

Súlytámfal ellenőrzése

Program: Súlytámfal

Fájl: Demo_manual_03.gtz

Ebben a fejezetben egy meglévő súlytámfal számítását mutatjuk be állandó és rendkívüli tervezési esetekben. Emellett bemutatjuk a fázisok használatát.

Feladat

Számítsunk ki egy meglévő súlytámfalat állékonyságra, kiborulásra és elcsúszásra 1997-1 (EC 7-1, DA2) szabvány használatával.

A támfalra ható forgalmi teher nagysága 10 kPa. Ellenőrizzük, hogy lehetséges-e korlát építése a támfal tetejére. Egy közlekedési balesetből származó rendkívüli terhet 50 kN/m intenzitással vehetünk figyelembe vízszintesen, a fal felső síkja felett 1,0 m-rel. A támfal alakját és méreteit az alábbi ábra mutatja. A szerkezet mögötti terep lejtése $\beta = 10^{\circ}$, az altalaj iszapos homok. A fal és a talaj közti súrlódási szög $\delta = 18^{\circ}$.

A teherbírás megítélése és a fal méretezése nem része a feladatnak. A számításban hatékony talajjellemzőket használunk.

Súlytámfal ábrája – feladat

Megoldás:

Ennek a feladatnak számításához használjuk a GEO5 "Súlytámfal" programot. Ebben a leírásban megmutatjuk ennek a példának a számítását lépésről lépésre, két kivitelezési fázisban.

- 1. fázis meglévő támfal vizsgálata közúti teherre.
- 2. fázis a fal tetején lévő korlátnak ütköző jármű esetének vizsgálata.

1. fázis

A "Beállítások" menüben kattintsunk a "Beállítás kiválasztása" gombra és jelöljük ki a 4. számú – "Szabvány – EN 1997 – DA2".

Number	Name	Valid for		
1	Standard - safety factors	All	*	
2	Standard - limit states	All		
3	Standard - EN 1997 - DA1	All		
4	Standard - EN 1997 - DA2	All		
5	Standard - EN 1997 - DA3	All		
7	Standard - no reduction of parameters	All	=	
8	Czech republic - old standards CSN (73 1001, 73 1002, 73 0037)	All		
9	Czech republic - EN 1997, preliminary standard	All		
10	Czech republic - EN 1997, preliminary standard, gama water=1.0	All		
12	Slovakia - EN 1997	All		
15	Poland - safety factors	All		
16	Germany - EN 1997	All		
17	Austria - EN 1997	All		
10	Hundary - EN 1997			UK UK

"Beállítások listája" párbeszédablak

Ezután a "Geometria" menüben válasszuk ki a támfal alakját, és adjuk meg a paramétereit.

"Geometria" menü

A következő lépésben adjuk meg a támfal anyagát és a geológiai profilt. A fal térfogatsúlya legyen $\gamma = 24 \ kN/m^3$. A támfal C 12/15 betonból épült B500-as betonacéllal. Ezután adjuk meg a talajparamétereket és rendeljük hozzá a profilhoz.

Talajparaméterek táblázata

Talaj (Talajosztályozás)	Térfogatsúly $\gamma \left[kN/m^{3} ight]$	Belső súrlódási szög $arphi_{e\!f}$ [°]	Talaj kohéziója c _{ef} [kPa]	Szerkezet és talaj közti súrlódási szög $\delta = [\circ]$
MS – Homokos iszap, Merev konzisztencia	18,0	26,5	12,0	18,0

"Új talaj hozzáadása" párbeszédablak

Megjegyzés: Az aktív földnyomás nagysága függ a talaj és szerkezet közti súrlódási szögtől, ami $\delta \approx \left(\frac{1}{3} \div \frac{2}{3}\right) \cdot \varphi_{ef}$ között van. A földnyomás számításkor a talaj és szerkezet közti súrlódás figyelembe vehető értéke $\frac{2}{3} \cdot \varphi_{ef}$ ($d = 18^{\circ}$). (További információ a Súgóban – F1).

A "Terep" menüben válasszuk ki a támfal mögötti terep alakját. Adjuk meg a paramétereket a töltés hosszával, és a terep lejtésével az alábbiakban mutatott módon.

"Terep" menü

A következő menüben adjuk meg a "Megoszló terhet". Adjuk meg a közúti terhet, mint sávos terhet, és annak pozícióját a felszínen, az erőhatás típusa legyen "Esetleges".

			New s	urcharg	je			×
Name : Surcharge No. 1 - Road traffic								
- Surch	arge prop	erties	,					
Type :			Strip		•			
Type of	action :	[variable		•			
Location	:		on terrain		•			
Origin :		x =	3,00	[m]				
Length :	1	=	10,00	[m]				
						Jan 1		
- Surch	arge mag	nitude	2					
Magnitu	de :	q =	10,00	[kN/m ²]				
						Add	X Cano	el

"Megoszló teher módosítása" párbeszédablak

Kihagyjuk az "EF ellenállás" menüt, a terep vízszintes a támfal előtt.

Megjegyzés: Ebben az esetben nem vesszük figyelembe az elülső felület ellenállását, így közelítő eredményt kapunk. Az EF ellenállás függ a talaj minőségétől, és hogy megengedjük-e a szerkezet elmozdulását. Figyelembe vehetjük az eredeti, vagy a tömörödött talaj nyugalmi földnyomását. Passzív földnyomás csak abban az esetben vehető figyelembe, ha megengedett a szerkezet elmozdulása. (További információ a Súgóban – F1).

A "Fázis beállítások" menüben válasszuk ki a tervezési állapot típusát. Az első kivitelezési állapotban tételezzünk fel "állandó" tervezési állapotot.

