

Mikrocölöp alapozás ellenőrzése

Program:	Cölöpcsoport
Fájl:	Demo_manual_en_36.gsp

Ennek a mérnöki kézikönyvnek a célja, egy mikrocölöp alapozás ellenőrzésének bemutatása GEO 5 – Cölöpcsoport program használatával.

Feladat:

Számítsuk ki a toronydaru alatti mikrocölöp alapozást az *EN 1997 – DA2 alapján*. Az 1. ábrán láthatjuk az alapozás vázlatát. A mikrocölöpök koordinátái és dőlései az 1. táblázatban olvashatók. A mikrocölöpök (S355) acélból készültek, profiljuk TK 108 x 20. A mikrocölöpök teljes hossza 7,0 m, amit három részre osztunk. Az alsó, 3,0 m hosszú rész a 0,3 m átmérőjű injektált szakasz. A következő, 3,0 m hosszúságú, szakasz a mikrocölöp szabad hossza, az utolsó 1,0 m a cölöpfejjel való kapcsolat. A feladat talajkörnyezetét a 2. táblázatban olvashatjuk. Talajvizet nem veszünk figyelembe. A mikrocölöp hossza menti rugók számításához a "reakció nyírási modulusa $k_v = 45.00 MN/m^3$, ami a cölöp hossza mentén állandó, a "talpponti rugó $k_p = 5.00 MN/m^2$ merevségű. A mikrocölöp injektált szakaszához használt "átlagos határsúrlódást" a geológiai felmérésből kapjuk, értéke $q_{sav} = 280.00 kPa$.

1. ábra: Mikrocölöp alapozás vázlata

Mikrocölön sz	x	Ŷ	Dőlés
Wilki Ocorop 52.	[<i>m</i>]	[m]	[°]
1	-0.77	-1.57	0.00
2	0.77	-1.57	0.00
3	-1.57	-0.77	0.00
4	0.00	-0.92	0.00
5	1.57	-0.77	0.00
6	-0.92	0.00	0.00
7	0.92	0.00	0.00
8	-1.57	0.77	0.00
9	0.00	0.92	0.00
10	1.57	0.77	0.00
11	-0.77	1.57	0.00
12	0.77	1.57	0.00
13	-1.57	-1.57	15.00
14	1.57	-1.57	15.00
15	1.57	1.57	15.00
16	-1.57	1.57	15.00

1. táblázat: Mikrocölöpök koordinátái és dőlései

Talaj	Mélység [m]	γ [kN/m³]	φ _{ef} [°]	с _{еf} [kPa]	v [-]	E _{def} [MPa]
Talaj 1 (CL, CI)	0.00 - 1.90	21.00	19.00	30.00	0.40	10.00
Talaj 2 (ML, MI)	1.90 - 3.10	20.00	21.00	12.00	0.40	4.00
Talaj 3 (G-F)	3.10 - 4.90	19.00	35.50	0.00	0.25	95.00
Talaj 4 (GP)	4.90 – 6.50	20.00	38.50	0.00	0.20	210.00
Talaj 5 (CH, CV, CE)	> 6.50	20.50	15.00	5.00	0.42	3.00

2. táblázat: Talajjellemzők – hatékony karakterisztikus értékek

A cölöpfej elfordulás- és süllyedésszámításához alkalmazott üzemi terhet a 3. táblázatban találhatjuk. A tervezési terheket a 4. táblázat tartalmazza. A terhek a fejtömb felső síkjának középvonalában hatnak. A 4.0 m x 4.0 m x 1.2 m méretű cölöpfej önsúlyából adódó mértékadó terhet automatikusan számítjuk.

Teher	N [kN]	М _х [kNm]	М _у [kNm]	H _x [kN]	Н _у [kN]	
Érték	609.00	2111.00	2111.00	47.00	47.00	

3. táblázat: Üzemi teher

Teher	N	M _x	М _у	H _x	Н _у
	[kN]	[kNm]	[kNm]	[kN]	[kN]
Érték	822.00	2850.00	2850.00	63.00	63.00

4. táblázat: Tervezési teher

Megoldás:

A feladat megoldásához a GEO5 – Cölöpcsoport programot használjuk. Megvizsgáljuk a teher hatását a csoport összes mikrocölöpére, és ellenőrizzük a legnagyobb igénybevételnek kitett cölöpöt. A következő leírásban bemutatjuk a feladat megoldását lépésről lépésre.

