点确定 的, 根据表 8.1 中的坐标确定各点。

			表 8.1	各多段线.	上点的坐标				
占旦	多段	线1	多段	线2	多段	线3	多段线4		
从写	x[m]	z[m]	x[m]	z[m]	x[m]	z[m]	x[m]	z[m]	
1	0	-4.75	16.80	-4.54	19.17	-2.48	0	-8.07	
2	10.81	-3.64	18.87	-4.57	27.61	-1.75	19.06	-7.50	
3	16.80	-4.54	19.17	-2.48	32.66	-0.74	31.40	-5.77	
4	18.89	0.63	19.62	0.71	40.00	0.36	40.00	-5.05	
5	19.62	0.71							
6	19.71	0.71							
7	26.00	2.80							
8	34.30	3.20							
9	40.00	4.12							

选择【多段线】界面→【范围】,输入本算例的坐标变化范围。在本算例中,距多段线最低点的 "深度"只是为了整体视图效果,对计算结果没有影响。

图 8.3 模型大小的设置

接下来,输入各多段线坐标。先选择【多段线】界面:【添加】,然后再选择"点:【添加】",依 次输入坐标点,然后再依次添加下一条多段线,如图 8.4。

图 8.4 添加多段线

注: 在 GE05 中有很多种方式可以输入多段线,除了这里的通过坐标输入以外,还可以在图上直接交互输入,当然,也可以交互输入和坐标输入混合进行。同时,GE05 中还支持直接导入 DXF 文件 以完成多段线的输入。多段线的更多使用方法,请访问 <u>www.geo5.cn</u>,"技术支持 - 教程资料 - 视频教程 - GE05 二维建模视频教程"。

输入多段线以后,定义【岩土材料】,并选择【指定材料】界面,将相应的岩土材料指定给相应 的土层。

添加岩土材料		×
岩土类别 名称: 含细粒土砂)、密实	显示 颜色
 基本参数 天然重度: 应力状态: 内摩擦角: 粘聚力: 浮重度 浮重度的计算模式: 饱和重度: 	γ = 17.50 [dN/m³] 有效应力 ▼ φ _{有效} = 31.50 [°] c _{有效} = 0.00 [kPa] 标准(饱和重度、水重度)▼ γ _{sat} = 17.50 [kN/m³]	图例类别 GEO ▼ 图例
- 节理 土层节理:	不考虑	土的分类 分类 删除

图 8.5 添加岩土材料

注:由于本算例验算边坡的长期稳定性,故采用岩土体强度参数的有效值 (φ_{fxx} , C_{fxx})。土层 节理在本算例中不予考虑。在实际使用中,也可以采用快剪强度指标,但是当采用不排水抗剪强度 c_u 时,需选择总应力法。

表 8.2 岩土材料参数

岩土材料	含细粒土砂,密实	砂质粉土, 硬塑	砾质粉土, 硬塑
天然容重 $\gamma(kN/m^3)$	17.5	18	19
内摩擦角 $\varphi_{e^{f}}(\circ)$	31.5	26.5	29
粘聚力 $C_{ef}(kPa)$	0	16	8
饱和容重 $\gamma(kN/m^3)$	17.5	18	19
材料分区	1	3	4

将重力式挡土墙模拟为天然容重 $\gamma = 23.0 kN/m^3$ 的刚性体。由于挡墙具有较大强度,认为边坡 滑面无法穿过重力式挡墙(更多信息请见帮助文件——F1)。若出现滑体条块分界面穿过挡墙的情况,

软件将	好 给出警告信息。					
	添加刚性材料					— X
	- 岩土类别 名称: 基本参数 天然重度:	重力式挡土墙	γ = 23	[kN/m³]	2	显示 颜色 图例类别 GEO ▼ 图例
						● 添加

图 8.6 为重力式挡土墙定义刚性材料

下一步,定义超载,该超载为作用在墙后坡面上的永久条形超载。

添加超载		×
- 超载名称		
名称:	超载	
超载特性		
类型 :	条形超载 💽 作用	类型: 永久作用 💽
位置 :	坡面	
起点:	x = 26.00 [m]	₩
长度:	l = 8.30 [m]	q /+α
倾角:	α = 0.00 [°]	[0,0]
一超载大小一一		
大小:	q = 10.00 [kN/	m ²]
		🔳 添加 🛛 🗵 取消

图 8.7 定义坡面超载

注:除集中超载外,其它类型超载的大小均为纵向每 1m 宽的荷载强度(更多详细信息请见帮助 文件——F1)。 跳过【填方】、【挖方】、【锚杆】、【筋材】和【地下水】界面,且由于边坡不处于地震活动区,在 本算例中也不需要使用【地震荷载】界面。

下一步,在【工况阶段设置】界面中,选择"持久设计状况"。

设计状况		
设计状况:	持久设计状况	

图 8.8 【工况阶段设置】界面

搜索最危险圆弧滑面(Bishop 法)

下一步,打开【分析】界面,点击②号【输入】,输入圆心坐标和圆弧半径确定滑动面;或者点击①号【输入】,用鼠标直接在窗口点击输入三个点确定滑动面。"分析方法"选择"Bishop法","分析类型"设为"自动搜索"。

分析: 🖲 😑 [1]							
滑动面:圆弧 🍷	● 输入 🗉	日删除					
U	圆弧滑动面						
圆心:		▣ 输入		分析方法:	Bishop法	•	
x =	[m]	2		分析类型:	自动搜索	•	
z =	[m] 角度:			搜索区域 未	输入		
半径:	α1 =		[°]	□ 假定锚杆?	6限长		
R =	[m] α ₂ =		[°]	📕 🖻 开始分标	ſГ		

图 8.9 【分析】——滑动面搜索的设置

注:

1. 在进行自动搜索前,软件要求必须先输入一个初始滑面。对于圆弧滑面,若输入的初始 滑面出现"滑面回转",即滑面的某一部分出现反倾时,软件会弹出警告信息,并要求用户重新 输入一条合理的初始滑面。

 当通过图形窗口交互的方式输入初始滑面时,无需精确捕捉滑面和地表的交点,软件会 根据用户指定的三个点自动捕捉滑面和地表的交点。

点击【开始分析】,进行边坡稳定性的分析,所得分析结果如图 8.10:

分析	•	[1]							🖻 详细结果
滑动	面: 圆弧	•	● 重新報	ì入 🔳 删除	2	转为折线滑动面			
			圆弧滑动	面				分析	
圆心: x = z = 半径: R =		18.02 4.98 9.60	[m] [m] 角[α; [m] α;	 € 修改 = -10.2 = 77.2 	[9] [9]	分析方法: 分析类型: 搜索区域 未: □ 假定锚杆无 ■ 用始分析	毕肖普法(Bishop) ▼ 自动搜索 ▼ 輸入 課代 f	边接急定性验育 (华侍普法(Eishop)) 滑面上下溜力的短和: F _p = 319.40 kl/m 滑面上抗溜力的短和: S _p = 561.50 kl/m 滑力力矩: M _a = 3066.26 kl/m 指滑力矩: M _p = 5390.39 kl/m/m 安全系動 = 1.76 > 1.30 边浆稳定性 衛足要求	· · · · · · · · · · · · · · · · · · ·

图 8.10 分析工况[1]得出的计算结果

注:当滑动面为圆弧时,如果用户选择"自动搜索"作为分析类型,软件会对整个边坡进行搜索, 并得到边坡内的最危险滑动面(临界滑动面),这种方式是非常可靠的。即使给出的初始滑面不同,

通过自动搜索得到的最终结果(最危险滑面)通常都是相同的。但是,我们建议用户在设置初始滑动 面时尽量给出一个比较合理的初始滑动面,若初始滑动面非常不合理,软件有可能搜索得到局部临界 滑动面,而不是全局临界滑面。当边坡非常复杂时,为确保搜索得到的临界滑动面为整个边坡模型范 围内的临界滑动面,有一些技巧可以采用:

——建立多个分析工况,并按照可能的滑动面在每个分析工况中设置不同的初始滑动面,并搜索(例如多台阶边坡)。

—— 在一次搜索结束以后,可以以这次搜索得到的临界滑动面作为初始滑动,再搜索一次。

经 Bishop 法验算, 边坡中圆弧滑动面的稳定性满足要求:

SF = 1.76 > SF_s = 1.30 满足要求

运用所有分析方法验算给定滑面的边坡稳定性

在【分析】栏中,点击"+"按钮,添加新的"分析"。在分析工况[2]中,"分析类型"选择"给 定滑面","分析方法"选择"所有方法",对分析工况[1]中得出的滑面进行分析。

图 8.11 添加新的分析工况

注:图 8.11 所示的分析工况[2]中,"分析类型"设为"给定滑面"(即分析工况[1]中采用 Bishop 法得出的最危险滑面),并采用"所有方法"对给定滑面进行分析。因此,为了获得更好的分 析结果,用户往往可以先采用某种分析方法自动搜索得到临界滑动面,然后再对该临界滑动面采用所 有方法分析。

图 8.12 分析工况 [2] 得出的计算结果

各个方法所得安全系数如下:

Bishop 法:	FS = 1.76 > 1.30	满足要求
Fellenius 法:	FS = 1.55> 1.30	满足要求
Spencer 法:	FS = 1.72 > 1.30	满足要求
Janbu 法:	FS = 1.73> 1.30	满足要求
Morgenstem-Price 法:	FS = 1.73 > 1.30	满足要求
Shahunyants 法:	FS = 1.56 > 1.30	满足要求
不平衡推力法(隐式):	FS = 1.72 > 1.30	满足要求
不平衡推力法(显式):	FS = 1.83 > 1.30	满足要求

注:选择何种分析方法,取决于用户的经验。目前使用最多的方法是 Bishop 法,因为这种方法 得到的结果已经足够保守。

对于加筋或者锚固的边坡来说,选用 Janbu, Spencer 和 Morgenstern-Price 等相对严格的计算 方法更适合一些,因为这些方法满足所有的平衡条件,能更准确地反映边坡的力学特征。

在验算某一边坡稳定性时,没必要用到所有的分析方法。例如,瑞典法——Fellenius/Petterson 法是非常保守的,得出的安全系数非常低,以至于偏离实际情况很远,会使设计方案过于保守。但由 于 Fellenius/Petterson 法在一些国家中使用较广泛,故 GE05 软件中依然保留了该方法。

用户可以在【分析设置】界面中,点击"编辑当前设置",并设置允许显示在【分析】界面中的 分析方法。

搜索最危险折线形滑面(不平衡推力法(隐式))

在【分析】界面中,添加分析[3],"滑动面"选择"折线","分析方法"设为"不平衡推力法(隐式)",分析类型为"自动搜索"。输入一个初始的折线形滑动面,点击【开始分析】。

注:最新建筑边坡规范 GB 50330-2013 中已要求折线滑动采用传递系数隐式解法,即这里选择的 "不平衡推力法(隐式)"。新规范的条文说明中也提到,对于国际上惯用的摩根斯顿法,如果计算结 果收敛,也是可以采用的计算方法。

图 8.13 分析[3]得出的计算结果

注: 折线形滑动面的自动搜索结果和初始滑动面的位置有关,一次自动搜索得出的最危险滑动面 可能是"某一范围内"安全系数最小的滑动面。用户在使用过程中,需要在边坡的潜在滑动区域分别 设置不同的初始滑动面,进行多次分析,通过对比得出最危险滑面。若用户无法判断可能的滑动面位 置,那么可以先采用圆弧滑面进行自动搜索,并根据搜索得到的最危险圆弧滑面来确定初始折线形滑 动面的形状和位置,该方法对于找到临界折线滑动面往往非常有效。关于折线滑动搜索的更详细介绍 和使用技巧,可以访问 www.geo5.cn/bbs,在"边坡稳定分析"版块查看贴子"GE05 土质边坡稳定分 析模块中圆弧和折线滑面搜索教程"。

图 8.14 折线形滑动面的自动搜索结果

注: 经常有用户反映, 在滑动面自动搜索完成后, 得出的最危险滑面"消失"了。这是因为对于无粘性土(c=0kPa), 搜得的最危险滑面与倾角最大的坡面相同, 所以看起来"消失"了。在这种情况下, 用户需要改变岩土材料参数或限制自动搜索滑面的区域。

经不平衡推力法(隐式)验算,边坡中折线滑动面的稳定性满足要求:

SF = 1.50 > SF_s = 1.30 满足要求

注: 当滑面控制点处的倾角变化(即控制点处两侧线段的倾角变化)大于 10°时,根据郑颖人院士 等人的研究结果,此时采用不平衡推力法得到的安全系数可能偏大。因此,当软件给出该警告时,建 议用户选择其他方法,例如摩根斯顿法,对该滑面的安全系数进行复核。

结论

经过最危险滑面的搜索,边坡的稳定性;	如下:	
Bishop 法(圆弧滑动面)	$SF = 1.76 > SF_s = 1.30$	满足要求
不平衡推力法(隐式)(折线形滑动面)	$SF = 1.50 > SF_s = 1.30$	满足要求
因此,该算例中由重力式挡土墙支护的;	边坡稳定性满足要求。	

第九章 支挡开挖的边坡稳定性分析

在本章中,首先验算给定边坡的稳定性,然后模拟建造挡墙、开挖边坡的工况,最后验算具有支 挡结构边坡的内部稳定性和外部稳定性。

例题源文件请在这里下载: http://pan.baidu.com/s/li3ggQqT

任务

验算图 9.1 中边坡的稳定性,接下来验算支挡开挖后,边坡的稳定性。在每个工况阶段,均为"持 久设计状况"。边坡的设计安全系数为 1.30,所有分析均采用 Bishop 法,自动搜索最危险圆弧滑面。

图 9.1 支挡开挖边坡算例

挡墙是由 C25 的混凝土铸造而成,墙体厚度 h=0.5m。

计算

为了解决这个问题,我们采用"GEO5 土质边坡稳定分析软件"(v18 版)进行计算,分如下几个步骤进行说明:

工况阶段[1]——边坡稳定性的验算,求得已有边坡的安全系数

工况阶段[2]——开挖边坡

工况阶段[3]——建造混凝土挡墙,求得开挖后被支挡边坡的内部和外部稳定性

注:在实际的施工过程中,施工顺序为"先支挡,后开挖",但是极限平衡法并不考虑土体的应力应 变关系,所以该算例中的工况阶段[2],[3]虽然表面上看来与施工顺序相反,但得出的计算结果是与 实际相同的,采用这种工况顺序的设置只是为了建立模型方便。

工况阶段[1]

【分析设置】界面→【选择分析设置】,选择"中国—国家标准(GB)"。 表示边坡内层间界面的各条多段线坐标如下:

<u> 异山甲科技有限公司</u> PANGOLIN TECHNOLOGY CO., LTD.