Design situation :	permanent	-
	Character and the second	50 - 50

"Fázis beállítások" menü

Most nyissuk meg az "Ellenőrzés" menüt, ahol megvizsgálhatjuk a súlytámfalat kiborulásra, illetve elcsúszásra.

"1. fázis - Ellenőrzés" menü

Megjegyzés: A képernyő jobb oldalán lévő "Részletek" gomb megnyit egy párbeszédablakot a számítások részletes eredményeivel.

Verification						×		
Forces acting on construction								~
Name	F _{hor} [kN/m]	App.Pt. z [m]	F _{vert} [kN/m]	App.Pt. x [m]	Coeff. overtur.	Coeff. sliding	Coeff. stress	
Weight - wall	0,00	-2,80	247,20	1,67	1,000	1,000	1,350	1
Active pressure	84,17	-1,73	27,35	2,50	1,350	1,350	1,000	
Surcharge No. 1 - Road traffic	16,36	-2,72	6,05	2,50	1,500	1,500	1,500	
Surcharge No. 1 - Road traffic 16,36 -2,72 6,05 2,50 1,500 1,500 1,500 Verification of complete wall Check for overturning stability Resisting moment Mres 376,91 RNm/m Overturning moment Mres = 376,91 kNm/m Wall for overturning is SATISFACTORY Check for slip Resisting horizontal force Hres = 152,53 kN/m Active horizontal force Hact = 138,17 kN/m Wall for slip is SATISFACTORY Overall check - WALL is SATISFACTORY Maximum stress in footing bottom : 162,84 kPa 162,84 kPa								

"Ellenőrzés (részletesen)" párbeszédablak

Megjegyzés: Az EN-1997 szerinti számításban a program megkülönböztet kedvezőtlenül és kedvezően ható terheket. Az egyes erőket a program megszorozza a megfelelő parciális tényezővel, és ezt a szorzatot látjuk a kimutatásban.

Ezután nyissuk meg a "Stabilitás" ablakot és ellenőrizzük a támfal globális stabilitását. Esetünkben "Bishop" módszert fogjuk használni. Futtassunk le egy számítást **körcsúszólap optimalizációjára** és fogadjunk el mindent az "OK" gomb megnyomásával. Az eredményeket és ábrákat megtekinthetjük a "Súlytámfal" programban.

"Rézsűállékonyság" program – 1. fázis

Számítási eredmények: 1. fázis

Amikor a teherbírást számoljuk, a kiborulás, és az alapsíkon való elcsúszás vizsgálatának eredményeit keressük. Emellett tudni szeretnénk, hogy a szerkezet globális állékonysága biztosítotte. Esetünkben a támfal kihasználtságai a következőképp alakulnak:

_	Kiborulás: 70,0 %	$M_{res} = 376,91 > M_{ovr} = 263,73$ [kNm/m]	MEGFELEL
_	Elcsúszás: 90,6 %	$H_{res} = 152,53 > H_{act} = 138,17 \text{ [kN/m]}$	MEGFELEL
_	Globális állékonyság:	87,5 % Módszer – Bishop (optimalizáció)	MEGFELEL

2. fázis

Adjunk meg egy új fázist a bal felső sarokban található eszközsor segítségével.

"Kivitelezési fázis" eszközsor

Ebben a fázisban a korlátnak ütköző autó terhét adjuk meg, használva az "Alkalmazott erők" ablakot. Rendkívüli terhet hsználunk.

"Alkalmazott erők" menü – új teher hozzáadása

New force				— ×				
Parameters of the applied force								
Name:		Force No. 1 - Ca	r crash					
Type of action :		accidental	-	+X				
Point of action :	x =	-0,35	[m]	[0,0] F				
Point of action :	z =	1,00	[m]	₩ Fx +M				
Force magnitude :	F _x =	-50,00	[kN/m]	+z↓				
Force magnitude :	F _z =	0,00	[kN/m]					
Moment magnitude :	M =	0,00	[kNm/m]					
				<u>A</u> dd <u> <u>C</u>ancel <u>A</u>dd </u>				

"Új erő" párbeszédablak –2. fázis (rendkívüli erőhatás)

Ezután a "Fázis beállítások" menüben változtassuk a tervezési állapotot "rendkívülire". A program a rendkívüli tervezési állapot parciális tényezőit fogja használni.

Design situation :	accidental	

"Fázis beállítások" menü

Az 1. fázishoz beállított adatok nem változnak, így a többi menüt nem kell újra beállítani. Válasszuk ki az "Ellenőrzés" menüt újra, és ellenőrizzük le újra a szerkezetet kiborulásra és elcsúszásra.

"Ellenőrzés - 2. fázis" menü

Számítási eredmények: 2. fázis

Az eredményekből láthatjuk, hogy a meglévő támfal nem bírja ki a jármű korlátnak ütközését. Ebben az esetben a támfal kihasználtságai a következők:

_	Kiborulás: 116,3 %	$M_{res} = 488,62 < M_{ovr} = 568,13 \text{ [kNm/m]}$	NEM OK.
_	Elcsúszás: 102,9 %	$H_{res} = 138,39 < H_{act} = 142,35 \text{ [kN/m]}$	NEM OK.

Következtetés

A meglévő súlytámfal számításai azt mutatják, hogy a fal csak az 1. fázisban megfelelő, amikor csak a közúti teher hat rá. A 2. fázisban, ahol a jármű korlátnak való ütközéséből származó rendkívüli teherre vizsgáltuk, a támfal nem bizonyult megfelelőnek.

Az elcsúszási és kiborulási teherbírás növelésére lehetőségünk van talajhorgonyok alkalmazására. Egyébiránt a korlát áthelyezhető az út peremére, és ebben az esetben a támfal nem kap többletterhelést az autó ütközéséből.