A mikrocölöp csoportot Rugós módszerrel számítjuk, amely minden egyes cölöpöt rugalmasan ágyazott gerendaként modellez. Minden cölöpöt tíz részre osztunk, és minden szakaszra vízszintes és függőleges rugókat definiálunk. A fejtömböt (alaplemezt) végtelenül merevnek feltételezzük. A megoldást alakváltozási állapotban Végeselem módszerrel keressük.

A "Beállítások" menüben kattintsunk a "Beállítások listája" gombra, és válasszuk ki a "Szabvány– EN 1997 – DA2" számítási beállítást.

🔟 Settings list	t			×
Number	Name	Valid for	\square	
1	Standard - safety factors	All	^	
2	Standard - limit states	All		
3	Standard - EN 1997 - DA1	All		
4	Standard - EN 1997 - DA2	All		
5	Standard - EN 1997 - DA3	All	Ī	
7	Standard - no reduction of parameters	All		
8	Czech republic - old standards CSN (73 1001, 73 1002, 73 0037)	All		
10	Slovakia - EN 1997	All		
20	Slovenia - EN 1997	All		
28	Australia	All		
30	India - Standard	All		
31	USA - Safety factor	All		
43	China - National standards (GB)	All		
44	China - Building standards (JGJ)	All		
56	Denmark DS - EN 1997 - CC3, LC3	All		
58	Netherland - EN 1997 RC1	All		🗹 ОК
59	Netherland - EN 1997 RC2	All		
60	Netherland - EN 1997 RC3	۵۱	\mathbf{v}	X Cancel

"Beállítások listája" párbeszédablak

A következő lépésben változtassuk a számítás típusát a "Rugós módszer – mikrocölöp" lehetőségre. A mikrocölöp és fejtömb kapcsolatát "befogottnak" tekintjük. Az utolsó lépésben állítsuk be az "ágyazási tényezőt", ami leírja a mikrocölöpök vízszintes irányban való viselkedését. Ebben az esetben "lineáris" ágyazási tényezőt feltételezünk (Bowles szerinti módszerrel számítva) (további információ a Súgóban – F1).

"Beállítások" menü

A "Szerkezet" menüben a cölöpfej felülnézetére kiválasztjuk az "általános alak" lehetőséget. A fejtömb átfedésre o = 0.38 m értéket állítunk be. Most a "hozzáad" gombbal megadhatjuk az összes mikrocölöpöt az 1. táblázatnak megfelelően.

	Frames _
	Project
	Settings
	Structure
	Geometry
4,57,-1,57) 0,77,-1,57) 0,77,-1,57)	Material
	Profile
(1,57,0,77) (1,57,0,77)	Assian
	In Water
	Vertical springs
4.01 ● a v a a m	find Analysis
	Oimensioning
E	Bearing cap.
*(,57,0,77) (a,00,0,92) *(,57,0,77)	
Q.57,1.57) Q.77,1.57) Q.77,1.57)	
4.01	
Crossection	
Cap overlap : o = 0,33 (m) TK 108 x 20	Outputs _
	B* Add picture
2 0.77 -1.57 0.00 in direction to origin	Structure : 1
3 1.57 0.77 0.00 in direction to origin → Remove → Rem	R ²¹ List of pictures
1 0.001 1/3/2 0.001 1/3/2 0.001 1/3/2 0.001 1/3/2 0.001 0.0	
8 6. 9.92 0.00 1.000 indication to origin	
Z 0,22 0,000 0,000 indection to origin v 9 10 10 10 10 10 10 10 10 10 10 10 10 10	B3 Copy view
	MB coby New

"Szerkezet" menü

Megjegyzés: A cölöpfej átfedése "o" a cölöpfej és a mikrocölöp legkülső éle közti távolság.

Ezután a "Hozzáad" gombra kattintunk, és megjelenik az "Új pont" párbeszédablak. Ebben az ablakban megadjuk a cölöpök x és y koordinátáit, valamint azok dőlését. A koordinátákat és dőléseket az 1. táblázatban találjuk. Új cölöpöt mindig a "hozzáad" gombbal adunk meg.