			表 9.1 各界面_	上点的坐标			
	多段	多段线1		线 2	多段线 3		
	x[m]	z[m]	x[m]	z[m]	x[m]	z[m]	
1	-25.00	5.84	-25.00	3.33	-25.00	0.84	
2	-15.00	7.50	-12.29	4.75	-8.72	-0.52	
3	-10.90	9.34	-3.01	5.30	-2.11	0.89	
4	-2.24	10.07	1.92	6.88	4.62	0.69	
5	3.00	12.00	7.26	8.24	15.00	3.50	
6	8.20	14.35	11.93	8.83	25.00	8.15	
7	25.00	15.95	25.00	12.17			

选择【多段线】界面→【范围】,设定模型尺寸范围。

世界坐标	23
一项目尺寸范围	
项目范围X最小值:	-25.00 [m]
项目范围X最大值:	25.00 [m]
深度(距多段线最低点):	15.00 [m]
	☑ 确定

		_					
🖽 范围 🛛 多段线: 🖲 添加 🕑 修改 😑 删除	π.	Ę	5: 🖿 🗄	■ 🕑 🗏 🗹 确定	🗵 取消		
多段线列表当前多段线上的点							
●				x [m]	z [m]		点:
1 多段线1	*		1	-25.00	0.84	*	■ 添加
2 多段线2			2	-8.72	-0.52		
> 3 多段线3			3	-2.11	0.89		●修改
			4	4.62	0.69		
			5	15.00	3.50		
			> 6	25.00	8.15		
	Ŧ					$\overline{\mathbf{v}}$	

图 9.2 模型尺寸范围的设置

⊕ 范围	多段线: ● 添加 ● 修改	■刪除	点: 🖲 🖼	🕙 😑 📕 🗹 确定	🗵 取消	
	多段线列表			添加	多段线上的点	
编号	多段线			x [m]	z [m]	点:
1	多段线1	*				▲ ■ 添加
2	多段线2					- TANJOR
> 3	多段线3					● 修改
		-				
		*				*

图 9.3 添加多段线

下一步, 定义相应的【岩土材料】, 并依图 9.1 指定给相应的土层。 表 9.2 岩土材料参数 岩土材料 粉土质砂 低 塑性粘土, 坚硬, Sr<0.8 粉质砂土, 硬塑 天然容重 18.0 20.0 18.0 内摩擦角 29.0 21.0 26.5 粘聚力 30.0 5.0 12.0 饱和容重 20.0 22.0 20.0 材料分区 1 2 3

下一步,【工况阶段设置】界面中选择"持久设计状况"。

接下来,选择【分析】界面,采用 Bishop 法,搜索边坡的最危险圆弧滑面。关于"滑动面","分析方法"和"分析类型"已在上一章说明,本章不再赘述(更多相关信息请见帮助文件──F1).

圆弧滑动面				分析			
圆心:	● 修改	分析方法:	毕肖普法(Bishop)	▼	边坡稳定性验算(毕肖普法(Bishop)) 毎面上で思力的は知:E.= 105.26 W/m	^	
x =	0.19 [m]	分析类型:	自动搜索	◄	滑面上抗滑力的总和: F _p = 238.05 kN/m		
z =	22.23 [m] 角度:	搜索区域 🕫	未输入		「指动力矩: Ma = 1305.20 kNm/m た海力矩: Ma = 1305.20 kNm/m		
半径:	α ₁ = -11.30 [°]	□ 假定锚杆	无限长		初日/2017年10日 安全系数 = 2.26 > 1.30		
R =	12.40 [m] α ₂ = 51.50 [°]	🚪 🖻 开始分	祈		22 玻想定性 海还要水	_	

图 9.4 原边坡的稳定性验算

由图 9.4 分析结果可知,运用 Bishop 法得出的原边坡的安全系数为: SF = 2.26 > SF_s = 1.30 满足要求

工况阶段[2]

首先,添加工况阶段[2]:

图 9.5 添加工况阶段[2]

选择【挖方】界面→【输入】,按如下坐标输入多段线(和【多段线】界面中定义多段线的方式 一样):

表	9	3	挖	方	名	锊	线	坐	标
N	/.	J	-10	/1	9	12	2	Ŧ	14

	多段约	戋 1
	x[m]	z[m]
1	-15.00	7.50
2	-10.00	4.50
3	2.00	4.50
4	2.00	-2.00
5	2.50	-2.00
6	2.50	11.85

穿山甲科技有限公司

图 9.6 【挖方】界面

注: 在定义挖方多段线时,如果新输入点与已定义点的 x 坐标相同,软件提示用户新点在"左" 还是"右"插入新点,且图形窗口中将根据颜色给出新输入点位置的预览,预览虚线的颜色对应红色 "左"按钮和绿色"右"按钮。之所以需要人为判断下一个点和已输入的 x 坐标相同的两个点的连接 方式,是因为 GEO5 多段线特有的算法。在 GEO5 中,我们假设依次输入三个点 A、B、C,很多软件中, 这三个点的连接顺序是通过输入顺序来指定的,也就是说 A 连接 B, B 连接 C。但是 GEO5 中是通过 x 坐标来指定的,也就是说如果 C 的 x 坐标和 A 的 x 坐标之差如果比 A 和 B 之间更小,则连接顺序为 A 连接 C, C 连接 B, 三点之间的连接和输入顺序无关,虽然 B 先于 C 输入。因此,当 A 和 B 具有相同 的 x 坐标时,就会弹出以下窗口,通过人为判断来指定 C 连接于 A 还是 B。

问题	23
已经存在一个X坐标相同的 插入新点 <mark>左</mark> ,或在?	的点 (12.00 m)
	▶ 査 🛛 取消

图 9.7 多段线 x 坐标相同提示框

工况阶段[3]

添加工况阶段[3],选择【填方】界面→【添加】,输入表示挡墙剖面的多段线,多段线坐标如下: 表 9.4 表示挡墙的填方多段线坐标

	多段	:线
	x[m]	z[m]
1	2.00	4.50
2	2.00	11.75
3	2.50	11.70

图 9.8 填方多段线的输入

验算挡墙内部稳定性

为了能用"土质边坡稳定分析"软件验算挡墙的内部稳定性,假定挡土墙由一种坚硬的岩土材料 构成,且该岩土材料具有与对应混凝土挡墙受剪承载力设计值相同的粘聚力。若将挡墙视为刚性体, 对其赋值刚性材料,则在分析时滑动面无法穿过墙体,不能验算挡墙的内部稳定性。

由 C25 混凝土构成的墙厚 h=0.5m 的挡墙受剪承载力设计值根据混凝土结构设计规范(GB 50010-2010)中式(6.3.1-1)有:

 $V_{\mu} = 0.25\beta_c f_c bh_0 = 0.25 \times 1 \times 11.9 \times 1 \times 0.5Mpa = 1487.5kPa$

现在,返回工况阶段[1],添加新的岩土材料,命名为"挡墙材料"。输入粘聚力 C_{ef} =1487.5kPa,

		显示
名称: 挡墙材料	1	颜色
- 基本参数		图例类别
天然重度:	γ = 25.00 [kN/m ³]	GEO
应力状态:	有效应力	图例
内摩擦角:	0** = 0.00 [9]	
*FB3+1	1407 F0 R0-1	
*阳永/J; 次舌曲	C有放 = 1467.50 [KPa]	图例 7
· 洋里長 派委府的社教描书。		?
/子里皮的灯井快式;	标准(饱和里度、水里度)	
饱和重度: 	$\gamma_{sat} = 25.00 [kN/m^3]$	
		土的分类
节理		分类
土层节理:	不考虑	
		确定 + 🔳
		确定 + 🗊
		☑ 确定
		🛛 🛛 取消

内摩擦角 $\varphi_{ef}=0^\circ$,天然重度。

图 9.9 挡墙材料

满足要求

回到工况阶段[3],将"挡墙材料"指定给挡土墙,然后选择【分析】界面。

分析:	• • [1]					④ 详细约	吉果
滑动面	i:圆弧 ▼	▣ 重新输入	🖻 删除 🛛 🕄	传为折线滑动	面		
		圆弧滑动面				分析	
圆心: x = z = 半径: R =	-74.53 184.80 195.83	[m] [m] 角度: α ₁ = [m] α ₂ =	 能改 23.00 [°] 	分析方法: 分析类型: 搜索区域 □ 假定锚 ■ 开始	毕肖普法(Bishop) 自动搜索 未输入 F无限长 分析	边接稳定性验算(毕肖普法(Bishop)) 看面上下滑力的没和:F ₈ = 829.25 kV/m 看面上抗滑力的恐和:F ₈ = 1882.93 kV/m 滑动力矩: M ₈ = 162392.05 kVm/m <u>抗滑力矩: M₉ = 368734,70 kVm/m</u> 安全系数 = 2.27 > 1.30 边玻稳定性 滿足要求	*
							~

图 9.10 内部稳定性验算结果

由内部稳定性验算结果可知,挡墙内部稳定性安全系数:

$$SF = 2.27 > SF_s = 1.30$$

注:如果这里的支挡结构是排桩结构,还需要根据桩间距对结构的受剪承载力设计值进行折减,岩土 材料的粘聚力按照折减后的受剪承载力设计值输入。

验算挡墙外部稳定性

在进行外部稳定性验算之前,应在模型中添加搜索区域限制线,使软件自动搜索的滑动面不与挡 墙相交。

分析: 🖲 📃 [1]		
滑动面: 圆弧 ▼ 🔳 重新输入	🔲 删除	
圆弧滑动面		
圆心:	🕑 修改	分析方法: Bishop法 💽
x = -304.19 [m]		分析类型: 自动搜索 💽
z = 556.07 [m] 角度:		搜索区域, <mark>未输</mark> 入
半径: α ₁ =	29.05 [°]	□ 假定锚杆无限长
R = 630.63 [m] α ₂ =	31.00 [°]	🚪 🖻 开始分析

图 9.11 【分析】界面中【搜索区域】

注:当模型中添加了搜索区域限制线时,软件搜索过程中不允许出现滑面穿过搜索区域限制线的情况。

图 9.12 在搜索区域内添加限制线

注:验算挡墙外部稳定性时,也可以将挡土墙区域赋值为刚性材料,这样即使不限制搜索区域, 软件搜索的滑动面也不会与挡墙相交。

分析	: 🖲 😑	[1]	1							
滑动	面: 圆弧	•	∎	新输入	🔳 删除	2	转为折线滑动面			
			風弧	骨动面						分析
圆心:					🕑 修改		分析方法:	毕肖普法(Bishop)	▼	边坡稳定性验算 (毕肖普法(Bishop)) 漫面上で漫力的単和: E. = 1557.65 kN/m
x =	3	3.60	[m]				分析类型:	自动搜索	•	泪面上抗滑力的总和: Fp = 4031.05 kN/m
z =	17	7.66	[m]	角度:			搜索区域 输	λ		滑动力矩: M _a = 30732.44 kNm/m な姿力近: Ma = 70537 71 kNm/m
半径:				$\alpha_1 =$	-53.04	[°]	□ 假定锚杆无	混长		10日75年: 安全系数 = 2.59 > 1.30
R =	19	9.73	[m]	α2 =	84.54	[°]	📕 🖻 开始分机	ř –		边坡稳定性 满足要求

图 9.13 外部稳定性的验算结果

由外部稳定性验算结果可知,挡墙外部稳定性安全系数:

SF = 2.59 > SF_s = 1.30 满足要求

结论

本章的目的是验算某给定边坡的稳定性,并进一步论证了该边坡经支挡开挖后的内部稳定性和外 部稳定性。结果如下:

原边坡 SF = 2.26 > SF_s = 1.30 满足要求
 支挡开挖后:
 内部稳定性 SF = 2.27 > SF_s = 1.30 满足要求

外部稳定性 SF = 2.59 > SF_s = 1.30 满足要求

注:该算例中设计的钢筋混凝土挡墙还需要分析其在主动土压力作用下的弯矩分布(抗拉强度)。 其上的弯矩分布和剪力分布可以在"GE05 深基坑支护结构设计"模块或"GE05 深基坑支护结构分析" 模块中计算得到。同时,还可以在"GE05 深基坑支护结构分析"模块中对该钢筋混凝土挡墙进行配 筋验算。

第十章 扩展基础的设计

本章将为用户介绍如何简单、高效地设计扩展基础。 例题源文件请在这里下载: <u>http://pan.baidu.com/s/1sjBEABF</u>

任务

根据"中国一国家标准(GB)",设计扩展基础。立柱将上部结构的荷载传递给基础,包括:N,H_x,H_y,M_x,M_y。基础两侧地面水平,地基土由中密、含细粒土砂构成,在深度 Z>6.0m 处为弱风 化板岩。地下水的埋藏深度为 z=6.0m,基底埋深为 z=2.5m。

图 10.1 扩展基础算例

计算

运行"GEO5扩展基础设计"软件(v18版),首先输入各项基本参数。 【分析设置】界面→【选择分析设置】,选择"中国一国家标准(GB)"。

77

<u> 穿山甲科技有限公司</u> PANGOLIN TECHNOLOGY CO., LTD.

