Verification of a multi-anchored wall

Program: Sheet ing check
File: Demo_manual_07.gp2

In this chapter, we will show you how to design and verify a multi-anchored wall. This sheeting was realized in the construction of the Prosek station, of the metro C line in Prague.

You can find more information about this project in the following documents:

  – Leaflet
  – Research paper comparing the calculated results with the monitored results

Introduction

The basic assumption the method of dependent pressures makes is that the soil or rock in the vicinity of the wall behaves as an ideally elastic-plastic Winkler material. This material is determined not only by the modulus of subsoil reaction \( k_h \), which characterizes the deformation in the elastic region, but also by additional limiting deformations. When these deformations are exceeded, the material behaves ideally plastic.

The following assumptions are made:

  – The pressure acting on a wall may attain an arbitrary value between the values of the active and passive pressure – but it cannot fall outside of these boundaries.
  
  – The pressure at rest acts on an undeformed structure (\( w = 0 \)).
Assignment

Verify a multi-anchored wall made from steel soldier piles I 400 with a length of $l = 21 \text{ m}$ . The depth of the ditch is $h = 15 \text{ m}$ . The terrain is horizontal. The surcharge acts at the surface and is permanent with the size of $q = 25 \text{ kN/m}^2$ . The GWT behind the construction is $10 \text{ m}$ below the surface. The spacing between the centres of the steel profiles is $a = 2 \text{ m}$ .

Scheme of the wall anchored in multiple layers – Construction stage 1

<table>
<thead>
<tr>
<th>Soil</th>
<th>Thickness of layer of soil $[m]$</th>
<th>$\gamma \left[ \text{kN/m}^3 \right]$</th>
<th>$\varphi_{ef} \left[ ^\circ \right]$</th>
<th>$c_{ef} \left[ \text{kPa} \right]$</th>
<th>$\delta = \left[ ^\circ \right]$</th>
<th>$\nu \left[-\right]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F6</td>
<td>4,5</td>
<td>19,5</td>
<td>20</td>
<td>16</td>
<td>7,5</td>
<td>0,4</td>
</tr>
<tr>
<td>F4</td>
<td>1</td>
<td>19,5</td>
<td>22</td>
<td>14</td>
<td>7,5</td>
<td>0,35</td>
</tr>
<tr>
<td>R3</td>
<td>10,6</td>
<td>22</td>
<td>40</td>
<td>100</td>
<td>15</td>
<td>0,25</td>
</tr>
<tr>
<td>R5 (1)</td>
<td>4</td>
<td>19</td>
<td>24</td>
<td>20</td>
<td>7,5</td>
<td>0,3</td>
</tr>
<tr>
<td>R5 (2)</td>
<td>1</td>
<td>21</td>
<td>30</td>
<td>35</td>
<td>14</td>
<td>0,25</td>
</tr>
<tr>
<td>R5 (3)</td>
<td>3,9</td>
<td>21</td>
<td>40</td>
<td>100</td>
<td>15</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Table with the soil and rock parameters
The unit weight of the soil $\gamma$ will be the same as the unit weight of the saturated soil $\gamma_{sat}$. Stress state is considered to be effective, pressure at rest is calculated for cohesive soils and the calculation of uplift is selected as standard for each soil.

All anchors have a diameter $d = 32\,\text{mm}$ and modulus of elasticity $E = 210\,\text{GPa}$. The anchor spacing is $b = 4\,\text{m}$.

<table>
<thead>
<tr>
<th>Anchor no.</th>
<th>Depth $z$ [m]</th>
<th>Free length $l_k$ [m]</th>
<th>Root $l$ [m]</th>
<th>Slope $\alpha$ [$^\circ$]</th>
<th>Anchor force $F$ [kN]</th>
<th>Stage construction for a new anchor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,5</td>
<td>13</td>
<td>6</td>
<td>15</td>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5,5</td>
<td>10</td>
<td>6</td>
<td>17,5</td>
<td>350</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8,5</td>
<td>7</td>
<td>6</td>
<td>20</td>
<td>400</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>6</td>
<td>4</td>
<td>22,5</td>
<td>500</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>550</td>
<td>10</td>
</tr>
</tbody>
</table>

*Table with positions and dimensions of the anchors*

The $Kh$ Modulus is linearly growing with the increasing depth up to the depth of 5 m. Its value reaches $10\,\text{MN/m}^3$ there. From this depth onwards, its value is constant.

