

Interpretacja badań terenowych i tworzenie modelu geologicznego

Program:	Stratygrafia				
Plik powiązany:	Demo_manual_38.gsg				

Wprowadzenie

Celem niniejszego Przewodnika Inżyniera jest przedstawienie sposobu korzystania z wybranych podstawowych funkcji programu GEO5 Stratygrafia 3D. Więcej zaawansowanych opcji jest opisanych w następnym Przewodniku Inżyniera nr 39. Program Stratygrafia 3D pozwala na tworzenie skomplikowanych modeli geologicznych w prosty sposób. Program nie interpretuje i nie wprowadza żadnych zmian samoistnie, a powstający model musi odpowiadać interpretacjom i decyzjom geologa. W niniejszym Przewodniku skupiono się głównie na wyjaśnieniu i przekazaniu idei tworzenia modelu geologicznego w programie GEO5 Stratygrafia 3D.

Zadanie

Niniejsze zadanie polega na opracowaniu modelu geologicznego placu budowy, na którym przeprowadzone zostały badania geologiczne. Podczas badań terenowych wykonano dwa odwierty oraz przeprowadzono sondowania sondą CPT w dwóch punktach badawczych. Rzut placu budowy oraz lokalizację otworów i punktów badawczych przedstawiono na poniższym rysunku.

Rzut placu budowy

Nazwa i współrzędne punktu badawczego oraz rodzaj badania zebrano w poniższej tabeli:

Nazwa	Typ	Współrzędne [m]					
INAZWA	тур	х	У	Z			
JV1	odwiert	11,4	88	187,96			
JV2	odwiert	15,0	113	187,80			
SP1	CPT	6,0	89	brak danych			
SP2	CPT	19,0	125	brak danych			

Wyróżnione zostały następujące warstwy gruntów w odwiertach:

Odwiert JV1							
Miąższość	Głębokość	Grunt					
[m]	[m]	Klasyfikacja Opis					
0,7	0 - 0,7	- (Y*)	Nasyp antropogeniczny				
7,8	0,7 - 8,5	CI (F8*)	Glina twardoplastyczna				
8,5	8,5 - 17,0	CI (F6*)	Glina miękkoplastyczna				

*oznaczenie według CSN 73 1001

Odwiert JV2							
Miąższość	Głębokość		Grunt				
[m]	[m]	Klasyfikacja Opis					
0,7	0 - 0,7	- (Y*)	Nasyp antropogeniczny				
2,5	0,7 - 3,2	Cl (F8*)	Glina twardoplastyczna				
0,3	3,2 - 3,5	siSa (S3*)	Piasek pylasty				
7,2	3,5 - 10,7	CI (F8*)	Glina twardoplastyczna				
1,8	10,7 - 12,5	Cl (F6*)	Glina miękkoplastyczna				
0,2	12,5 - 12,7	siGr (G3*)	Żwir z pyłem				
5,9	12,7 - 18,6	Cl (F6*)	Glina miękkoplastyczna				

*oznaczenie według CSN 73 1001

Zlokalizowane zostało ponadto zwierciadło wody gruntowej:

- Odwiert JV1 głębokość ZWG 8 m poniżej powierzchni terenu
- Odwiert JV2 głębokość ZWG 8,5 m poniżej powierzchni terenu

Wyniki sondowań CPT zostaną zaimportowane bezpośrednio do programu w formie tabelarycznej, dokładnie takiej samej, w jakiej zostały otrzymane od geologa. Na poniższych wykresach przedstawiono informacyjnie wartości oporu na stożku oraz tarcia lokalnego.

Sondowania CPT zostały przeprowadzone bez pomiaru ciśnienia porowego (u_2) – nie były to badania typu CPTu.

Uwaga: Pliki do zaimportowania (SP1.txt, SP2.txt) są częścią pakietu instalacyjnego GEO5 i są umieszczone w folderze FINE znajdującym się w folderze Dokumenty.

Uwaga: Proces importowania danych tabelarycznych wyjaśniony został w pomocy do programu (przycisk F1 lub online: <u>https://www.finesoftware.eu/help/geo5/en/table-data-import-01/</u>) oraz w Przewodniku Inżyniera nr 27 (<u>https://www.finesoftware.eu/download/engineering-manuals/235/en/</u> 27 import-txt en/).

Proces modelowania

Po włączeniu programu GEO5 Stratygrafia 3D sprawdzimy najpierw ustawienia globalne w ramce "Ustawienia". Wprowadzamy opcję modelu "standardowy 3D", wygładzanie "średnie" oraz zaznaczamy automatyczną generację modelu geologicznego. Zalecamy włączać tę opcję jedynie w przypadku małych i niezbyt skomplikowanych modeli geologicznych. W przypadku dużych modeli lub skomplikowanych warunków geologicznych zaleca się wyłączenie tej opcji i skorzystanie z ręcznej generacji modelu. Przyjmiemy prawoskrętny układ współrzędnych.