GEO5 岩土工程设计手册 (一)

	а.		
编号	名称	适用于	\Box
8	捷克共和国 - 旧规范 CSN (73 1001, 73 1002, 73 0037)	全部	_
11	波兰 - EN 1997	全部	
12	波兰 - EN 1997,水作用的分项系数=1.0	全部	
14	德国 - EN 1997	全部	
29	巴西	全部	
36	法国 - EN 1997	全部	
37	法国-EN 1997,水作用的分项系数=1.0	全部	
38	保加利亚 - EN 1997	全部	
39	保加利亚 - EN 1997, 水作用的分项系数 = 1.0	全部	E
42	俄罗斯	全部	
43	中国 - 国家标准(GB)	全部	
44	中国 - 公路行业(丌)	全部] [
45	中国 - 铁路行业(TB)	全部	🗹 确定
46	中国 - 水利行业(SL)	全部	
47	山田 (中心が) (MCD)	公司	

图 10.2 选择计算依据的规范

"分析类型"选择"排水条件分析",勾选"不要计算沉降",如图 10.3:

分析设置 分析设置: 中国・国家标准(GB) □混凝土结构设计:中国规范GB 50010-2010 分析方法: 压弹模型法 磁空变形计算采度的方法: 应力比法 应力比系数(附加应力比自重应力):10.0 [%] 權水条件分析: GB 50007-2011中国建筑地凝基础设计规范 上拔稳定性分析: 土重法(中国规范DL/T 5219-2005) 容许偶心案: 0.250 容许偶心案: 中国规范	*	 ● 法择 分析设置 ⑦ 分析设置 管理器 ● 添加到 ● 管理器 	分析方法 分析类型: ☑ 不要计算沉降 结构重要性系数:	排水条件分析	γο =	• 1.10 [-]
	-	🕑 编辑当前设置				

图 10.3 分析类型与沉降计算的设置

注:通常情况下,当验算扩展基础在排水条件下的稳定性时,即计算时采用岩土材料的有效参数 (φ_{ef}, c_{ef})。而当地基土为粘性土或地基土受短期荷载作用时,则采用岩土材料的总应力参数

 $(\varphi_u, \mathbf{c}_u)$, 由总应力法可知, 此时, \mathbf{c}_u 为不排水抗剪强度。

下一步,根据表 10.1 和图 10.1 定义【岩土材料】、【剖面土层】,并通过【指定材料】界面将定义 好的岩土材料指定给相应的土层。

表 10.1 岩土材料参数

岩土材料	含细粒土砂, 中密	弱风化板岩
土层剖面	0-6.0	>6.0
天然容重	17.5	22.5
内摩擦角	29.5	23
粘聚力	0	50
饱和容重	18	23

下一步,选择【基础】界面。如图 10.4 所示,"基础类型"选择"方柱下独基",输入"基础剖面尺寸",并输入回填土的容重,即"基础上覆土的容重"。设置基础尺寸时也可以在图形界面中通过 "动态标注"功能来设置,该方法往往更加简便和直观。

图 10.4 【基础】 界面

注:基础的埋置深度受地层岩性、气候、水文、建筑选址等一系列因素影响。我国"建筑地基基础设计规范(GB50007-2002)——5.1基础埋置深度"对基础的埋深做出了一系列的规定,用户在设计时可以参考。进行承载力验算时,基础的埋置深度采用基础底面至设计地面的最短距离。

下一步,选择【荷载】界面→【添加】,输入作用在基础上的力和弯矩: N, H_x , H_y , M_x , M_y 。

編編布截 荷载参数 名称: 坚向荷载: 鸾矩: 水平荷载: ④ 设计值	▼	<u>天然地</u>	面 设计地面]			
回@ 荷载 扁号 新建 修改 1 是		N [kN] 2500.00	M _x [kNm] 150.00	M _y [kNm] 200.00	H _x [kN] 100.00	H _y 设计 [៧] 75.00 ✔	值 	 还加 ④ 编辑
								 □ 呈入荷载 ▶ 标准值

图 10.5 【荷载】界面

注:以上荷载值是由结构分析软件计算得出的设计值,我们也可以通过界面上的【导入荷载】直接导入。用户计算中(如沉降计算)如需使用标准值,点击界面中的【标准值】选项,软件将自动生成相应的标准值荷载,命名为"编号1荷载标准值",如图10.6。

注: 在 GE05 的"扩展基础""单桩设计""群桩设计"等软件模块中,输入的荷载并不受分析设置中分项系数的影响,采用何种荷载组合来验算基础的承载力和沉降完全由用户自己决定,因为在最后的分析界面中用户可以自己选择想要验算的荷载组合。在 GE05 中软件采用被标注为设计值的荷载 验算承载力,采用没有标注设计值,即标准值,验算沉降。根据建筑地基基础设计规范,要求承载力

验算采用标准组合,沉降验算采用准永久组合。那么,在实际使用中,我们可以将标准组合荷载以设 计值输入,准永久组合荷载以标准值输入。

	荷	载	荷载名称	N	M _x	My	Hx	Hy	设计值		● 添加
编号	新建	修改		[kN]	[kNm]	[kNm]	[kN]	[kN]			CED 2000
▶ 1	是		编号1荷载	2500.00	150.00	200.00	100.00	75.00	٢	~	
2	是		编号1荷载标准值	2083.33	125.00	166.67	83.33	62.50			
											■ 删除
											□□ 昱入荷載
											▶ 标准值
										-	

图 10.6 根据设计值生成标准值

下一步,选择【材料】界面,输入扩展基础的钢筋混凝土材料:

结构重度:
混凝土 <u>目录</u> <u>自定义</u> <u>LTS</u> <u>f_{ck} = 10.00 MPa</u> <u>f_{tk} = 1.27 MPa</u> <u>E_c = 22000.00 MPa</u> <u>KRB335</u> <u>f_{yk} = 335.00 MPa</u> <u>KRB335</u> <u>f_{yk} = 335.00 MPa</u> <u>KRB335</u> <u>f_{yk} = 335.00 MPa</u>

图 10.7 【材料】界面

跳过【超载】界面,本算例中基础附近无超载存在。

注:基础周围存在超载时会影响地基沉降以及基础转角的计算,但对承载力验算无影响。因为超载作 用会增加基底土体的应力,提高地基竖向承载力,为有利作用。因此,计算承载力时不考虑超载作用, 并且如今也没有理论支持如何计算超载影响下的地基承载力。

下一步,选择【地下水位+地基】界面,地下水位离天然地面深度为6.0m。

图 10.8 【地下水位+地基】界面

由于基底土层为无粘性、渗透性好的中密含细粒土砂,本算例中不需添加【砂砾石垫层】。 下一步,选择【工况阶段设置】界面,选择"持久设计状况"。

基础尺寸设计

接下来,打开【尺寸】界面,点击【基础尺寸设计】按钮,软件将自动计算出满足设计要求的最 小基础尺寸。

在【基础尺寸设计】界面中,用户可以"输入"地基承载力 Rd 的值(修正后的地基承载力特征值),求得基础尺寸。本算例中我们选择"分析"选项。软件将根据岩土材料参数、基础尺寸,并结合相关规范,自动计算出地基承载力,从而求得满足承载力要求的最小基础尺寸。

图 10.9 【尺寸】界面

注:设计轴心受压或偏心受压基础尺寸时,应保证基底最大压应力满足地基承载力的要求,且基础尺寸尽量小。当用户选择"输入"选项时,软件会根据用户输入的地基承载力 Rd 值(修正后的地基承载力特征值)给出基础尺寸的设计方案。

下一步,选择【承载力验算】界面。

图 10.10 地基承载力验算

得出承载力验算的结果:

- 竖向承载力利用率: 98.8%;
- 水平承载力利用率: 11.2%。

故地基承载力满足要求。

注:如果输入的荷载中有上拔荷载,软件还会验算基础的抗拔承载力。

选择【截面强度验算】, 调整 x、y 方向上的配筋, 直至截面强度验算满足要求:

图 10.11 截面强度验算

注:默认情况下,软件会自动选择最不利荷载工况进行验算。当然,用户可以通过新建多个分析来验 算并保存不同荷载工况作用下的计算结果。

结论

经过尺寸设计和调整配筋后,扩展基础满足承载力验算和截面强度验算。

第十一章 扩展基础的沉降验算

本章将为用户介绍如何使用 "GEO5 扩展基础设计"软件计算第十章中扩展基础的沉降和转角。 **例题源文件请在这里下载:** <u>http://pan.baidu.com/s/1c0AJnOG</u>

任务

打开第十章中算例文件,选择【分析设置】界面,取消勾选"不要计算沉降"。

分析力法		
分析类型:	排水条件分析	•
🔲 不要计算沉降		

图 11.1 沉降分析的设置

计算

编辑第十章算例中定义的岩土材料,如表 11.1,添加泊松比、压缩模量或变形模量等系数。 表 11.1 岩土材料参数

岩土材料	含细粒土砂,中密	弱风化板岩
土层剖面	0-6.0	>6.0
天然容重	17.5	22.5
内摩擦角	29.5	23.0
粘聚力	0	50.0
饱和容重	18.0	23.0
泊松比	0.3	0.25
变形模量	15.5	500.0
结构强度系数 m	0.3	0.3

注:结构强度系数在本算例中不需使用,若点击【分析设置】→【编辑当前设置】,选择"沉降分析" 选项卡,若将"确定变形计算深度的方法"选为"结构强度理论",则需要用户输入结构强度系数。 本算例中我们采用"应力比法"作为确定变形计算深度的方法。

注:"中国 - 国家标准 (GB)"采用的沉降计算方法为"压缩模量法",因此,当以压缩模量作为变 形参数输入时,泊松比对计算结果并无任何影响。所以,如果勘察报告只提供了压缩模量,也不会影 响计算,我们输入一个任意的泊松比即可,例如 0.3。但是,当以变形模量作为变形参数输入时,泊 松比对计算结果将会产生影响,因为变形模量需要通过泊松比转换为压缩模量。

接下来,选择【沉降分析】界面。用户需注意,沉降计算采用的是荷载的标准值,根据中国地基基础设计规范,我们输入荷载的准永久组合作为 GEO5 中的荷载标准值。

穿山甲科技有限公司

图 11.2 【沉降分析】界面

在【沉降分析】界面中,需要根据工程条件选择如下两个参数:

"基底初始自重应力"选择"从设计地面开始考虑"。

注:基底初始应力的大小对其作用范围内的沉降量影响很大——基底初始应力越大,计算所得的最终 沉降量越小。基底初始应力选用哪个数值取决于基底的敞开时间,如果敞开时间较长,相应卸荷时间 较长,则基底土体压实程度减弱。此时,基底初始应力不能再从天然地面算起。

"沉降计算分项系数"勾选"考虑基础埋深的影响(K₁)"。

注:系数"K1"反映了基础埋深对沉降的影响,使沉降的计算结果更符合实际。

结论

结构的最终沉降量为12.8mm,根据正常使用极限状态的设计要求,该结果满足规范要求。

注:整个系统(基础和地基土)的刚度对沉降计算有很大的影响,该刚度通过系数 k 来衡量。如果 k>1, 则基础考虑为刚性基础,基底沉降计算点(特征点)位于距基底中心 0.371 或 0.37b 处,其中1和b为 基础基底尺寸: 若 k<1,则基础考虑为柔性基础,基底沉降计算点位于基底中心。

本算例中 k>1, 故沉降计算值为基底面特征点处的沉降值。

"扩展基础设计"软件还会计算基础的转角。其原理为,计算基础底面"一组对边"中心点的相 对沉降差,并根据这两中心点的水平投影距离,得出与该组对边垂直方向(另一组对边走向)的转角 值。如图 11.3:

图 11.3 基础转角计算要素示意图

$$\alpha = \arctan \frac{\Delta h}{d}$$

其中:

 $\alpha_{:}$ 基础的转角;

d: |ab|的水平投影距离。

第十二章 路堤固结沉降分析

本章中,我们将为用户介绍怎样对某一填筑路基进行固结沉降分析。 例题源文件请在这里下载: <u>http://pan.baidu.com/s/1c0lkK60</u>

引言

土的固结分析指的是,在外部荷载(永久荷载或可变荷载)作用下,土体的变形随时间增加的现象,在此过程中,附加荷载导致孔隙水慢慢排出,超静孔隙水压力减小,从而有效应力逐渐增加。主固结过程指的是土中的超静孔隙水压力全部转化成土体有效应力而引起的压缩过程,而次固结沉降是由于土骨架的流变过程(所谓的"蠕变效应")导致的。土的固结沉降量取决于时间的长短,同时受到一系列因素(如渗透性和压缩性,排水路径长度等)的影响。关于固结度,进行如下说明:

最终沉降对应于土体在附加荷载作用下固结度等于1的情况;

部分沉降对应于土体在附加荷载作用下固结度小于1的情况。

任务

某路堤填筑于不透水的粘性土层上,根据"中国一国家标准(GB)",分别计算该路堤在1年后、10年后的固结沉降。

图 12.1 固结沉降算例

计算

采用"GEO5地基固结沉降分析"软件(v18版),按照如下步骤进行分析:

工况阶段[1]——建立未填筑路堤的地层剖面,并计算初始地应力

工况阶段[2]——填方,填筑路堤

工况阶段[3]~[5]——计算不同时长后的固结沉降

工况阶段[1]: 基本参数输入

首先,【分析设置】界面→【选择分析设置】,选择"中国—国家标准(GB)",并在分析设置界 面上勾选"固结计算"。

分析设置		固结
分析设置: 中国 - 国家标准(GB)	 ● 选择 ● 分析设置 	☑ 固结计算
分析方法: 压缩模里法 一确定变形计算深度的方法: 应力比法 应力比系数(附加应力比自重应力):10.0 [%]	分析设置 管理器	
	● 添加到 管理器	
	🕑 编辑当前设置	

图 12.2 【分析设置】界面

由图 12.2 可知,在"中国一国家标准(GB)"中,变形深度的确定方法为"应力比法"。

注:本算例计算的固结沉降为主固结沉降(超静孔隙水压力消散)。对于主要存在于欠固结土或 有机土中的次固结沉降(蠕变),本算例不予考虑。

然后,在【多段线】界面中选择【范围】,由于本算例的计算深度为9.5m,则深度应(距多段线 最低点)≥5。

世界坐标	X
- 项目尺寸范围	
项目范围X最小值:	-15.00 [m]
项目范围X最大值:	15.00 [m]
深度(距多段线最低点):	5.00 [m]
	🗹 确定 🛛 取消

🖽 范围 🧧 多段线: 🖲 添加 🕑 修改	🔳 删除	点: 🔍 🖲	3 @ ■ Ø 确定	🗵 取消		
多段线列表			当前	多段线上的点		
■.□.2 多段线			x [m]	z [m]	点:	
1 多段线1	*	> 1	-15.00	-4.50	▲ ■ 添加	ר
> 2 多段线2		2	15.00	-4.50		5
					●修改	
	~				Ŧ	

图 12.3【多段线】模型大小的设置

下一步,输入由多段线表示的土层界面。选择【多段线】界面→【添加】,具体多段线的坐标见 表 12.1。

	表 12.1 土层界面多段线坐标				
	多段线1		多段线 2		
	x[m]	z[m]	x[m]	z[m]	
1	-15.0	0	-15.0	-4.5	
2	15.0	0	15.0	-4.5	

⊕ 范围	多段线: ● 添加	• ● 修改 • ■ 冊	除	点: 💽 🗉) 🕑 🗖	🗹 确定	🛛 🗵 取消		
	多段线列表			0		添加	多段线上的点		
编号	多段线	CALL CALL			x [[m]	z [m]	2) 点:
1	多段线1		~					~	● 添加
> 2	多段线2								
									●修改
			-						
								-	

图 12.4 添加多段线

注:如图 12.4,选择多段线:【添加】后,有两种添加多段线的方式。选择①"+",直接用鼠标在界面上点击确定多段线;选择②【添加】,输入坐标点来确定多段线。另外,若用户只需要添加一条水平多段线,可以仅仅输入一个点,并点击确定,软件便会自动绘制一条通过该点的水平多段线。

下一步,定义【不可压缩地基】。在本算例中,不可压缩地基深度为9.5m。在不可压缩地基之下 没有沉降变形。

表 12.2 不可压缩地基多段线坐标					
多段线1					
	x[m]	z[m]			
1	-15.0	-9.5			
2	15.0	-9.5			

下一步,输入【岩土材料】,对于发生固结的土体,还需输入"渗透系数 k"或者是"固结系数 Cv",用户在帮助文件(软件相应界面上点击 F1 键)中可以查阅这些参数的经验取值。

表 12.3 岩土材料参数				
岩土材料	路堤填料	粘性土	砂质粉土	
天然容重	20.0	18.5	19.5	
饱和容重	20.0	19.0	20.0	
泊松比	0.35	0.3	0.35	
压缩模量	30.0	1.0	30.0	
渗透系数	10 ⁻²	10-5	10 ⁻²	

<u> 异山甲科技有限公司</u> PANGOLIN TECHNOLOGY CO., LTD.

添加岩土材料		×
岩土类别 名称:	와	· 显示 颜色
基本参数 天然重度:	γ = 20.00 [kN/m ³]	2 图例类别 GEO 图例
沉降参数-压缩模里 泊松比: 变形计算:	v = 0.35 [-] 输入压缩模 里 Eoed	?
压缩模里: 浮重度	E _{oed} = 30.00 [MPa]	图例 7
浮重度的计算模式: 饱和重度:	标准(饱和重度、水重度) 💌 _{7sat} = 20.00 [kN/m ³]	土的分类
固结 岩土材料 :	渗透系数k	分类 ⑦ 删除
渗透系数:	k = 1.000E-02 [m/天]	 ① 添加 ② 取消

图 12.5 输入【岩土材料】

注:和第十一章的沉降计算相同,如果选择压缩模量法计算。当变形参数采用压缩模量时, 泊松 比的大小对计算结果没有影响, 仅当输入变形模量时, 泊松比才对计算结果产生影响。

下一步,选择【指定材料】界面,将定义好的岩土材料指定给相应土层。本算例中不需考虑超载,因为会在接下来工况阶段[2]~[5],以填筑的路基作为超载。

下一步,选择【地下水】界面,输入地下水位多段线。在本算例中,地下水位线与天然地面齐平。 表 12.4 地下水位多段线坐标

	多段	线1
	x[m]	z[m]
1	-15.0	0
2	15.0	0

下一步,选择【工况阶段设置】界面,用户可以自定义计算点的分布,在本算例中,选择"标准"。

计算点的分布和加密	: 标准	-				
计算	〔 点水平分布		计算	有些同时		
分布模式:	精确 💌	编号	从深度 [m]	加密单位 [m]		● 添加
添加计算点:	输入截面数量 🔽	> 1	0.00	0.10	*	a test
		2	2.00	0.30		
截面数里:	20	3	5.00	0.50		日删除
		4	10.00	2.00		
		5	30.00	10.00		
					Ŧ	

图 12.6 【工况阶段设置】界面

接下来,选择【分析】界面,软件会对填筑路堤前地基土的初始地应力进行"分析"。在工况阶段[1]的【分析】界面中,需要选定接下来工况阶段中需计算沉降固结的地基土边界,即"固结土的顶面"、"固结土的底面"还有"排水方向"。

图 12.7 【分利】介面

注: 若模型中地基土全部由一种岩土材料构成,为了使用软件计算固结沉降, 需引入一个虚拟的土层 界面,将地基土分为两层(界面上下岩土参数仍相同),该土层界面即为固结土底面。建议设置该土 层界面的位置为变形计算深度处。

工况阶段[2]~[5]: 基本输入

添加工况阶段[2],

图 12.8 添加工况阶段[2]

注:路堤相当于作用在初始地面上的超载,会使地基土产生固结沉降。理论上认为路堤填筑材料已达 到最大压实度,不再发生沉降。实际上,填料压实度不高或蠕变效应均会导致填筑材料发生沉降,用 户需要注意的是,GE05软件并不会计算这部分沉降。

穿山甲科技有限公司 PANGOLIN TECHNOLOGY CO., LTD.

下一步,选择【指定材料】界面,将之前定义的路堤材料指定给相应的路堤区域。

下一步,选择【分析】界面,根据路堤填筑的工期,输入"工况阶段时间"为"30"天;并且路 堤是逐渐修建起来的,"加载方式"选择"线性加载(工况阶段内)"。在该工况阶段中,还不能进行 固结沉降计算,因为当考虑土体固结时,首先必须知道整个地基土的加载历史,因此,只有处于最后 一个工况时,才可勾选"总沉降",从而计算出总沉降量以及每个工况内的沉降量和固结度。

▶ 开始分析 只有在可以勾选 总沉降 的工况阶段才可以进行分析					
固结					
□ 总沉降					
工况阶段时间:	30 (天)				
加载方式:	线性加载(工况阶段内)				

图 12.10 【分析】界面——工况阶段[2]

注:如果用户添加工况阶段[2]时,处于【分析】界面中,那么进入工况阶段[2]之后,需填写【分析】 界面中的"工况阶段时间"后,才能选择其他界面进行操作。

在接下来的工况阶段中,工况阶段时间分别是

工况阶段[3] 365天(1年) 一次性加载

工况阶段[4] 3650天(10年) 一次性加载

工况阶段[5] 计算地基土的总沉降(即工况阶段时间趋向无穷大,固结度趋近1)

进入最后一个工况阶段时,即计算总沉降。除工况阶段[1]不产生沉降外(计算初始地应力),在 计算结果中可读取其他各个工况阶段内的沉降量。

- 🖻 开始分析	
固结	
☑ 总沉降	
工况阶段时间:	因
加载方式:	一次性加载(工况阶段内)

图 12.11 工况阶段[5]

开始分析,所得结果如图 12.12:

图 12.12 分	析结果
-----------	-----

在此界面中,	点击屏幕左上角工况阶段[1][2][3][4][5],	能读得截止相应工况阶段的沉降量:
工况阶段[1]	初始地应力分析	无沉降
工况阶段[2]	路堤填方荷载, 30天,线性	32.1mm
工况阶段[3]	路堤填方荷载,365天,一次施加	118.8mm
工况阶段[4]	路堤填方荷载, 3650天, 一次施加	322.1mm
工况阶段[5]	最终总沉降量	363.1mm

我们还可通过"数值","变量","等值图"选项来改变输出的结果样式。例如,我们想知道在工况阶段[2]完成之后的1年内,地基土的沉降量增加了多少,则可如图12.13进行操作:

图 12.13 工况阶段[3]内的地基土沉降量

选择工况阶段[3],并且"数值"一栏选择"增量/相对于工况 2",即可得出路基填筑后一年时间内(工况阶段[3]内)的地基土沉降量为 86.7 (118.8-32.1) mm。

结论

路堤填筑后,地基土在1年后的沉降量为86.7mm,在10年后的沉降量为290mm。

第十三章 有限元——沉降计算

任务

本章工程算例是一个相对简单的沉降分析,该模型分析了一个地表水平的岩土体,在施加了大小为 250 kPa 并对称分布在其地表 4m 宽度范围内的均布荷载后以及卸载后的沉降情况。

例题源文件为"GEO5 岩土工程有限元分析计算"软件(v16 版)**自带例题文件:** Demo01.gmk 下载链接: <u>http://pan.baidu.com/s/1hqikMHY</u>

计算

采用如下步骤对算例进行计算:

- 基本参数输入
- 网格生成
- 工况阶段[1]——初始地应力分析
- 工况阶段[2]——输入超载
- 工况阶段[2]——分析
- 一 工况阶段[3]一一卸载,分析

基本参数输入

首先,设置岩土材料。岩土材料考虑各项同性,参数如下: 表 13.1 岩土材料参数

天然容重 $\gamma(kN/m^3)$ 19.0

- 弹性模量 E(MPa) 15.0
 - 泊松比 ν 0.35
- 粘聚力 $C_{ef}(kPa)$ 8.0

内摩擦角 $\varphi_{ef}(\circ)$ 29.0

- 剪胀角 $\psi(\circ)$ 0
- 饱和容重 $\gamma_{sat}(kN/cm^3)$ 19.0

采用不可硬化/软化的 Mohr-Coulomb 材料模型来模拟岩土体的变形(在本实例的最后,对比分析 了由其他材料模型得到的结果)。

修改岩土材料参数	Į					×
岩土类别						显示
名称:	Soil 1					图例 和颜色
材料模型					?	
材料模型:	l	Mohr-Co	ulomb弹塑性模	型 💌		
基本参数				1 -	?	
天然容重:		γ =	19,00	[kN/m ³]		
弹性模量:		E =	15,00	[MPa]		
泊松比:		v =	0,35	[-]		
Biot参数:		α =	1,00	[-]		
岩土材料类型:		排水				截图
一本构参数 Mohr-	Coulomb弹塑性模型				?	
内摩擦角:	φ _{eff} =		29,00 [°]			
粘聚力:	C _{有歌} =		8,00 [kPa]			$= \left(\frac{1}{2} + \frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} +$
剪胀角:	ψ=		0,00 [°]			
拉断:	不考虑	:				
						土的分类
						分类
						刪除
浮容重					?	1 神宗 + 国
浮容重的计算模	:5	标准(饱	和容重、水容重	£) 💌		
饱和容重:		$\gamma_{sat} =$	19,00	[kN/m ³]		1月走 + 団
						そう
						🗵 取消