**Solution**

To solve this task, use the GEO5 “Sheeting Check” program. The analysis will be performed without a reduction of the input data, so the real behavior of the structure will be observed.

In the frame “Settings” select option no. 2 “Standard – limit states”. We will consider the minimum dimensioning pressure $k = 0,2$. Then, change the number of FEs to discretize the wall to 30 (see figure).
Frame “Settings”

Note: For more complex tasks (e.g. multiple anchored walls), the authors of the program recommend computing the limit pressures without reducing the soil input parameters - without reducing the size of the appropriate partial factors for earth pressures. The method of dependent pressures without the reduction of the soil input parameters better shows the real behavior of the structure (the user receives the real values of displacement) and this calculation is similar to the numerical solution by FEM (see program help – F1).

Then open the “Edit current settings” dialog window using “Edit” button and select “input” as the method for modulus of subsoil reaction. Also uncheck the possibility “Consider reduction of the modulus reaction for braced sheeting” (more info in program help – press F1).
In the frame “Profile”, “Soils” and “Assign” define the geological profile of the task according to the table and information in the assignment above. First, in the frame “Profile”, add 4 new interfaces at the depths shown in the figure below.
Then, in the frame “Soils”, add 6 new soils with the parameters described in the table above. In the frame “Assign”, assign them to the profile.

Frame “Profile” – soils assigned to profile

Lastly, define the GWT in the frame “Water”. In the first construction stage, the values in front and behind the construction will be 10 m.

Frame “Water” – define GWT parameters
In the frame “Modulus Kh” input the value of Kh by distribution – linearly growing to a depth of 5 m and then constant with the value of 10 MN/m³. The modulus is defined to the length of the structure. If the length is changed, the modulus is automatically corrected. In this case, it will continue constantly to the overall length of the structure (21 m). If the value of Kh isn’t known, we could use the known parameters of the soils to calculate it (for example using the Schmitt method – based on \( E_{oed} \) or \( E_{def} \)). More information about the modulus Kh can be found in the program help – F1.

Then, in the frame “Geometry” define the parameters of the braced sheeting – the type of the wall and the section length \( l = 21 \) m. Click on the button “Add” and from the I-sections database, select the \( I \) (IPN) 400 section. The spacing between the centres of the steel profiles will be defined as \( a = 2 \) m. We will also change the coefficient of pressure reduction below the ditch bottom to 0.5.

**Note:** The coefficient of reduction of earth pressures below the excavation reduces the pressures in the soil. For normal retaining walls this is equal to 1.0. For braced sheeting it is less than or equal to 1. It depends on the size and the spacing of the braces (more info in the program help – F1).
In the frame “Material”, select the appropriate class of steel for the structure from the catalog. In this case, select the EN 10210-1: S 355 type.
Now, we will describe building the wall stage by stage. It is necessary to model the task in stages, to reflect how it will be constructed in reality. In each stage it is necessary to look at the values of internal forces and displacement.

If the braced sheeting is not stable in any stage of the construction or if the analysed deformation is too large, then we need to change the structure – for example make the wall embedment longer, make the ditch shallower, increase the anchor forces etc.

In the first stage of the construction we will define the permanent surface surcharge in the frame “Surcharge” as \( q = 25 \text{ kN/m}^2 \).
In construction stage 1, the ditch is made to a depth of \( h = 3 \text{ m} \). The GWT behind and in front of the structure is at a depth of \( h_1 = h_2 = 10 \text{ m} \) beneath the surface (ground level). Perform the analysis and then add a new stage. In stage 2, add a new anchor in the frame “Anchors” that will be placed at a depth of \( z = 2.5 \text{ m} \).

