

PIEU SOUS CHARGE TRANSVERSALE

Programme: GEO5 – Pieux (à partir de la version 2020)

Fichiers: NFP94-262-Ex4.gp1

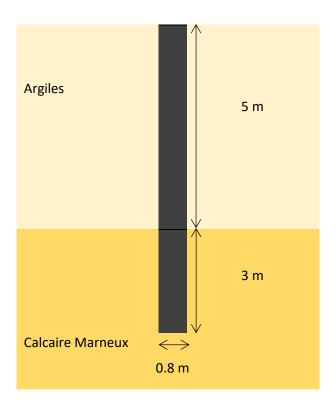
Contexte

L'application de l'Eurocode 7 se complète par une annexe nationale. En France, le choix a été fait de rédiger une norme d'application pour chacun des types d'ouvrages géotechniques. Pour les fondations profondes, la norme NF P94-262 est applicable. Un comité d'expert sous l'égide du CEREMA a rédigé un guide d'application. Nous nous basons ici sur l'exemple 4 de ce guide pour appliquer le programme GEO5 – Pieux. Dans la suite, il sera cité comme "Référence".

AVERTISSEMENT: Dans ce document, l'utilisateur sera guidé à travers toutes les étapes de définitions et d'analyse d'un projet géotechnique, dans un contexte établi par l'auteur. L'utilisateur doit être informé que les réglages de l'analyse (onglets « Paramètres ») sont de sa responsabilité et doivent être vérifiés/adaptés avant de commencer tout nouveau projet.

Table des matières

1	Don	nées du projet	2
	1.1	Ouvrage	2
	1.2	Données géotechniques	2
	1.3	Hypothèses de calcul	3
2	Défi	nition du modèle	4
	2.1	Item "Paramètres"	4
	2.2	Item "Profil"	4
	2.3	Item "Assignation"	6
	2.4	Item "Module Kh"	6
	2.5	Item "Charge"	7
	2.6	Item "Géométrie"	7
	2.7	Item "Matériau"	7
	2.8	Passage du calcul	8
3	Rési	ıltats	8
	3.1	Vérification de la résistance structurale :	. 10
	3.2	Vérification de la résistance à la compression et flexion	. 11
	3.3	Vérification de la résistance au cisaillement	. 11



1 Données du projet

1.1 Ouvrage

On analyse un pieu foré à la boue ancré dans du calcaire et soumis à un chargement transversal. Le pieu a une longueur de 8m, un diamètre de 0.8m et il est ancré de 3m dans un sol calcaire marneux.

Dans cet exercice, nous nous limiterons à l'analyse des déformations horizontales le long du pieux. Nous ne ferons pas de calcul de capacité portante verticale.

1.2 Données géotechniques

Les sols en place sont constitués de calcaire marneux surmontés de 5m d'argiles.

Les propriétés mécaniques sont précisées dans le tableau ci-dessus :

	Poids volumique γ (kN/m³)	Poids volumique saturé γsat (kN/m³)	Coefficient de poisson v	Module de déformation Edef(Pa)	Cohésion Cu (KPa)	Em (MPa)	α
Argile	18.5	18.5	0,35	10	0	10	0 ,66
Calcaire marneux	21	21	0.20	100	0	25	0,5

Le sol est également décomposé en tranches le long du pieu avec les caractéristiques décrites dans le tableau suivant, où :

$$K_{f} = \frac{12E_{M}}{\frac{4B_{0}}{3B}\left[2,65*\frac{B}{B_{0}}\right]^{\alpha} + \alpha}$$
 avec B₀=0.6m

Profondeur z(m)		к _ғ (Кра)	P _f (Kpa)
de	à		
0,00	0,20	10767	531
0,20	0,50	12350	609
0,50	0,80	14250	703
0,80	1,20	16467	812
1,20	1,60	19000	937
1,60	2,00	20267	1000
2,00	2,50	20267	1000
2,50	3,00	20267	1000
3,00	3,60	20267	1000
3,60	4,20	20267	1000
4,20	5,00	20267	1000
5,00	5,60	63032	1500
5,60	6,40	63032	1500
6,40	7,20	63032	1500
7,20	8,00	63032	1500