图 13.1 【岩土材料】界面

下一步,使用【多段线】界面定义几何模型边界以及岩土材料分区。几何模型的边界,例如其竖 直边界,应当离作用荷载足够远。模型的深度设为15m,该深度以下的岩土体视为不可压缩的。最后, 将设置的岩土材料赋到该分区(由地表和几何模型边界围成的区域)。

🥝 Geo5 v16 - 岩土工程有限元分析计算 [C/USers/Public/Documents/Fine/GEO5 v16 P/Iklady/Demo01.gmk *]	
文件 場場 输入 截至 设置 帮助	
□ 🚔 📓 🗛 ▼ 🗛 👒 🐘 🔍 🔍 🌵 🛄 🧱 😲 🆓 👘 🕮 🕬 🐨 🕬 🕫 🗁 万 新設	
THAR: ● 〒 1949 11 (2 1)	
	(Inc. 6
	- 235
	鞋 羽目信息
	P 分析设置
승규는 것 같이 다 있는 것 같아요. 것 도가 들어 넣어야 한 것 수가 들어 들어 들어가 가지 않는 것 수가 나라.	会 各段线
[▲ 岩土材料
[1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2	▲ 閉性材料
· · · · · · · · · · · · · · · · · · ·	17 Apr: 1414
· · · · · · · · · · · · · · · · · · ·	
[18] 그 또 한 한 만 도 한 만 그 도 도 도 한 한 만 도 한 다 도 한 다.	
[1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2	● 自由点
[- [- []]]	⊷自由然
	🛞 A.1012
[1] 이 집에 가는 것 같은 것은 것을 것 같은 것 같은 것을 것 같은 것을 것 같이 것 같이 많이 많이 있는 것 같이 없다.	= \$\$.002
	翌 网络生成
[1] - [1] 전화	
N - 이번 가지 전 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
[1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2	
[1] [2] 문화 문화 문화 문화 문화 문화 문화 문화 전문 사람이 들어 들어 들어 들어 운영을 가 물었다.	
NT 2 전 2 전 2 전 2 전 2 전 2 전 2 전 2 전 2 전 2	
- 2 国際の本 出行学校後上的主 第2007日 - 4.00%	
→ A (rq 2 [7]) · · · · · · · · · · · · · · · · · · ·	
2 0,00 0,00	
3 15,00 0,00	截回 -
8 804	都應至计算书
	多線橋: 0
	.总额: 0
	翻座的唐

图 13.2 将岩土材料赋予相应地层

<u> 异山甲科技有限公司</u> PANGOLIN TECHNOLOGY CO., LTD.

网格生成

建模的下一步为生成有限元网格。为了生成有限元网格,切换到【网格生成】界面。然后,输入 网格边长为 1.5m,点击【启动网格生成】按钮,软件自动生成有限元网格。

图 13.3 自动生成的有限元网格

工况阶段[1]——初始地应力分析

在工况阶段[1],选择【分析】界面,然后点击【开始分析】按钮,得到初始地应力场。

图 13.4 工况阶段[1]——初始地应力

添加新的工况阶段继续进行分析。

工况阶段[2]——输入超载

在工况阶段[2],选择【超载】界面。点击【添加】按钮,弹出"添加超载"界面,在该界面中选择需要超载类型并设置相关参数。

添加超载				— ×
一超载名称				
名称:	Surcharge	e 1		
一超载特性				
类型:	1	横向条形超载		
位置:	:	城面		
起点:	x =	-2,00	[m]	►
长度 :	=	4,00	[m]	q /+α
倾角:	α =	0,00	[°]	[0,0]
				1) 14 14 14 1/////
- 超载大小				
大小:	q =	250,00	[kN/m ²]	
				🕒 迹加 🛛 取肖

图 13.5 工况阶段[2]

下图所示为输入的超载。

图 13.6 输入的超载

下一步为工况阶段[2]的计算与分析。

工况阶段[2]——分析

该工况阶段的分析和工况阶段[1]的分析相同。选择【分析】界面,点击【开始分析】按钮,软件 开始计算分析。分析完成后,图形窗口将显示变形网格以及总竖向正应力的分布情况。

图 13.7 工况阶段[2]——分析结果: 总应力 Z 向 选择"位移 Z 向",可以显示竖向位移的分布。结果如下图所示:

图 13.8 工况阶段[2]——超载引起的沉降

由色标可以看出,最大沉降为106.9 mm。添加一个新的工况阶段(工况阶段[3]),以观察卸载后的位移分布。

工况阶段[3]——分析

在工况阶段[3],在"超载"界面中删除超载后在【分析】界面中点击【开始分析】按钮进行分析, 得到的结果如下图所示。从图中可以看出,卸载后的最大位移为19.7 mm。

图 13.9 工况阶段 [3] ——卸载后的竖向位移

结论

该实例清楚的显示了在有限元分析中,不同的材料模型、弹性模量、单元类型以及网格密度将得到不同的结果。下表列出了有限元分析中使用不同材料模型和不同有限元网格所得到的结果。还列出了和其他软件,例如 GEO5 地基固结沉降分析模块、有限元软件 ATENA,计算得到的结果的对比。

表 13.2	分析计算得到的最大沉降量	(单位 mm)
--------	--------------	---------

材料模型	网格边长	工况阶段[2]	工况阶段[3]	注释
弹性	1.0	88.3	0	
弹性	1.5	88.4	0	
弹性	2.0	82.9	0	
弹性	1.0*	85.9	0	*-3节点单元
DP(Drucker-Prager)	1.0	122.9	36.8	
DP(Drucker-Prager)	1.5	120.7	32.9	
DP(Drucker-Prager)	2.0	119.1	41.0	
DP(Drucker-Prager)	1.0*	113.9	27.5	*-3节点单元
MC(Mohr-Coulomb)	1.0	108.0	25.4	
MC(Mohr-Coulomb)	1.5	106.9	19.7	
MC(Mohr-Coulomb)	2.0	106.2	28.3	
MC(Mohr-Coulomb)	1.0*	99.8	13.6	*-3节点单元
MCM(修正 Mohr-Coulomb)	1.0	97.6	11.2	
MCM(修正 Mohr-Coulomb)	1.5	96.3	7.8	
MCM(修正 Mohr-Coulomb)	2.0	95.5	16.2	
Atena DP	1.0*	113.2	27.3	*-3节点单元
GEO5 地基固结沉降分析模块		74.1	-	弹性子空间

从以上表格可以得到以下几点重要的结论:

- 在本实例中, Drucker-Prager 材料模型、Mohr-Coulomb 材料模型比修正 Mohr-Coulomb 材料模型柔性度更大;
- 和预料的一样,越密的网格将得到越精确的结果,包括塑性应变的发生、发展情况;

— 由6节点单元构成的有限元网格得到的结果与由3节点单元构成,但网格密度是6点节 点单元网格两倍的有限元网格所得到的结果基本"一致"。但是,该结论不具有一般性。

原始加载曲线和卸载/再加载曲线采用不同弹性模量(*E_{def}、E_{ur}*)的修正弹性模型并没有在该表中列出——沉降结果仅仅依赖于割线模量(*E_{def}*)的大小。

第十四章 有限元——隧道衬砌分析

任务

该实例用于分析受周围岩土体荷载作用的隧道衬砌的应力应变情况。隧道衬砌的形状如下图所示,其底部深度为12m。衬砌材料为钢筋混凝土,厚度为0.1m。

图 14.1 衬砌拼接方案

例题源文件为"GEO5 岩土工程有限元分析计算"软件(v16 版)**自带例题文件:** Demo02.gmk 下载链接: <u>http://pan.baidu.com/s/1jGqopSE</u>

计算

采用如下步骤对算例进行计算:

- 基本参数输入
- 网格生成
- 工况阶段[1]--地应力分析
- 工况阶段[2]--隧道衬砌输入
- 工况阶段[2]——分析

基本参数输入

岩土材料考虑各项同性,参数如下:

表 14.1 岩土材料参数

天然容重 $\gamma(kN/m^3)$ 20.0

- 弹性模量 E(MPa) 12.0
 - 泊松比 ν 0.4
- 粘聚力 $C_{ef}(kPa)$ 12.0
- 内摩擦角 $\varphi_{ef}(\circ)$ 21.0
- 变形模量 E_{def}(MPa) 4.0
- 饱和容重 $\gamma_{sat}(kN/cm^3)$ 20.0

第一步,创建几何模型。边界(世界坐标)设定为-15m 至+15m,不可压缩土设定在深度 20m 以下。这保证了创建隧道衬砌的区域离模型的边界足够远。

世界坐标	—
项目尺寸范围	
项目范围X最小值:	-15,00 [m]
项目范围X最大值:	15,00 [m]
深度(距多段线最低点):	20,00 [m]
	🗹 确定 🛛 取消

图 14.2 输入模型边界尺寸

3 GeoS v16 - 営士工程有限元分析计算(CNUSers)Public/Documents/Fine/GEOS v16 PNkbdy/Demo02.gmk ************************************	- 2 -
IRMR: 🖲 🗧 (1999) [1] [2]	
	株式
日 売田 今 絵 明 1 単 活効 主 1 単 一 回 10112 2 1011 ● 台 明用本 ● 台 明用本 ● 台 明用本 ● 台 明用本 ● 白 明用本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明用本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 明 日本 ● 白 日本 ● 白 日本 ● 白 日本 ● 白 日本 ● 白 日本 ● 白 日本 ● 白 日本 ● 白 日本 ● 白 日本 ● 白 日本	教団 ■ 2017年3月1日 - 14
日 作品 今 由 明 日 一 日 一 日 一 日 一 日 一 日 一 日 今 由 明 月 ● 由 明 月 ● 由 明 月 ● 由 明 月 ● 由 明 月 ● 由 明 月 ● 由 明 月 ● 白 明 月 ● 由 明 月 ● 由 明 月 ● 由 明 月 ● 由 明 月 ● 由 明 月 ● 白 明 月 ● 白 明 月 ● 日 ● 日 ● 日 ● 日 ● 白 明 月 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ● 日 ●	#2回 ■#20回11日本 ●18251:
B //2/B ⇒ ± 0 ⊕ ±	欽照 新校正计算书 S-18時: 도도:

图 14.3 输入分区分界面

下一步,创建隧道衬砌。输入隧道衬砌的几何尺寸。

利用自由点和自由线工具可以在分析模型中输入隧道衬砌。自由点定义隧道衬砌的每个角点,在 【自由点】界面中点击【添加】按钮,在弹出的"添加自由点"界面定义自由点。

图 14.4 添加自由点

🖉 Geo5 v16 - 岩土工程有限元分析计算 (Cr\Users\P	ublic\Documents\Fine\GEO5 v16 Pfiklady\Demo02.gmk *]			
文件 追溯 建入 截弯 设置 照助				
	🔞 🔶 🖂 🧮 🖸 🕲 🖓 👾 星市 DOP 868 : 12 三日	R (F) MED		
INAR: 🖲 🗏 📴 🕅 🖾				
248	-180 -0.80 -8.58 -0.40 -8.28 -0.80 -8.28 -0.40	168 0.00 UI0 128 U0 158 U0 2.00 2.28	240, 251, [bj.]	- 238
				輕 項目信息
				🛃 75-62.95
	@ ¹	@ ²		▲ 岩土村料
	[-1,00; -10,50]	[1,00; -10,50]		1 40120104 1 40220104
				 ● 自由点
				Sinta 🛞
				70 mm 4 - 4
				世期期生成
		د.		
	⁸⁰ [-1,00; -12,00]	[1,00; -12,00]		
I at the Children Children Children				
	1		6641	
(1) (2) (1) 第号 × [n] z [n]			and a line of the	
11,00 -20,90	1		A LEVEL	
3 1,00 -12,00	1			截图 -
4 -1,00 -12,00 > 5 0.00 -10,50			0.04	● 部歴圧け道书
40	,			送数: 0
H			-	制度的质

图 14.5添加自由点后的图形窗口

下一步,在【自由线】界面中添加连接隧道衬砌角点的直线。在水平工具条上单击【添加】按钮, 就可以使用鼠标连直接接每个角点了。

2	ieo5 v16 - 岩土工程有限元分	b新計算 [CNUsers	Public1Documents1Fine1GE05 v16 Pfiklady1Demo02.gmk *]	- 9 -
25	- 通用 強入 都岡 設計 学 副 ぬ • つ • 間4	11 <u>新</u> 助 12 12 12 12 12 12 12 12 12 12 12 12 12 1		
13	#R: 🖲 🗏 (1247) [1]	2		
uži Litu	0 -3,68 -3,28 -3,80 -3, 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	20		株式
				 ▲ 告約然 ▲ 岩土材料 ▲ 開性材料 27 指生材料
				星線動影響型
				● 自由点
			0 0 0	⊷自由然
				🛞 点加密
				— 然加 空
*	ebe: @ ≾1) ● #1	t (= 165)	••	
	analysis and and an		40.07 bits	
	<u>回回回</u> 火 至 執矛 战	输入	40/L/1	
	> 1 ditta		원호 (-1,00; -12,00) [m], 영호 (1,00; -12,00) [m]	
			HI STER	4回 -
			E 1859	都愿至计算书
9¥				自由城: 0 总数: 0
Ш.			Ψ	制度的质