Frame “Anchors” – add a new anchor (construction stage 2)

Frame “Anchors” – Construction stage 2
Perform the analysis and add another construction stage. In the 3rd stage of the construction, go to the frame “Excavation” and change the depth of the ditch to $h = 6.5 \, \text{m}$. There will be no anchors added in this stage. Again, perform the analysis and add a 4th construction stage. In the 4th stage, add a new anchor placed at a depth of $z = 5.5 \, \text{m}$. The GWT has stayed the same so far.

Frame “Anchors” – add a new anchor (construction stage 4)
Add a 5th construction stage. In the 5th construction stage, change the depth of the ditch to $h = 9 \, \text{m}$. Then, add another construction stage. In the 6th stage, add a new anchor at a depth of $z = 8.5 \, \text{m}$. The depth of the GWT is unchanged.
Add another construction stage. In the 7th construction stage, change the depth of the excavation to $h = 11.5 \text{ m}$. In the frame “Water”, also change the GWT in front of the wall to $h_2 = 12 \text{ m}$. The GWT behind the structure is unchanged. Add the 8th construction stage. In the 8th construction stage, add a new anchor at a depth of $z = 11 \text{ m}$.
Add another construction stage. In the 9th construction stage, the ditch is excavated to a depth of $h = 13.5 \text{ m}$. Change the GWT in front of the structure to $h_2 = 15.5 \text{ m}$. Then, add another construction stage. In the 10th stage, add a new anchor at a depth of $z = 13 \text{ m}$. 

Frame “Anchors” – add a new anchor (construction stage 10)
In the 11th and last construction stage, change the depth of the excavation to $h = 15\, \text{m}$. We will not add any new anchors. The GWT has not changed since the 9th stage of the construction (in front of the wall it’s at a depth of $h_2 = 15.5\, \text{m}$, behind the wall it’s at a depth of $h_1 = 10\, \text{m}$).
Note: Due to a deformation of the structure the forces in the anchors are changing. These changes depend on the stiffness of the anchors and the deformation of the anchor’s head. The force can decrease (due to a loss of pre-stress force) or increase. The forces can be pre-stressed in any stage of the construction to the required force.

Results of the analysis

In the pictures below the results of the analysis are shown (analysis of internal forces – bending moment and shear force, displacement of the structure and earth pressure) for the last 11th construction stage.

Frame “Analysis” – Construction stage 11 (modulus of subsoil reaction)
Frame “Analysis” – Construction stage 11 (Internal forces)

Frame “Analysis” – Construction stage 11 (Displacement of structure + earth pressures)
All the stages are analysed. That means that the structure of the braced sheeting is stable and functional in all construction stages. The size of the displacement must also be checked, as well as that the anchor force does not exceed the bearing capacity of the anchor (The user must check this manually as this is not automatically checked by the Sheet Check program). For the last 11th construction stage the results are as follows:

- Max. shear force:  \( Q_{\text{max}} = 86.40 \, \text{kN/m} \),
- Max. bending moment:  \( M_{\text{max}} = 41.03 \, \text{kN/m} \),
- Max. earth pressure:  \( \sigma_x = 97.04 \, \text{kPa} \),
- Max. displacement:  \( u_{\text{max}} = 15.9 \, \text{mm} \).

**Verification of a cross-section of the structure**

In the last, 11th construction stage, open up the frame “Dimensioning”. Here you can see the maximum and minimum values of the variables (envelopes of internal forces).

- Maximum shear force (minimum):  \( Q_{\text{max}, \text{min}} = 86.40 \, \text{kN/m} \),
- Maximum bending moment (minimum):  \( M_{\text{max}, \text{min}} = 50.73 \, \text{kN/m} \).

The internal forces are calculated per one meter (foot) of the construction. For an actual design of the soldier beams (steel I-section) we have to multiply these values by the spacing between the profiles \( a = 2 \, \text{m} \), to obtain the internal forces in the cross-section.

- Max. shear force for dimensioning:  \( Q_{\text{Ed, max}} = 86.4 \cdot 2.0 = 172.8 \, \text{kN} \),
- Max. bending moment for dimensioning:  \( M_{\text{Ed, max}} = 50.7 \cdot 2.0 = 101.4 \, \text{kNm} \).