Tableau 1 : Décomposition du sol en tranches et caractéristiques

1.3 Hypothèses de calcul

La méthode de calcul appropriée pour une fondation élancée (pieux) soumise à des sollicitations transversales est le modèle d'interaction sol-structure (MISS); le comportement du pieu sera donc modélisé dans le programme GEO5 – Pieux selon cette méthode. Nous nous limiterons aux calculs des efforts dans le pieux et des déplacements horizontaux. On utilise alors l'hypothèse de Winkler, poutre sur appuis élastiques, qui donne l'équation générale de comportement suivante :

$$E_p I_p \frac{d^4}{dz^4} + E_s * y(z) = 0 \text{ avec } I = \pi \frac{D^4}{64}$$

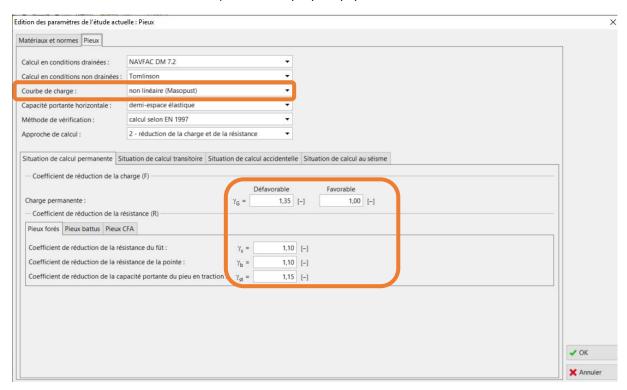
Le pieu est chargé en tête selon le tableau 2 ci-dessous et on impose un effort tranchant et un moment nul en pied.

	Fc;d (kN)	T(kN)	M (kN.m)
ELU - situations durables et transitoires	1700	340	300
ELS - combinaison caractéristique	1300	260	200
ELS - combinaison fréquente	1200	230	170
ELS – combinaison quasi-permanente	1100	200	150

Tableau 2 : Chargement en tête de pieu pour les différentes combinaisons

On choisit un béton C25/30 avec une résistance à f_{ck} =25MPa

On retiendra les coefficients partiels suivants :


- $\gamma_G = 1.35$ sur les charges permanentes défavorables
- γ_s = 1.10 pour la résistance de frottement axial sur des pieux en compression
- $\gamma_b = 1.10$ pour la résistance de pointe
- γ_{st} = 1.4 pour la résistance de frottement axial sur le fut des pieux en traction.

2 Définition du modèle

2.1 Item "Paramètres"

Cliquer sur "Edition" pour régler les paramètres :

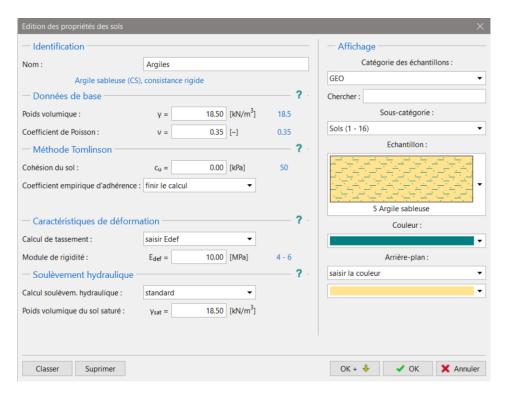
- Courbe de charge avec la théorie Non linéaire (Masopust)
- Définition des paramètres γ_G, γ_s et γ_b γ_{st}

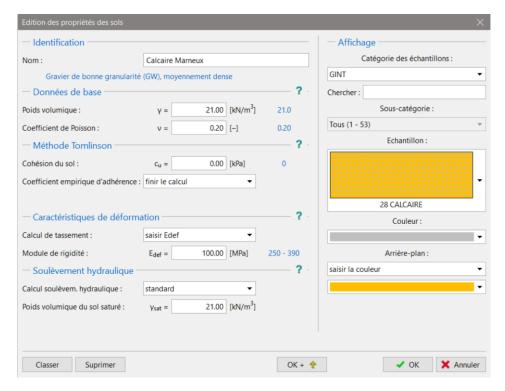
2.2 Item "Profil"

La surface est établie à la cote de 0 m.