New point			×
Coord. :	x =	-1,57	[m]
	y =	1,57	[m]
Inclination :	α=	15,00	[°]
Type of inpu	t:	in direction to a	origin 💌
	۲	Add	Cancel

"Új pont" párbeszédablak (16. sz. mikrocölöp)

A mikrocölöp szelvényét a "Profilok katalógusából" választjuk ki. A "Profilosztály" fülön kiválasztjuk a "Folytonos cső kör keresztmetszet" lehetőséget, és a "Profilok" fülön a TK 108x20 szelvényt.

"Profilok katalógusa" párbeszédablak

A "Geometria" menüben megadjuk, hogy a "terepszinttől való mélység= 0.00 m", a "fejtömb vastagsága t = 1.20 m", a "mikrocölöpök hossza l = 6.00 m", az "injektált szakasz átmérője $d_r = 0.30 m$ ", az "injektált szakasz hossza $l_r = 3.00 m$ ", és végül megadhatjuk az "altalaj teherbírását", de ebben az esetben ezt nem vesszük figyelembe. Így az "altalaj teherbírása R = 0.00 k Pa".

"Geometria" menü

Megjegyzés: Az altalaj teherbírása nagyon fontos jellemző, és nagyon nagy befolyása van a számítás eredményére. Nagysága függ az altalaj típusától, a szerkezet céljától (új építésű, vagy megerősítés) és a tehertörténettől. Az $N_R = A \cdot R$ erőt az összes teheresetben kivonjuk a megadott teherből.

Az "Anyag" menüben a szerkezet anyagjellemzőit adjuk meg. A fejtömbre megadjuk a térfogatsúlyt ($\gamma = 23.00 \ kN/m^3$) és a betonminőséget C20/25 (a méretezéshez), a mikrocölöpök acélminőségére *EN 10210 – 1:* S355 értéket állítunk be. Az acél és beton anyagminőségek kiválaszthatók a "Katalógus" gombra kattintva.

"Anyag" menü

A "Teher" menüben megadjuk a terheket. Az üzemi terheket a 3. táblázatban, a tervezési (mértékadó) terheket 4. táblázatban találjuk.

"Teher" menü

A geológiai szelvényt a "Profil", "Talajok" és "Hozzárendel" menükben adjuk meg. A "Profil" menüben beállítjuk a szelvény talajrétegeinek mélységi tartományait. A "Talajok" menüben megadjuk az alkalmazott talajok jellemzőit, végül a "Hozzárendel" menüben az egyes talajokat hozzárendeljük a szelvényhez. A geológiai profil egyes talajainak paramétereit a 2. táblázatban találjuk.

Az "Új talaj hozzáadása" párbeszédablakban meg kell adnunk adatokat az "ágyazási tényező meghatározásához". A "k tényező" értékkészletére és a "szóródási szög β " meghatározásához alkalmazható formulát megtaláljuk a Súgóban (F1 gomb), a "Lineáris ágyazási tényező" szócikkben.

Edit soil parameters			×
Identification Name : <u>Sol 3 (G-F)</u> Gravel v	with trace of fines (G-F), dense		Color
Basic data Unit weight :	γ = <u>19,00</u> [kN/m ³]	19,0	GEO Pattern
Cohesion of soil : — Settlement - oedometric modulu	vef = ['] c _{ef} = [kPa]	0	• • • • • • • • • • • • • • • • • • •
Poisson's ratio : Settlement analysis :	v = 0,25 [-]	0,25	Gravel
Deformation modulus : Uplift pressure	E _{def} = 95,00 [MPa]	90 - 100	Classification
Caic. mode of uplift : Saturated unit weight :	standard γ _{sat} = 19,00 [klN/m ³]		Clear
- Determining modulus of subsoil Coefficient :	reaction k = 250,00 [MN/m ³]		OK + 🛋 OK + 💟
Angle of dispersion :	β = <u>12,75</u> [⁰]		Cancel

"Új talaj hozzáadása" párbeszédablak

"Hozzárendel" menü

A "Függőleges rugók" menüben a mikrocölöp függőleges viselkedését modellezzük. A mikrocölöp terhei az injektált szakasz talpán és köpenye mentén adódnak át a talajra.