The program performs the assessment of soldier beams (steel I-section) using the extreme values of internal forces according to EN 1993-1-1 (EC 3).

For the time being, we leave the reduction coefficient of bearing capacity at 1.0. In this case the results are as follows:

- Bearing capacity of the cross-section:  \( M_{\text{Rd}} = 516.61 \, \text{kNm} \geq M_{\text{Ed, max}} = 101.41 \, \text{kNm} \).
- Total utilization of the steel I-section:  \( 19.6 \% \)  I-section satisfies the analysis criteria.
In the calculation we kept the size of the limit earth pressures non-reduced, so the load is lower than it should be according to the EN 1997-1. However, the internal forces suit the real behavior of the structure. Changes in earth pressures lead to improvements in safety, but also distort the results of the analysis. That’s why, for the assessment of the steel section we introduced a custom value of the reduction coefficient of bearing capacity.

Note: The EN 1997-1 standard assumes the partial factor for a permanent load to be $\gamma_G = 1.35$, for a variable load it equals to $\gamma_Q = 1.5$. However, in this case, all of the surcharge and the load act as permanent, we therefore consider the partial factor $\gamma_G$ to be 1.35.

For a combination of permanent and variable loads, we have to determine the value of the design partial factor estimates, ranging from 1.35 to 1.5 of the ratios depending on the components of the load, which is prevalent.
Now, we will change the reduction coefficient of bearing capacity to 1,35. We multiply the internal forces acting on the cross-section of the soldier beam by this partial factor. In this case the internal forces are as follows:

- Max. shear force for dimensioning:
  \[ Q_{Ed,\text{max}} = (86,4 \cdot 2) \cdot 1,35 = 233,28 \text{ kN} \]
- Max. bending moment for dimensioning:
  \[ M_{Ed,\text{max}} = (50,7 \cdot 2) \cdot 1,35 = 136,90 \text{ kNm} \]

Frame “Dimensioning” – Construction stage 11 (New assessment of steel I-section I 400)

In this case (an assessment with the influence of the reduction coefficient of bearing capacity as 1,35) the results are:

- Bearing capacity of the cross-section: \( M_{c,Rd} = 516,61 \text{ kNm} \geq M_{Ed,\text{max}} = 136,9 \text{ kNm} \)
- Total utilization of the steel I-section: 26,5 % OK

- Shear verification: \( V_{c,Rd} = 1005,29 \text{ kNm} \geq Q_{Ed,\text{max}} = 233,28 \text{ kN} \)
- Total utilization of the steel I-section: 23,2 % OK
Analysis of the internal stability

Go to the frame “Internal stability” in the last construction stage and look at the maximum allowable force in each anchor.

Note: This is the way verification is done. At first we iterate the force in the anchor, resulting in an equilibrium of all forces acting on the earth wedge. This earth wedge is bordered by the construction, the terrain, the centre of the roots of the anchors and the theoretical heel of the structure (more info can be found in the program help – F1). If an anchor is not satisfactory the best way to resolve the issue is to make it longer or to decrease the pre-stressed force.

The calculation shows us the maximum force in the anchor (row no. 5) and the total utilization of the anchor:

– Internal stability: **51,72 %**  
  \[ F_{\text{max}} = 1248,21 \text{ kN} > F = 645,52 \text{ kN} \]  
  OK
Verification of the external (overall) stability

The last required analysis is the external stability. Clicking on the “External stability” frame automatically opens the “Slope stability” program, where we go to the “Analysis” frame. There, after clicking on the button “Analyze”, we compute the overall stability.

“Slope Stability” program – Bishop method with an optimization of circular slip surface

Conclusion, completion of the results:

The structure was successfully designed with a maximum deformation of 24,8 mm. This is satisfactory for this type of construction. Additionally, the limits of forces in the anchors were not exceeded.

- Bearing capacity: 26,5 % 516,61 kNm ≥ 136,9 kNm Satisfactory
- Internal stability: 51,72 % 1248,21 kN > 645,52 kN Satisfactory
- Overall stability: 59,4 % Method – Bishop (optimization) Satisfactory

The designed braced sheeting satisfies the evaluation criteria.