On ajoute 2 couches d'épaisseurs :

- t1 = 5 m
- t2 = ∞

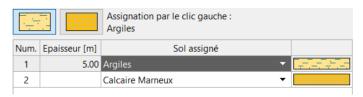

Num.	Epaisseur de la couche	Profondeur
	t [m]	z [m]
1	5,00	0,00 5,00
2	-	5,00 ∞



2.2.1 Item "Sols"

On définit ici les 2 types de sol en place.

Boite de dialogue pour saisie des paramètres du sol 1 : Argile

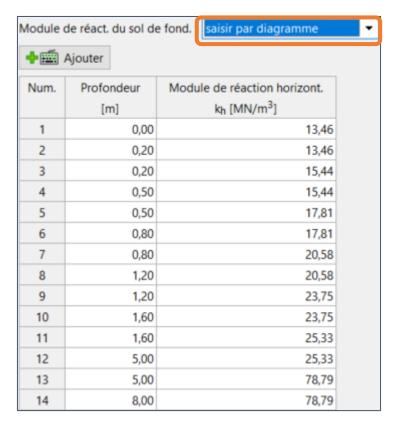

Boite de dialogue pour saisie des paramètres le sol 2 : Calcaire marneux

2.3 Item "Assignation"

On associe ici chaque couche du profil avec un des sols renseignés.

2.4 Item "Module Kh"

Dans le programme GEO5 – Pieu, le module de réaction horizontale du sol de fondation est défini par Kh et non par le module linéique K_f dans le tableau 1. Les deux paramètres sont liés par la relation suivante :

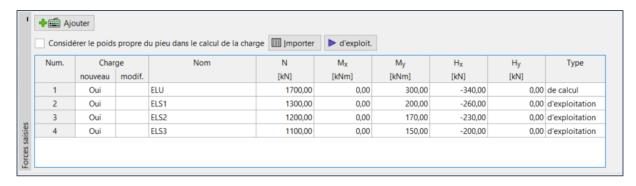

$$K_f = BK_h$$

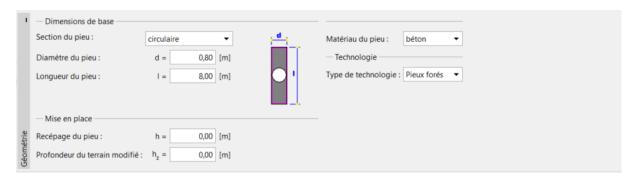
Formule 2.4

Avec B =0.8m diamètre du pieu et
$$K_f = \frac{12E_M}{\frac{4B_0}{3B}\left[2,65*\frac{B}{B_0}\right]^{\alpha}+\alpha}$$
; B₀=0.6m

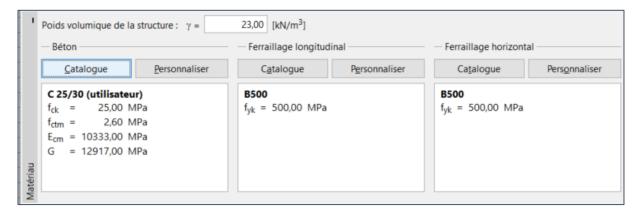
Dans le cadre "Module Kh" :

- On sélectionne la méthode d'évaluation : saisir par diagramme
- On ajoute les différentes valeurs du tableau 2 et la valeur de Kh correspondante ; La valeur de Kh est obtenue à l'aide de la formule 2.4 ci-dessus.