图 14.6添加自由线

添加弧形段时,需要在工具条上选择另一种自由线类型 - 弧线。

图 14.7 切换到"弧线"型线

下一步,点击弧的两个端点,并定义其竖向高度。

Geo5 v16 - 岩土工程有限元分析计算 [C/\	Users/Public/Documents/Fine/GEO5 v16 Pfiklady/Demo02.gmk "]	
(件 编辑 建入 截弯 设备 预助		
) 🚅 🔲 🗠 - 🗠 - 📴 📴 🚳		
30	-20 .00 .00 .20 .00 .00 .00 .00 .00 .00 .	- 25B
		22 東田信息 ■2 分析資量
		▲ 各组线 ▲ 岩土材料 ▲ 閉性材料 2 指定材料
		量級被認得型
		● 自由点
	é o è	→自由然
		😟 ,is huist
		— 然加空
		_
nun eg i 🖲 2530 🛞 6028 🚍 1168		
<u>●回</u> 検型 例5 かみ 15 約3	た おんし (初日) (1000)	
1 直线	■ 査和 ■ 査和	
2. 西线	程点 (1,00; -10,50) [n], 终点 (1,00; -12,00) [n]	動型
3 915 TG	記念(1,00;-10,50)[m], 成点(-1,00;-10,50)[m], 平田1,00[m], 方向正, 角度他向 記録	0000003-0045
1 12/3	(\$277,1-7002,-74700) http://rest. (1902,-14700) http://rest.	自由時:
	-	創造的課
	*	1000000

图 14.7 添加弧线

在【修改自由线参数】界面中可以对添加的弧线进行进一步的修改 - 在这个实例中,将圆的半径由 1.08m 改为 1.0m (需要的大小)。这样就完成了隧道衬砌几何尺寸的输入。

添加自由线					×
一线型			一输入选项一		
线型	弧线		输入选项	半径	•
- 起点			- 端点		
点对象:	自由点		点对象:	自由点	
自由点 <mark>:</mark>	编号 2 (1,00;	-10,50) 💌	自由点:	编号 1(-1,00;-10,50)	
半径			方向		
半径:	R =	1,08 [m]	方向	Τ	
夹角	锐角				
一信息					
起点 (1,00; -10,50) <mark>) [</mark> m],终点 (-1,0	00; -10,50) [m], 🗎	半径 1,08 [m] ,7	方向 正 , 角度 锐角	
				● 添加 🛛 🗷 月	23消

14.8 在界面中修改弧线的参数

10 10 <td< th=""><th></th><th>eo5 v16 - 岩土工程有限元 - 道法 道太 都定 1 - 宇田 の • へ • 同 </th><th>出す計算 (CNUSers) 2回 組約 後 Co Pao 名。Co 1 [2]</th><th>Public/Documents/Fine/6603 v16 FilkIody/Demo02.gmk *) - 磁 ◆ [二 首 乙 役 線星市 cour exter : 2 王市 万 柳谷</th><th></th><th></th></td<>		eo5 v16 - 岩土工程有限元 - 道法 道太 都定 1 - 宇田 の • へ • 同 	出す計算 (CNUSers) 2回 組約 後 Co Pao 名。Co 1 [2]	Public/Documents/Fine/6603 v16 FilkIody/Demo02.gmk *) - 磁 ◆ [二 首 乙 役 線星市 cour exter : 2 王市 万 柳谷		
自由後: 第次加 @ 常然 @ 勝秋 ● 自由後: 第次 我儿子 自由後: 第号 指数 第六 自由後: 第号 指数 第六 第二 1 高林 混点(1,00):12,00) 问, 常点(1,00):12,00) 问 第二 2 高林 混点(1,00):10,00) 门, 常点(1,00):12,00) 问 第 2 高林 混点(1,00):10,00) 门, 常点(1,00):12,00) 问 第 3 9% 平価 認点(1,00):12,00) 问 新会(1,00):12,00) 问 # 4 高林 混点(1,00):12,00) 问, 新点(1,00):12,00) 问 # # #	4,00	<u>,429, 329, 329, 329</u>	.292929.		抵式	-
● 回車 純型 模式 技巧口 自由機: 単序 技 協力 </th <th>1</th> <th>nagı EXU EA</th> <th>et 😑 1989</th> <th></th> <th>Í</th> <th></th>	1	nagı EXU EA	et 😑 1989		Í	
→ 3 第6 平台 第6 10.00 (m), 86 (-1.00,0 (m), 86 (-1.00,0 (m), 86 ±, 96 ±)) 10.00 (m), 86 ±, 96 ± 96 ± 96 ± 96 ± 96 ± 96 ± 96 ±		 ● 回 ● 抑型 執予 线 1 直线 2 直线 	模式 输入	おいし可 おん (1,00) - 12,00) (n)、 彩糸 (1,00) - 10,00) (n) おん (1,00) - 12,00) (n)	4+80	
		> 3 9915	*4	25.5 (1,00; -10,50) [m], 約点 (-1,00; -10,50) [m], 手道 1,00 [m], 方向 王, 角膜 他角 25.5 (1,00; -10,50) [m], 約点 (-1,00; -10,50) [m], 手道 1,00 [m], 方向 王, 角膜 他角	01000031-02-45	-
	25	1 23		[85:0] (*4/04) *44/00] [71] + 85:0] (4/04) *12(00) [71]	自由线: 注数:	0 0
	Ť.			-	翻题的质	

图 14.9 定义隧道衬砌几何尺寸后的图形窗口

接下来,将生成有限元网格,从而完成建模阶段的输入。

网格生成

切换到【网格生成】界面,设置网格边长为 2m,然后点击【启动网格生成】按钮,创建有限元 网格。

图 14.10 自动生成的有限元网格
从生成的有限元网格图中可以看出,衬砌周围的网格过于稀疏,需要进行加密。网格可以在点周 围或者线周围进行加密。在该实例中,建议采用以下步骤:

- 在开挖区域中央输入一个自由点
- 对该点周围的网格进行加密

添加自由点			— ×
- 自由点位置			
坐标:	x =	0,00	[m]
	z =	-10,50	[m]
			取消

图 14.11 添加自由点

添加点加密		×
-点		
点对象 <mark>:</mark>	自由点	
自由点: 一加密	编号 5(0,00;-10,50)	▼
影响半径:	r = 12,00 [[m]
单元边长:	l = 0,20 [[m]
	• 添加	取消

图 14.12 定义点周围的网格加密

图 14.13 定义点周围的网格加密

该步完成后,大大加密了衬砌周围的网格,从而使得数值分析的结果更精确。

图 14.14 局部加密后生成的网格

完成网格生成后,接下来,进入工况阶段[1]。

工况阶段[1]——初始地应力分析

在进行分析之前,还需要定义岩土材料参数。岩土材料参数在"建模"阶段下【岩土材料】界面 中定义。由于假设不发生塑性应变,因此,采用修正弹性模型。

r				
添加岩土材料				— ×
- 岩土类别				显示
名称:	Soil 1			图例 和颜色
一材料模型			?	软件
材料模型:		修正线弹性模型 💽		
基本参数			?	() () () () () () () () () ()
天然容重:		$\gamma = 20,00 [kN/m^3]$		\$ \$
弹性模量:		E = 12,00 [MPa]		0//0/
泊松比:		v = 0,40 [-]		截图
一本构参数 修正	线弹性模型		?	6////
输入类型:		输入变形模量Edef 💌		10/18
变形模量:		E _{def} = 4,00 [MPa]		0
- 浮容重			9	
浮容重的计算模	: た	标准(饱和容重、水容重) 💌	_	<u> <u> </u></u>
饱和容重:		γ _{sat} = 20,00 [kN/m ³]		
				土的分类
				分类
				删除
				• 添加
				🛛 🛛 取消

图 14.15 输入岩土参数

在工况阶段[1],选择【分析】界面,然后点击【开始分析】按钮,得到初始地应力场。

图 14.16 工况阶段[1]——分析结果:初始地应力场

下一步,添加工况阶段[2]。

工况阶段[2]——输入隧道衬砌

切换至工况阶段[2],选择【梁】界面,点击水平工具条上的【添加】按钮,点击需要添加梁的自 由线,弹出"添加梁"界面,输入需要的梁单元参数。或者点击界面右侧的【添加】按钮,在弹出的 "添加梁"界面中选择定位梁的几何线条类型,在该实例中,选择自由线。接下来,需要输入线的编 号、截面尺寸和材料类型。最后,点击【添加】按钮,添加新的梁到界面中的梁列表中。采用同样的 步骤,添加完所有的衬砌。若用户只改变线的编号,其他参数保持不改变,软件将自动采用上一次输 入的梁参数。

添加梁							x
建模			- 材料型号				
位置:	自由线		材料型号:	Beam 1			
自由线:	编号4自由线		一内支撑				
参数			起点支座:				
▼ 考虑自重			终点支座:				
一截面尺寸和材料							
截面类型:	钢筋砼墙			▪ 材料类型:	混凝土		
墙厚:		h =	0,10 [m]	名称:	B 20		
墙计算长度为每延	米 , 即:	b =	1,00 [m]			自录 自	定义
	L. = 8.33F	05 m ⁴ /m: A =	1.00E-01 m ² /m:	F = 27000.00 M	Pa: G = 11340.00) MPa	
接触面	19 07002	,,	2,002 02 ,,	2 2/000,001	u, u 110.0,00		
□ 左接触面				□ 右接触面			
接触面类型:				接触面类型:			
						● 添加 🛛 🗵	3 取消

图 14.17 添加梁

旁山甲科技有限公司

下图所示为输入所有梁单元后的图形窗口。

图 14.18 输入梁单元后的图形窗口

下一步,启动数值分析。

工况阶段[2]——分析

接下来,进入开挖步骤。首先,进入【激活/冻结分区】界面,然后选择"需要开挖的岩土体", 设置其为冻结状态。

14.19 岩土体开挖——冻结该分区

下一步, 切换至"分析"界面, 计算分析第二工况阶段。分析结果如下图所示:

图 14.20 工况阶段[2]——分析

结论

在【分析】界面中点击结果工具条上的【结果设置】按钮,弹出"岩土工程有限元分析计算软件 -结果显示设置"界面,然后在"分布"选项卡中勾选绘制梁的弯矩分布。

右工工程有限元分析计算 - 结果显示设置			×
基本 结构 在栅格上的值 竖向截延 · 梁参数 ▼ 穹矩 (M) □ 翔可压刀 (N-) □ 轴向拉力 (N+) □ 剪力 (Q)	 □ 地表沉隆 分布力 力和反力 矢量图 按触应力 □ 左侧为独立接触面单元 □ 右侧为独立接触面单元 □ 梁左边接触面 □ 梁右边接触面 	和方向	♥ 确定
□ 竖向变形 (D)	 □ 正应力 - 总应力 (σ_{tot}) □ 正应力 - 有效应力 (σ_{eff}) ▽ 剪应力 (τ) □ 孔隙水压力 (u) 	字高: 小 💌	
普古 结果的所有设 <u>重</u> 都正确显示			

图 14.21 "岩土工程有限元分析计算软件 - 结果显示设置"界面

弯矩分布将显示在图形窗口中。

注: 内力分布的绘制只对非变形网格可用。在变形网格显示模式中, 是不能同时绘制内力的。

<u> 异山甲科技有限公司</u> PANGOLIN TECHNOLOGY CO., LTD.

