

Frissítve: 2016. Február

Szögtámfal tervezése

Program: Szögtámfal

File: Demo_manual_02.guz

Ebben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk be.

Feladat:

Tervezzünk egy 4,0 m magas szögtámfalat és vizsgáljuk meg EN 1997-1 (EC 7-1, 1-es tervezési mód) szerint. A terep a szerkezet mögött vízszintes. A talajvízszint 2,0 m mélyen van. A fal mögött 5,0m hosszan 10 kN/m² sávos teher hat. Az alapozás talaja MS – Merev konzisztenciájú homokos iszap $S_r < 0.8$, maximális teherbírása 175 kPa. A fal mögötti talaj S-F – Homok kis mennyiségű finom résszel, közepes tömörségű. A szögtámfal anyaga C 20/25 osztályú vasbeton.

Szögtámfal ábrája - Feladat

Megoldás:

A probléma megoldásához a GEO5 "Szögtámfal" programot fogjuk használni. Ebben a szövegben megmutatjuk, hogy oldjuk meg ezt a példát lépésről lépésre.

A "Beállítások" menüben kattintsunk a "Beállítások kiválasztása" gombra, és válasszuk ki a 3. számú beállítást – "Szabvány – EN 1997 – DA1".

Number	Name	Valid for		
1	Standard - safety factors	All	~	
2	Standard - limit states	All		
	Standard - EN 1997 - DA1	All		
4	Standard - EN 1997 - DA2	All		
5	Standard - EN 1997 - DA3	All		
7	Standard - no reduction of parameters	All		
8	Czech republic - old standards CSN (73 1001, 73 1002, 73 003	All		
9	Czech republic - EN 1997, preliminary standard	All		
10	Czech republic - EN 1997, preliminary standard, gama water =	All		
12	Slovakia - EN 1997	All		
15	Poland - safety factors	All		
16	Germany - EN 1997	All		
17	Austria - EN 1997	All		
18	Hungary - EN 1997	All		
21	Greece - EN 1997, gama water=1.0	All		
23	Slovenia - EN 1997, gama water=1.0	All		
24	Italy - EN 1997 , DA1	All		
27	United Kingdom - EN 1997	All		U UK

"Beállítások listája" párbeszédablak

A "Geometria" menüben válasszuk ki a fal alakját, és adjuk meg a méreteit.

"Geometria" menü

Az "Anyag" menüben adjuk meg a fal anyagát.

Unit weight of wall :	γ = 2	5,00 [kN/m ³]	
Concrete		Longitudinal reinforcem	ent .
<u>Catalog</u> C 20/25 f _{ck} = 20,00 MPa f _{ct} = 2,20 MPa	O <u>w</u> n	C <u>a</u> talog B500 f _{yk} = 500,00 MPa	Own

"Anyag" menü –Szerkezet anyagjellemzőinek megadása

Ezután adjuk meg a talajparamétereket a "Hozzáadás" gomb megnyomásával a "Talajok" menüben. A fal törzset rendszerint nyugalmi földnyomásra méretezzük. A nyugalmi földnyomás számításához válasszuk ki a "kohéziómentes" lehetőséget.

	Edit soil parameter	rs	×
Identification Name : S-F - Sand w S-F - Sand wit	ith trace of fines, medium dense soil h trace of fines (S-F), medium dense		Color
- Basic data Unit weight : Stress-state :	γ = 17,50 [kN/m ³]	17,5	GEO Pattern
Angle of internal friction : Cohesion of soil :		28 - 31 0	▼ Sand
Angle of friction strucsoil : — Pressure at rest Soil :	δ = 18,50 [°]	? -	Classification Classify
— Uplift pressure Calc. mode of uplift :	standard	9 -	Clear
Saturated unit weight :	γ _{sat} = 18,00 [kN/m ³]		OK + ♥ ✓ OK X Cancel

"Új talaj megadása" párbeszédablak

Megjegyzés: Az aktív földnyomás nagysága függ a szerkezet és a talaj közti súrlódási szögtől. A súrlódási szög függ a szerkezet anyagától, és a talaj belső súrlódási szögétől - általában ez az érték a $\delta \approx \left(\frac{1}{3} \div \frac{2}{3}\right) \cdot \varphi_{ef}$ tartományban van.