Boite de dialogue pour saisie des valeurs du module de réaction Kh


2.5 Item "Charge"

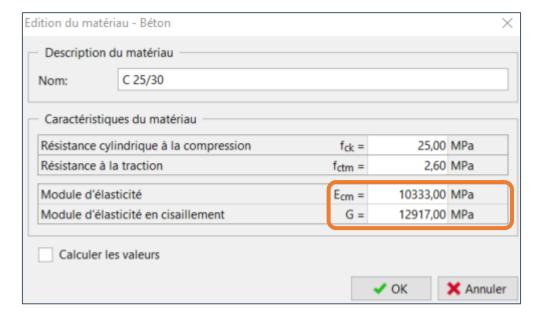
On ajoute les différentes valeurs du tableau 2 :


2.6 Item "Géométrie"

On renseigne les dimensions et caractéristiques du pieu et du matériau.

2.7 Item "Matériau"

Un béton C25/30 est choisi dans le catalogue et on renseigne le poids volumique de la structure.



Pour la vérification de la stabilité à long terme des fondations profondes en bétons, il convient de prendre en compte un module différé $E=E_{dif}=\frac{E_{cm}}{3}$; $E=E_{dif}=\frac{31000}{3}=10333MPa$. En conséquence, $G=12917\,MPa$.

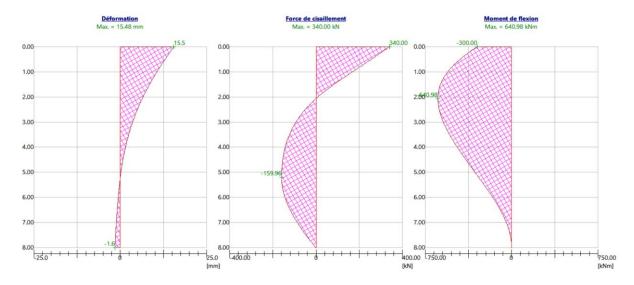
On clique alors sur "Personnaliser" pour éditer les caractéristiques du béton avec ces valeurs.

2.8 Passage du calcul

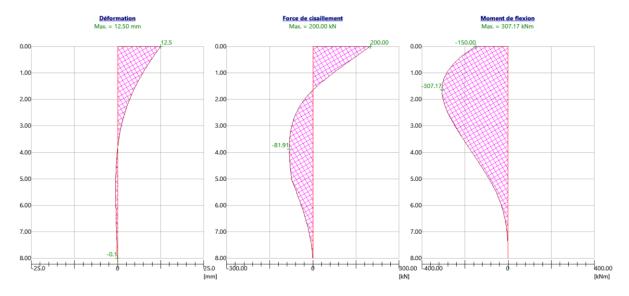
En cliquant sur "Capacité portante horizontale", le programme effectue le calcul des forces internes appliquées au pieu et la capacité portante de la section. Son affichage en vert signifie que le calcul s'est correctement déroulé (résistance admissible par exemple).

3 Résultats

En faisant une comparaison, on remarque que les résultats en déplacements (ELS) et efforts obtenus avec le Programme GEO5 - Pieux sont exactement les mêmes que ceux de la référence.


Les résultats sont présentés dans le tableau ci-dessous :

	Déformation	Effort	Moment de
	Ymax (mm)	tranchant	flexion Mmax
		Tmax (kN)	(kN.m)
ELU - situations durables et transitoires	(22)	340	558
Référence		340	558
ELS - combinaison caractéristique	16,3	260	403
Référence	16,3	260	403
ELS - combinaison fréquente	14,3	230	351
Référence	14,3	230	351
ELS – combinaison quasi-permanente	12,5	200	307
Référence	12,5	200	307



Graphes de la déformée et des profils d'effort pour le cas ELU :

Graphes de la déformée et des profils d'effort pour le cas ELS – combinaison quasi-permanente :

3.1 Vérification de la résistance structurale :

Dans cet exemple, la méthode de vérification de la référence ne présente pas la résistance du pieux au cisaillement, à la compression et flexion. Voilà pourquoi nous utilisons le Programme GEO5-Pieux pour justifier la résistance du pieux face à ces actions.