图 14.22 衬砌的弯矩分布

内力的分布情况也可以用表格的方式来表示。

Distributions on beams

	Ori	gin	N	Q	М	Displacer	E	nd	N	Q	М	Displacer
Number	x [m]	z [m]	[kN/m]	[kN/m]	[kNm/m]	[mm]	x [m]	z [m]	[kN/m]	[kN/m]	[kNm/m]	[mm]
	-1,00	-12,00	-161,2	-195,1	61,3	2,7	-0,60	-12,00	-161,5	-114,7	-3,5	5,0
	-0,60	-12,00	-161,5	-114,7	-3,5	5,0	-0,25	-12,00	-159,7	-43,9	-30,6	7,0
1	-0,25	-12,00	-159,7	-43,9	-30,6	7,0	0,09	-12,00	-158,6	15,6	-35,4	7,4
	0,09	-12,00	-158,6	15,6	-35,4	7,4	0,46	-12,00	-160,7	86,9	-17,5	5,9
	0,46	-12,00	-160,7	86,9	-17,5	5,9	1,00	-12,00	-161,9	188,6	61,2	2,7
	-1,00	-12,00	-211,4	146,8	-61,3	-0,1	-1,00	-11,46	-209,0	73,8	1,5	-1,3
~	-1,00	-11,46	-209,0	73,8	1,5	-1,3	-1,00	-11,11	-206,0	22,9	17,4	-2,4
2	-1,00	-11,11	-206,0	22,9	17,4	-2,4	-1,00	-10,85	-204,4	-9,3	19,1	-2,7
	-1,00	-10,85	-204,4	-9,3	19,1	-2,7	-1,00	-10,50	-202,9	-42,3	9,1	-2,3
	1,00	-10,50	-208,4	22,6	9,1	1,9	0,95	-10,19	-207,4	25,9	-2,3	0,5
	0,95	-10,19	-207,4	25,9	-2,3	0,5	0,81	-9,91	-203,7	8,6	-7,8	-1,3
	0,81	-9,91	-203,7	8,6	-7,8	-1,3	0,59	-9,69	-194,0	-3,2	-8,3	-2,7
	0,59	-9,69	-194,0	-3,2	-8,3	-2,7	0,31	-9,55	-184,7	-4,0	-6,5	-3,6
~	0,31	-9,55	-184,7	-4,0	-6,5	-3,6	0,00	-9,50	-181,0	0,0	-6,1	-3,9
3	0,00	-9,50	-181,0	0,0	-6,1	-3,9	-0,31	-9,55	-184,7	4,0	-6,5	-3,6
	-0,31	-9,55	-184,7	4,0	-6,5	-3,6	-0,59	-9,69	-194,0	3,2	-8,3	-2,7
	-0,59	-9,69	-194,0	3,2	-8,3	-2,7	-0,81	-9,91	-203,7	-8,6	-7,9	-1,3
	-0,81	-9,91	-203,7	-8,6	-7,9	-1,3	-0,95	-10,19	-207,5	-25,9	-2,3	0,5
	-0,95	-10,19	-207,5	-25,9	-2,3	0,5	-1,00	-10,50	-208,4	-22,7	9,1	1,9
	1,00	-10,50	-202,9	42,8	-9,1	-2,3	1,00	-10,84	-204,3	9,9	-19,1	-2,7
	1,00	-10,84	-204,3	9,9	-19,1	-2,7	1,00	-11,15	-206,5	-27,8	-16,4	-2,3
4	1,00	-11,15	-206,5	-27,8	-16,4	-2,3	1,00	-11,49	-209,1	-78,3	0,9	-1,1
	1,00	-11,49	-209,1	-78.3	0.9	-1,1	1.00	-12.00	-211,3	-147.0	61,2	-0.1

图 14.23 衬砌梁单元上内力分布的数据输出表格

第十五章 有限元——深基坑结构分析

该实例详细分析了锚固钢筋混凝土墙深基坑结构的变形情况。

任务

下图所示为结构的几何尺寸:

图 15.2 工况阶段 [2] ——添加锚杆并开挖岩土体至 5.5m 深

例题源文件为"GEO5 岩土工程有限元分析计算"软件(v16 版)**自带例题文件:** Demo03.gmk 下载链接: <u>http://pan.baidu.com/s/1c03rCjQ</u>

计算

我们将会按照如下步骤对本算例进行分析计算:

- 基本参数输入
- 网格生成
- 工况阶段[1] 初始地应力分析
- 工况阶段[2] 输入梁单元
- 工况阶段[2] 开挖和改变地下水位
- 工况阶段[2]- 再次分析
- 一 工况阶段[3] 岩土体开挖、输入锚杆、改变地下水位
- 工况阶段[3] 分析

基本参数输入:

该实例的任务是对一个厚度为 0.5m,截面为矩形的锚固钢筋混凝土墙深基坑结构进行详细分析。 岩土材料的相关参数如下:

最好用的岩土软件 CEO5	GEO5 岩土工程设计手册(一)	穿Ш甲科技有限公司
	表 15.1 岩土材料参数	
名称	Soil 1	Soil 2
天然容重 $\gamma(kN/m^3)$	18.0	21.0
弹性模量 E(MPa)	10.0	4.5
泊松比ν	0.3	0.4
粘聚力 $C_{ef}(kPa)$	4.0	10.0
内摩擦角 $\varphi_{e\!f}(\circ)$	29.0	19.0
剪胀角 ψ(°)	0	0
饱和容重 $\gamma_{sat}(kN/cm^3)$	18.0	21.0

第一步,创建几何模型 - 挡墙深度为 10m 且发生塑性变形。模型两边的边界离挡墙均为 20m, 这样就保证了挡墙离几何模型的边界足够远,使得边界条件不会影响到破坏区域的发展。

世界坐标	
- 项目尺寸范围	
项目范围X最小值:	-20,00 [m]
项目范围X最大值:	20,00 [m]
深度(距多段线最低点):	10,00 [m]
	🗹 确定 🛛 取消

图 15.3 输入模型边界尺寸

下一步, 定义区域分界面和岩土材料。

在【多段线】界面中输入分区分界面。分区分界面可以是不同岩土材料的分层界线,也可以是每个工况阶段需要开挖的岩土层的分界面。在该实例中,地形线以及所需的水平分区分界面的深度分别为 0.00m, -3.00m, -3.50m 和 0.00m, 。在地表输入一个坐标为[0.00, 0.00]的自由点,用以表示挡墙的上端点。

图 15.4 输入地形线和分区分界面

下一步,在【岩土材料】界面中选择材料模型并设置岩土材料参数。【指定材料】界面用于给剖面的每个分区赋予岩土材料。选择塑性材料模型可以很好的模拟岩土体的变形,从而得到正确的土压力分布情况。在该实例中,两种类型的岩土体都采用 Mohr-Coulomb 塑性模型。

添加岩土材料						×
岩土类别						显示
名称:	Soil 1					图例
						7000E
材料模型					?	\$X1 1
材料模型:		修正Mohr	-Coulomb弹塑	性模 💌		
基本参数					2	
天然容重:		γ =	18,00	[kN/m ³]		
弹性模量:		E =	10,00	[MPa]		
泊松比:		v =	0,30	[-]		
Biot参数:		α =	1,00	[-]		
岩土材料类型:		排水				
- 木約参約 修正)	Nobr-Coulomb 建护生模式	u.			a	
软化/硬化:	不考	- 虎	5	-	Ξ.	
内摩擦角:		0	29.00	[9]		
¥上現区十1 。			4.00	Re-1		截图
10/6/31		∽वक−	4,00	[KFd]		
		_				
剪胀角:		ψ=	0,00	[°]		
						土的分类
浮容重					?	分类
浮容重的计算模	: 无	标准(饱和	「容重、水容」	i) 💌		刪除
饱和容重:		γ _{sat} =	18,00	[kN/m ³]		
						● 添加
						🗵 取消

图 15.5 添加岩土材料

下图所示为将岩土材料赋予到剖面各个分区的情况。

GEO5 岩土工程设计手册(一)

图 15.6 为剖面赋予岩土材料

下一步,定义接触面。该实例中选择梁单元来模拟挡墙,接触面则需要使用塑性材料模型 (Mohr-Coulomb 模型),从而保证能准确地模拟岩土体和梁之间的相互作用。在【接触面类型】界面 中点击【添加】按钮,在弹出的"添加接触面类型"界面中可以定义接触面类型的相关参数。在该实 例中,假设接触面的材料参数等于周围岩土体剪切强度参数的 30% ($\delta_c = 0.3$, $\delta_\eta = 0.3$)。弹性刚

度 k_n 和 k_s (10000 kN/m^3)采用默认设置。

添加接触面类型			×
类别			
名称:	К 1		
参数			
材料模型:		Mohr-Coulomb模型	
接触面刚度			
切向刚度:	K _s =	10000,00	[kN/m ³]
法向刚度 <mark>:</mark>	K _n =	10000,00	[kN/m ³]
- 接触面参数			
输入模式:		輸入折 减 参数	
折减粘聚力C:	δc =	0,30	[-]
折 减摩 擦系数μ:	δμ =	0,30	[-]
剪胀角:	ψ=	0,00	[°]
抗拉强度:	R _t =	0,000	[kPa]
		• 添加	🛛 取消

图 15.7 添加接触面类型

下一步, 输入自由点和自由线来创建挡墙。

在计算模型中使用自由点和自由线来创建挡墙的几何结构。在【自由点】界面中输入挡墙的下部 端点,其坐标为[0.00; -10.00]。在【自由线】界面的"添加自由线"界面中输入自由线-通过连接自 由点和地形线上的点来创建自由线。

添加自由线					×
- 线型					
线型	直线				
- 起点			- 端点		
点对象:	多段线1		点对象:	自由点	▼
1多段线上的点:	编号 2 (0,00; 0,00)		自由点:	编号 1(0,00;-10,00)	
-信息					
起点 (0,00; 0,00)	[m],终点 (0,00; -10,00) [n	n]			
				● 添加 🛛 🗵 🛛	取消

图 15.8 输入自由线以创建挡墙

该步完成后的效果如下图所示。

🚰 Geo5 v16 - 岩土工程有限元分析计算 [CitUsers/Public/Documents/Fine).GEO5 v16 Pfiklady/Demo03.gmk *]	- 9 -2
这件 總殊 建入 載眾 设置 塑料	
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
	 秋武 ・
	 ▲ 岩土材料 ▲ 附性材料 27 指定材料
	日本時間用型
	teoricei, 🛞
	= \$\$,7097
	一班期將生成
1010日 現型 例式 初10月 前6日 10月 現 1010日 - 10100日 - 101000 - 10000000000	
> 1 38.8 32.4 (0,00; 0,00) (m), (0,00; -10,00) (m) ∞ <th∞< th=""> ∞ ∞ <th∞< th=""></th∞<></th∞<>	
	 ・ ・
2	創題列表
u j	

图 15.9 输入自由线——深基坑挡墙

接下来,生成有限元网格,完成建模阶段。

网格生成(Mesh generation)

生成网格时建议在挡墙结构周围对网格进行局部加密。选择加密直径为 5.0m, 边长为 0.5m。加

<u> 穿山甲科技有限公司</u> PANGOLIN TECHNOLOGY CO., LTD.

密操作在【线加密】界面中进行。

图 15.10 定义挡墙周围的网格加密

下一步,切换到【生成网格】界面,选择网格边长为2m,然后点击【启动网格生成】按钮,创 建有限元网格。

图 15.11 自动生成的有限元网格

生成有限元网格后,进入一下步,工况阶段[1]。

工况阶段[1]——初始地应力分析

图 15.12 工况阶段[1]——输入地下水位

在工况阶段[1],选择【分析】界面,然后点击【开始分析】按钮,得到初始地应力场。

图 15.13 工况阶段[1]——初始地应力

工况阶段[2]——输入梁单元

添加工况阶段[2]后,定义一个新的梁单元并把它定位到之前定义的自由线上。在【梁】界面中点

下一步,添加工况阶段[2]。

<u> 穿Ш甲科技有限公司</u> PANGOLIN TECHNOLOGY CO., LTD.

击【添加】按钮,在弹出的【添加梁】界面中输入相应的梁参数。

添加梁						×
建模			一材料型号			
位置 <mark>:</mark>	自由线		材料型号 <mark>:</mark>	Beam 1		
自由线:	编号1自由线	•	一内支撑			
参数			起点支座 <mark>:</mark>	ñ 💌	符号大小: 自动 💌	0,50 [m]
☑ 考虑自重			终点支座 <mark>:</mark>			
- 截面尺寸和材料						
截面类型:	钢筋砼墙			<Ⅰ 材料类型:	混凝土	
墙厚:		h =	0,50 [m]	名称:	B 20	
墙计算长度为每延	米 , 即:	b =	1,00 [m]		長日	自定义
4#247	I _Y = 1,04E-	02 m ⁴ /m; A =	5,00E-01 m ² /m;	E = 27000,00 M	IPa; G = 11340,00 MPa	
接触的						
	10 1 1 × 1					
按照119天空:	Kontakt pazeni zer	mina		按照图究空:	Kontakt pazeni zemina	
					• 添加	1 🛛 🛛 取消

图 15.14 输入梁参数

下图所示为输入梁单元后的图形窗口。

图 15.15 输入梁单元

下一步,在工况阶段[2]中开挖特定的岩土层并改变地下水位。

工况阶段[2]——岩土体开挖和改变地下水位

在该阶段中对岩土体进行开挖。首先选择【激活/冻结分区】界面,然后选择"需要开挖的岩土

体"要开将开挖分区(挡墙左边的第一层岩土)设置为未冻结状态。在图形窗口中可以看到,内置的 几何尺寸校正器会自动将穿过挡墙的分区分为两个不同的封闭分区。

图 15.16 工况阶段[2]——岩土体开挖

选择【地下水】界面并输入新的地下水位。

图 15.17 工况阶段[2]——改变地下水位

下一步,切换到【分析】界面,并开始计算和分析工况阶段[2]。

工况阶段[2]——分析

再次通过【开始分析】按钮对有限元进行分析。部分计算结果如下图所示。

图 15.18 工况阶段[2]——分析:有效应力 Z 向

图 15.19 工况阶段[2]——分析: 变形网格

图 15.21 工况阶段[2]——分析:等效塑性应变和位移失量 下一步,添加工况阶段[3]。

工况阶段[3]——岩土体开挖, 输入锚杆, 改变地下水位

完成工况阶段[3]的添加后,参照前面的步骤,在【激活/冻结分区】界面中开挖下一层岩土。

图 15.22 工况阶段[3]——岩土体开挖

下一步,切换到【锚杆】界面。点击【添加】按钮,弹出【添加锚杆】界面,输入相关参数,其中预加应力 F=185 kN。锚杆不能锚固到竖向分界面上。因此,锚固点必须通过输入其坐标-[0.00m,-2.90m]来定义。