Talajjellemzők táblázata

Talaj (Talajosztályozás)	Profil [<i>m</i>]	Térfogatsúly $\gamma \left[kN/m^{3} ight]$	Belső súrlódási szög $arphi_{e\!f}$ [°]	Talaj kohéziója c _{ef} [kPa]	A szerkezet és talaj közti súrlódási szög $\delta = [°]$
S-F – Homok kis mennyiségű finom résszel, közepes tömörségű	0,0-4,0	17,5	28,0	0,0	18,5
MS – Merev konzisztenciájú homokos iszap, $S_r < 0,8$	4,0-től	18,0	26,5	30,0	17,5

A "Terep" menüben válasszuk ki a vízszintes alakot.

"Terep" menü

A talajvízszint 2,0 m mélységben van. A"Víz" menüben válasszuk ki a szerkezethez és a paraméterekhez közel álló típust.

Chart of parameters	Ground water table (GWT) parameters	7 <u>5</u>	
h	GWT behind construction :	h1 =	2,00 [m]
	GWT in front of construction :	h2 =	[m]
	Uplift at footing bottom due to diff. GWTs :	not c	onsidered

"Víz" menü

A következő menüben adjuk meg a "Megoszló terhet". Itt válasszuk ki az állandó, sávos típust, mint a terepre ható önsúly jellegű terhet.

Edit surcharge					
Name : Surcharge No	. 1				
- Surcharge properties	·				
Type :	Strip				
Type of action :	permanent 💌				
Location :	on terrain				
Origin : x =	0,00 [m]				
Length : I =	5,00 [m]				
– Surcharge magnitude		_			
Magnitude : q =	10,00 [kN/m ²]				
C	K + ▲ OK + ▼ OK X Canc	el			

"Új teher" párbeszédablak

Az "EF ellenállás" menüben kiválasztjuk a támfal előtti terep alakját, és megadjuk az ellenállási paramétereket az elülső felületen.

~		
 Parameters of re 	esistance on front face	
Resistance type :	not considered	•
Soil :	MS – Sandy silt, stiff consistency, Sr < 0,8	•
Thickness :	h =1,00 [m]	

"EF ellenállás" menü

Megjegyzés: Abban az esetben, ha nem vesszük figyelembe az elülső felület ellenállását, konzervatív eredményt kapunk. Az EF ellenállás függ a talaj minőségétől, és a szerkezet megengedhető elmozdulásától. Figyelembe vehetjük az eredeti, vagy a jobban betömörödött talaj nyugalmi földnyomását. Amennyiben a szerkezet elmozdulása megengedett, figyelembe vehetünk passzív földnyomást is. (további információért lásd. Súgó – F1)

Eztán a "Fázis beállításai" menüben válasszuk ki a tervezési állapot típusát. Ebben az esetben ez állandó lesz. Valamint válasszuk ki a falra ható nyomást. A mi esetünkben ez aktív földnyomás lesz, mivel megengedjük a fal elmozdulását.

Design situation :	permanent	-
Pressure acting on the wall		
The wall can deflect (active pressure)		
C The wall cannot deflect (pressure at rest)		
C Active pressure acts on the wall and stem		

"Fázis beállításai" menü

Megjegyzés: A törzset mindig nyugalmi földnyomásra méretezzük, miszerint a fal nem mozdulhat el. A fal és törzs kiértékelésének lehetőségét aktív földnyomásra csak kivételes esetekben vehetjük figyelembe - mint egy földrengés hatása (szeizmikus tervezési állapotban a parciális tényező egyenlő 1,0-val).

Most nyissuk meg az "Ellenőrzés" menüt, ahol kiszámíthatjuk a szögtámfal eredményeit kiborulásra és elcsúszásra.

"Ellenőrzés" menü

Megjegyzés: A "Részletesen" gomb a képernyő jobb oldalán megnyit egy párbeszédablakot a számítás részleteiről.