- **Dimensionnement de l'armature** : Après vérification aux quatre états limites, la référence et le programme GEO5-pieux retiennent les résultats suivants :

	Référence	GEO5-Pieux
Nbre de barres	14	13
Type d'armature	Aciers HA 500	Aciers B 500
Enrobage	70 mm	70 mm
Section minimale d'armature longitudinales (A _s)	25 cm ²	25 cm ²
Diamètre armatures	25 mm	16 mm
Espacement	10 -20 cm	20 cm

NB : le choix et les caractéristiques de l'armature peuvent être personnalisés dans l'item 'Matériau' du programme GEO5-Pieux.

Le programme effectue également la vérification du pourcentage de renforcement de l'armature. La vérification se fait selon la méthode de la déformation limite, en se basant sur la relation suivante :

$$\rho \min \leq \rho \leq \rho \max$$

$$ho = rac{4A_{
m S}}{\pi d^2}$$
; ho est le degré ou le pourcentage d'armature longitudinal

Avec pmin = 0.005 pour Ac ≤ 0.5 m² et pmax = 0.04. Ac – aire de la section du pieux.

- **Calcul de ho** : Pourcentage d'armature ou degré de renforcement, $ho=rac{4A_{S}}{\pi d^{2}}$

Le programme GEO5 - Pieux retient un ferraillage constitué de 13HA16 avec As = 26,1 cm² ; La référence obtient également le même résultat à l'ELU.

$$\rho = \frac{4A_{\rm S}}{\pi d^2} = \frac{4*25}{80^2\pi}$$
 =0.00520 ou 0.52%

=> $\rho_{min} \le 0.005 \le \rho max$, le pourcentage d'armature est acceptable ; On conclut alors que la section est admissible.

3.2 Vérification de la résistance à la compression et flexion

Le tableau ci-dessous est un récapitulatif de la résistance de l'armature du pieu à la compression/flexion obtenus aux quatre états limites avec le programme GEO5 – pieux :

	Compression et flexion	Capacité portante	Vérification
ELU - situations	Charge : N _{Ed} = 17000kN	N _{Rd} =2373,13 kN	2373,13kN>17000kN
durables et			
transitoires	Moment de Flexion :	Moment résistant :	778,58 kN.m >558 kN.m
	558 kN.m	M_{Rd} =778,58 kN.m	->Conception admissible
ELS - combinaison	Charge: N _{Ed} = 1300kN	N _{Rd} =2552,65 kN	2552,65kN>1300kN
caractéristique			
	Moment de Flexion :	Moment résistant :	791,81 kN.m >403,25 kN.m
	403,25 kN.m	$M_{Rd} = 791.81 \text{ kN.m}$	-> Conception admissible
	Charge: N _{Ed} = 1200kN	N _{Rd} =2746,08 kN	2746,08 kN >1200 kN
ELS - combinaison			
fréquente	Moment de Flexion :	Moment résistant :	803,87 kN.m >351,28 kN.m
	351,28 kN.m	M_{Rd} = 803,87 kN.m	->Conception admissible
ELS – combinaison	Charge : N _{Ed} = 1100kN	N _{Rd} =2910,81kN	2910,81kN>1100kN
quasi-	Moment de Flexion :	Moment résistant :	812,83 kN.m >307,17 kN.m
permanente	M _{Ed} =307,17 kN.m	M _{Rd} = 812,83 kN.m	->Conception admissible

3.3 Vérification de la résistance au cisaillement

Résultats de la résistance de l'armature du pieu aux cisaillements aux quatre états limites avec le programme GEO5 - pieux :

	Force motrice	Effort tranchant résistant	Vérification
ELU - situations durables et transitoires	V _{Ed} = 340 kN	V _{Rd} = 378,77 kN	340 kN >378,77 kN Section admissible
ELS - combinaison caractéristique	V _{Ed} = 260 kN	V _{Rd} = 348,49 kN	348,49 kN >260 kN Section admissible
ELS - combinaison fréquente	V _{Ed} = 230 kN	V _{Rd} = 333,49 kN	333,49 kN > 230 kN Section admissible
ELS – combinaison quasi-permanente	V _{Ed} = 200 kN	V _{Rd} = 318,49 kN	318,49 kN >200 kN Section admissible