"Függőleges rugók" menü

A "Számítás" menüben hajtjuk végre a feladat számítását. Az eredményeket (igénybevételek, elmozdulások) a csoport egy mikrocölöpére vonatkozóan láthatjuk. Az ablak jobb oldalán a maximális igénybevételeket (összes teheresetből) és a maximális elmozdulásokat (csak üzemi teheresetekből) láthatjuk a teljes szerkezetre vonatkozóan. Az alábbi ábrán a 16. sz. mikrocölöp eredményeit láthatjuk.

"Számítás" menü

A számítás eredményei a megadott beállításokkal (maximális elmozdulásra) a következők:

- Maximális süllyedés	15.8 mm
- Cölöpfej maximális vízszintes elmozdulása	10.6 mm
- Cölöpfej maximális elfordulása	$2.6E - 01^{\circ}$

A "Méretezés" menüben láthatjuk az igénybevételeket a kiválasztott teheresetekből, vagy az összes tehereset burkolóábráit. Az eredmény akármelyik cölöpre megtekinthetjük. A eredő terhekből számított összes igénybevétel X és Y irányú komponense egyenlő. Az összes cölöp tehereseteire vonatkozó burkolóábrákat a következő ábra mutatja.

"Méretezés" menü

A mikrocölöp keresztmetszetének és injektált szakaszának ellenőrzéséhez meg kell nyitnunk a *GEO5 – Mikrocölöp* programot a "Teherbírás" menüre kattintva. Minden eddigi eredményt és adatot automatikusan importálunk a programba.

A mikrocölöp acél keresztmetszetének ellenőrzését a "Keresztmetszet ellenőrzése" menüben végezhetjük el. A program automatikusan számítja legnagyobb igénybevételnek kitett mikrocölöp eredményeit. A korróziót nem vesszük figyelembe, mivel esetünkben a mikrocölöp alapozás ideiglenes szerkezet.

Belső stabilitás ellenőrzése:

 $N_{crd} = 3646.39 \ kN \ge N_{max} = 397.09 \ kN$

A mikrocölöp keresztmetszet belső stabilitása MEGFELEL

Vegyes keresztmetszet teherbírása:

$$f_{y,d} = 236.67 MPa \geq \sigma_s = 171.96 MPa$$

A vegyes keresztmetszet teherbírása MEGFELEL

"Keresztmetszet ellenőrzése" menü

Az injektált szakasz teherbírását az "Injektált szakasz ellenőrzése" menüben ellenőrizhetjük. Az ellenőrzést Lizzi elmélete szerint végezzük.

Megjegyzés: Az injektált szakasz ellenőrzésének számítási módszerét a "Beállítások" menüben a "Mikrocölöp" fülön változtathatjuk.

Nyomott mikrocölöp ellenőrzése:

 $R_s = 633.35 \ kN \ge N_{\text{max}} = 397.09 \ kN$ - Szár ellenállása

$$R_d = 422.23 \ kN \ge N_{\text{max}} = 397.09 \ kN$$
 - Mikrocölöp injektált szakaszának

teherbírása

A nyomott mikrocölöp teherbírása MEGFELEL

Húzott mikrocölöp ellenőrzése:

 $R_s = 633.35 \ kN \ge N_{\text{max}} = 213.26 \ kN$ - Szár ellenállása

 $R_d = 422.23 \ kN \ge N_{
m max} = 213.26 \ kN$ - Mikrocölöp injektált szakaszának teherbírása

A húzott mikrocölöp teherbírása MEGFELEL

"Injektált szakasz teherbírása" menü

Az utolsó lépés az eredmények mentése a "Kilépés és mentés" gombbal, ahogy az előző ábrán mutatjuk.

Következtetés:

A fejtömb maximális süllyedése, vízszintes elmozdulása és elfordulása a megengedhető értékeken belül vannak.

A TK 108/20 kialakítású *EN 10210-1: S355* acélminőségű mikrocölöp és annak injektált szakasza megfelel a *EN 1997 – DA2* szerinti követelményeknek.