A számítás eredményei:

Elcsúszásra a szerkezet nem felelt meg. A szerkezet kihasználtsága:

- Kiborulás: 52,7 % $M_{res} = 208,17 > M_{ovr} = 109,75$ [kNm/m] MEGFELEL
- Elcsúszás: 124,5 % $H_{res} = 65,74 < H_{act} = 81,83$ [kN/m] NEM OK

Több lehetőségünk is van a tervezés javítására. Például:

- Használhatunk jobb talajt a fal mögött
- Kihorgonyozhatjuk az alaptestet
- Növelhetjük a súrlódási szöget a talp megdöntésével
- Kihorgonyozhatjuk a falat

Ezek a változtatások gazdaságtalanok és bonyolultak lennének, így a legegyszerűbb megoldást választjuk. A leghatékonyabb megoldás a támfal alakjának megváltoztatása, fog beépítése.

Terv megváltoztatása: Fal geometriájának változtatása

Térjünk vissza a "Geometria" menübe és változtassuk meg a támfal alakját. Az elcsúszási ellenállás megnövelése céljából fogat alkalmazunk.

"Geometria" menü (Szögtámfal méreteinek változtatása)

Megjegyzés: Gyakran a fogat úgy számítjuk, mint egy ferde alapsíkot. Amennyiben a fog hatását elülső felületi ellenállásként vesszük figyelembe, a program vízszintes alapsíkkal számol, de az EF ellenálláshoz az alaptest és a fog együttes magasságát veszi figyelembe.(További információ a Súgóban – F1)

Ezután ellenőrizzük az új szerkezetet kiborulásra és elcsúszásra.

"Ellenőrzés" menü

Most a támfal kiborulásra és az elcsúszásra is megfelelő. (Kihasználtság: 49.4 % és 64.9%)

Eztán a "Teherbírás" menüben, elvégezhetjük a számítást, hogy az altalaj tervezési teherbírása (175kPa) megfelel-e.

"Teherbírás" menü

Megjegyzés: Ebben az esetben úgy adjuk meg az altalaj teherbírását, mint bemenő értéket, melyet geológiai felmérésből, vagy szabványból kaphatunk. Ezek általában közelítő értékek, így pontosabb eredményt kaphatunk az altalaj "Síkalap" programmal való vizsgálatakor, amely egyéb hatásokat is figyelembe vesz, mint például a teher ferdeségét, alapozás mélységét, stb.

Ezután a "Méretezés" menüben válasszuk ki a törzs ellenőrzését. Tervezzük meg a törzs vasalását – méterenként 10 db. Ø 12 mm betonacél megfelelő teherbírású, és megfelel az összes tervezési alapelvnek.

"Méretezés" menü

Ezután nyissuk meg a "Stabilitás" menüt a támfal globális állékonyságának számításához. A mi esetünkben a "Bishop" módszert fogjuk használni, amely jó közelítő eredményt ad. Futtassuk le a számítást körcsúszólap optimalizációjával, majd hagyjuk el a programot az "OK" gomb megnyomásával. Az eredmények és ábrák megjelennek a "Szögtámfal" program számítási eredményei között.

"Rézsűállékonyság" program – "Számítás" menü

Következtetés/Számítási eredmények – teherbírás:

_	Kiborulás: 49,4 %	$M_{res} = 218,35 > M_{ovr} = 107,9$	4 [kNm/m]	MEGFELEL
_	Elcsúszás: 64,9 %	$H_{res} = 99,26 > H_{act} = 64,38$	[kN/m]	MEGFELEL
_	Teherbírás: 80,2 %	$R_d = 175 > \sigma = 140,31$	[kPa]	MEGFELEL
_	Törzs ellenőrzése: 80,4 %	$M_{Rd} = 169,92 > M_{Ed} = 145,22$	5 [kN·m]	MEGFELEL
_	Globális állékonyság: 39,2	% Módszer – Bishop (optimaliz	záció)	MEGFELEL

A szögtámfal MEGFELEL.