添加锚杆				×
锚固位置				
锚固点:	连接到当前	前工况阶段的城	面 💌	
	x =	0,00	[m]	ъ.
	z =	-2,90	[m]	[×,z]
终点:	输入锚杆的	的长度和倾角		Th////////////////////////////////////
长度 :	=	12,00	[m]	
倾角:	α =	15,00	[°]	
锚杆水平间距:	b =	1,00	[m]	
- 锚杆刚度				
输入模式 <mark>:</mark>	锚杆直径			
锚杆直径:	d =	10,0	[mm]	
弹性模量:	E =	210000,00	[MPa]	
抗拉力:	F _c =	1E80	[kN]	
🗌 激活受压				
一锚固力				
锚固力:	F =	185,00	[kN]	
			• 🗈 🛣	加 🛛 取消

图 15.23 工况阶段[3]——添加锚杆

最后,	修改地	下ス	K位。
-----	-----	----	-----

g 영 Geos v16 - 岩土工程有限完分时计算 (CNUsers Public/Documents/Fine/GEOS v16 PM/Iady/Demo08.gml)		
文件 總殊 建入 截距 投資 帮助		
🗅 🚅 📓 ムマンマ 🦆 🤤 🌇 🔍 🔍 💠 🖽 🇮 🖾 🏹 🆓 銀市 👓 1000 : 20 25万 万 1000		
IRMAR: 🛞 🗧 DEMI () () []		
-2108 -1008 -1008 -1008 -1200 -0080 -508 -508 -208 000 -208 500 508 500 1008 1200 1008 1508 508	20,00 22,00 1911	株式 -
		+_激活/序结分区 配指定材料
		▲ 地下水
		e
	41	量級問題
		>→ 点支座
10.00 30.00	[20,00) -3,00]	
	41	🛃 \$877
(0.00: -0.90)		1000 日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本
	I	- 1511 - 1511
ID	⊲1	
	⊲I	HI CAS
	41	 2011 第二次回転
		🕹 884
	4	👌 這就稳定有限元分#
	41	
	-	
	'	
Ingente ersame artein → erstelle entre entre arte erste ers		
与前一工况阶段相比 输入的地下术已经的支		
#T#G2		
x [n] x [n] //		
2 0,00 -5,50		創題
3 0,00 -3,00		副胞医计算书
		增下水: 出版:
V		ALCON US
<u>//</u>		Carrier and

图 15.24 工况阶段[3]——修改地下水位

计算和分析工况阶段[3]是整个分析的最后一步。

工况阶段[3]——分析

运行有限元分析程序,评估得到的结果,完成整个分析任务。

图 15.25 工况阶段 [3] —— 分析: 有效应力 Z 向

<u> 异山甲科技有限公司</u> PANGOLIN TECHNOLOGY CO., LTD.

图 15.26 工况阶段[3]——分析: 变形网格

图 15.27 工况阶段[3] —— 分析: 梁弯矩分布

图 15.28 工况阶段[3] —— 分析: 等效塑性应变和位移矢量

结论

下面的表格比较了有限元分析计算软件和"深基坑支护结构分析软件"得到弯矩结果。

表 15.2 两种软件计算结果对比

丁加欧印	Mohr-Coulomb	修正Mohr-Coulomb	深基坑支护结构分	Drucher-Prager
工机研权	模型	模型	析软件	模型
工况阶段[1]	21.8	14.7	48.1	22.0
工况阶段[2]	85.9	85.6	99.5	86.0
工况阶段[3]	-66.3	-81.3	-67.2	-65.0

第十六章 有限元——边坡稳定性分析

该实例通过计算某一边坡的安全系数来分析其稳定性。

任务

该实例通过计算某一边坡的安全系数来分析其稳定性。该实例边坡中不考虑地下水。在工况阶段 [2]中分析作用在填方边坡上的外部超载的影响。在工况阶段[3]中评估锚杆的加固效果。

例题源文件为"GEO5 岩土工程有限元分析计算"软件(v16 版)**自带例题文件:** Demo04.gmk 下载链接: <u>http://pan.baidu.com/s/1jGki906</u>

计算

本章将按照如下几个步骤对算例进行计算:

- 基本参数输入
- 网格生成
- 工况阶段[1]——分析
- 一 工况阶段[2]——输入超载,分析
- 工况阶段[3]--输入锚杆,分析

基本参数输入:

名称	Soil 1	Soil 2
天然容重 $\gamma(kN/m^3)$	18.0	20.0
弹性模量 <i>E(MPa</i>)	21.0	300.0
泊松比 <i>v</i>	0.3	0.2
粘聚力 $C_{ef}(kPa)$	9.0	120.0
内摩擦角 $\varphi_{_{\! e\!f}}(\circ)$	22.7	38.0
剪胀角 ψ(∘)	0	0
饱和容重 $\gamma_{sat}(kN/cm^3)$	18.0	20.0

表 16.1 岩土材料参数

图 16.1 地形形状 表 16.2 地形多段线

多段线1				多段	线 2
	x[m]	z[m]		x[m]	z[m]
1	0	-9.00	1	0	-11.50
2	11.00	-9.00	2	14.00	-11.00
3	21.00	-2.50	3	21.00	-9.25
4	29.50	-2.50	4	40.00	-9.00
5	32.25	-4.00			
6	40.00	-4.00			

下一步,设置分析类型。

有限元分析计算软件可以直接计算安全系数。在【分析设置】下拉列表中选择分析模块为"边坡 稳定分析模块"。

1	项目参数		 设计规范		
	项目类型:	平面应变分析	砼结构设计 <mark>:</mark>	中国规范GB 50010-2010	
	分析类型:	边城稳定分析	钢结构设计 <mark>:</mark>	欧洲规范EN 1993-1-1 (EC3)	
	□ 隧道分析				
	🗌 允许采用稳定流分析输入	、地下水			
	🗆 高级输入				
भ्रत	□ 详细结果				
斤设品					
茨					

图 16.2 定义分析模块

下一步,定义岩土材料并将其赋予到指定的区域。在建模阶段,首先定义结构的几何尺寸以及岩 土材料参数。值得注意的是,安全系数的分析需要选择塑性模型来预测材料的变形(Mohr-Coulomb 模型,Drucker-Prager 模型)。在该实例中,由于和 Mohr-Coulomb 模型相比,Drucker-Prager 模型具有 较小的刚性变形,所以选择 Drucker-Prager 材料模型。在该实例的最后,将列表总结分析采用不同材 料模型所得到的结果。

图 16.3 输入岩土参数

将定义的岩土材料赋予到给定的岩土层分区,如下图所示。

图 16.4 指定岩土材料

下一步,生成有限元网格,完成建模阶段的输入。

网格生成

切换到【网格生成】界面,点击【启动网格生成】按钮,创建有限元网格。值得注意的是,网格 密度对得到的安全系数有很大的影响,因此,采用的网格应当足够密。为了证明这种影响,我们分别 采用不同的网格边长 - 1.0, 1.3, 1.5, 2.0 和 3.0 m 进行分析。在该实例中,网格边长取 1.5m。

图 16.5 生成有限元网格

生成有限元网格后,切换到工况阶段[1]。

工况阶段[1]——分析

下一步,切换到【分析】界面,点击【开始分析】按钮,计算安全系数。这里,只计算岩土体在 自重作用下的安全系数。可以在界面底部看到分析过程以及安全系数的逐步增加。

分析		送代		n	误差 位移	误差 不平衡力	误差 能量	
安全系数:	1,52 [-]	<u> </u>						
荷载增量步折减:	6	加軟增重公工		4 0000		0.04706		
荷载增量步折减大小:	0,95000 [-]		1	1,0000	1,00000	0,21/96	0,09831	
折漏荷裁操量步的松弛次数。	1		2	1,0000	0,03589	0,07167	0,01905	
荷栽協具作,	-	-	3	1,0000	0,02906	0,08286	0,00790	
同戦時里から	1		4	1,0000	0,02601	0,09158	0,00341	
何载增量步入小:	1,00000 [-]	极限分析						
迭代次数:	4							
达到荷载的百分比:	100,0 [%]	₩₩/♪321天 0 ★★\$143日 /6 /						
荷载增量步松弛次数:	0	何報增重步1						

图 16.6 边坡稳定性分析过程

分析完成后,软件将在界面底部显示得到的安全系数。

图 16.7 工况阶段[1]——计算安全系数

潜在滑动面可以通过绘制等效塑性应变的分布来确定。

图 16.8 工况阶段[1] ——等效塑性应变

下一步,添加工况阶段[2]。

工况阶段[2]——输入超载,分析

在工况阶段[2],选择【超载】界面,并定义所需超载的类型,如下图所示。

添加超載				×
超载名称				
名称:	Surcharg	ge 1		
- 超载特性				
类型:		横向条形超载	▼	
位置:		城面	•	
起点:	x =	22,00	[m]	⊷
长度 <mark>:</mark>	1 =	7,00	[m]	q /+α
倾角:	α =	0,00	[°]	
一超载大小 大小:	q =	35,00	[kN/m²]	
				🔳 添加 🛛 🛛 取消

图 16.9 输入超载参数

下一步,切换到【分析】界面,并点击【开始分析】按钮,计算安全系数。计算得到的安全系数 显示在界面底部。

图 16.10 工况阶段[2]——等效塑性应变和安全系数 最后一步,在工况阶段[3]中添加锚杆并计算安全系数。

工况阶段[3]——输入锚杆,分析

在工况阶段[3],选择【锚杆】界面,并定义所需锚杆的相关参数,如下图所示。

添加锚杆				×
- 锚固位置				
锚固点:	连接到当前	前工况阶段的城	面 💌	
	x =	15,99	[m]	ъ.
	z =	-5,75	[m]	[×,z]
终点:	输入锚杆的	的长度和倾角		Th. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19
长度:	=	16,00	[m]	
倾角 :	α =	17,00	[°]	
锚杆水平间距:	b =	1,00	[m]	
- 锚杆刚度				
输入模式:	锚杆直径			
锚杆直径:	d =	20,0	[mm]	
弹性模量:	E =	210000,00	[MPa]	
抗拉力:	F _c =	1000000,00	[kN]	
□ 激活受压				
- 锚固力			1	
锚固力:	F =	72,00	[kN]	
			• 🗈 添	加 🛛 取消

图 16.11 工况阶段[3]——输入锚杆参数

下一步,切换到【分析】界面,并点击【开始分析】按钮,计算安全系数。计算得到的安全系数显示在界面底部。

图 16.12 工况阶段[3]——等效塑性应变和安全系数

对得到的滑动面形状的复核在某些例子中非常重要,尤其是当局部破坏可能发生在我们意想不到的位置时。下图显示了当采用相对较密的网格时(网格边长=1m),锚固点附近的塑性应变情况。如果这种情况发生了,则需要采取某些措施,例如:

- 增大网格边长
- 增大锚固点附近的岩土体强度
- 在锚固点处设置梁单元

图 16.13 锚杆头部附近塑性应变情况

结论

下表显示了在有限元分析计算软件中不同材料模型、不同网格密度用于同一个实例所得到的结果。利用 Bishop 法和 Sarma 法所得到的分析结果也放到了表格中用于比较。

オオキバ 本井 王川	园权边长	工况阶	工况阶段	工况阶	37- 至又
初科快至	网格边区	段[1]	[2]	段[3]	7二7年
Bishop		1.50	1.32	1.50	
Sarma		1.58	1.38	1.66	
DP(Drucker-Prager)	1.0	1.65	1.41	0.81*	*-岩土体在锚固点附近产 生塑性破坏(局部破坏)
DP(Drucker-Prager)	1.30	1.69	1.44	1.69	
DP(Drucker-Prager)	1.50	1.67	1.42	1.71	
DP(Drucker-Prager)	2.00	1.71	1.48	1.74	
MC(Mohr-Coulomb)	1.00	1.54	1.33	0.81*	 *-岩土体在锚固点附近产 生塑性破坏(局部破坏)
MC(Mohr-Coulomb)	1.30	1.56	1.35	1.56	

第十六章 有限元——边坡稳定性分析					
MC(Mohr-Coulomb)	1.50	1.56	1.32	1.60	
MC(Mohr-Coulomb)	2.00	1.60	1.37	1.62	
MC(Mohr-Coulomb)	3.00	1.69	1.44	1.67	
MCM(修正	1.00	1.76	1.54	0.90*	* - 岩土体在锚固点附近产
Mohr-Coulomb)					生塑性破坏(局部破坏)
MCM(修正	1.30	1.81	1.56	1.76	
Mohr-Coulomb)					
MCM(修正	1.50	1.78	1.52	1.83	
Mohr-Coulomb)					
MCM(修正	2.00	1.83	1.60	1.85	
Mohr-Coulomb)					
MCM(修正	3.00	1.93	1.65	1.93	
Mohr-Coulomb)					