Model :	standardowy 3D 🔹	Układ współrzędnych :	Prawoskrętny	•
Wygładzanie :	średnie 💌	Rotacja północy :	0,00	[°]
✓ Automatyczna generad	zja modelu geologicznego	Nazwa :		
		Układ wysokościowy :	m n.0 W.	•

Ramka "Ustawienia"

Pozostawiamy również domyślne ustawienia w ramce "Budowa".

Rodzaj budowy :	Prostokąt	•	Budowa nie została zdefiniowana.					
 Generuj zakre 	es automatycznie			Aktywna krawędź :	0,00 [m]			
x _{min} =	[m]	x _{max} =	[m]	Zagłębienie poniżej najgłębszego otworu :	0,00 [m]			
Ymin =	[m]	y _{max} =	[m]					

Ramka "Budowa"

Omijamy ramkę "Punkty terenu" – wymiary modelu zostaną wyznaczone na podstawie położenia odwiertów oraz punktów badawczych CPT.

Przejdziemy teraz do ramki "Badania polowe", w której zdefiniujemy otwory wiertnicze *JV1* oraz *JV2*. Otwory te wprowadzimy korzystając z przycisku "Dodaj" oraz wybierając typ badania polowego (otworu).

+	Teday - Bi Pesper
*	C Unservices
Q	By Summer
10	N. Bundley terretor
1	h James antes
	County - Andre punts
	P) frames pringerse
(P)	the basic process the second process
Setting transp balance	of Produce syndrome
And shall Of Institute Approximate Approxi	
	Motor pringersy
	and approximate.
0	
2 al Impuntos - Angle Toma	1 D. Aurol
To News Assess Rolling Wantington Proceed and news Deputed Safes	P requiring industries Provide second
Sector (17) (27) <	Subjects partners 0
2 AL dear CLB 21.0 HT B 24.0 CB 24.0 PM 100	Prote quantum
	1 Automotion

Ramka "Badania polowe" – wprowadzanie otworów

Współrzędne otworów, warstwy gruntu (miąższość, nazwa, szrafura i kolor) oraz ZWG wprowadzimy zgodnie z poniższymi zrzutami ekranowymi:

Parametry badania Date do karty ≫ Nazwa otworu : M1 Współrzędne: x = 11,40 [m] y = 88,00 [m] Wysokość: definiuj v z = 187,96 [m] Zagłębienie 1. punktu badania pod powierzchnią terenu : d1 = 0,00 [m] Głębokość cakowita : d1 = 0,00 [m] Warstwy Informacje ogólne o próbce Zwierziadło wody podziemne] Podaj Nume Miązszość Głębokość Rodzaj gruntu Podaj 1 0,70 0,000,70 V - - - 2 7,80 0,708,50 F8 - - - 3 8,50 8,5017,000 F6 - - - 10,70 0,000,70 V - - - 11,40 11,40 - - - 3 8,50 8,5017,000 F6 - - - 13,5 - - - - - 14,4 - - - - - 13,5 - - - - - 14,4 - -<	Edycja param	etrów badar	ia polowego ((otwór)							×
Nazwa otvoru: MI Współrzędne: x = 11,40 [m] y = 88,00 [m] Współrzędne: x = 187,36 [m] x = 187,36 [m] Zagłębienie 1. punktu badania pod powierzchnią terenu: d = 0,00 [m] 0,00 [m] Głębokość całkowita: dogr = 17,00 [m] 0,00 [m] Ø Badanie generuje prófi Opis warstwy Informacje ogólne o próbce Zwierciadło wody podziemnej Numery Migzzość Głębokość Rodzaj gruntu Podaj (na koniec) Numery Migzzość Głębokość Profil Podaj (na koniec) Numery Migzzość Błębokość Profil Podaj (na koniec) Numery Migzzość Błębokość Profil Podaj (na koniec) Numery Migzzość Błębokość Profil Podaj (na koniec) Na 8,50 8,50 .17,00 F6 13.5 Na 8,50 8,50 .17,00 F6 13.5 1.0,70 0,00 .07.0 .1.1.1,00 F6 1.0,70 .0.0.1,70.0 F6 13.5 14.4 1.0,70 .0.0.1,70.0 .1.1.1,70	— Parametry	badania —									Dane do karty 义
Współrzędne: x = 11,40 [m] y = 88,00 [m] Wysokość: definiuj z = 187,36 [m] Zagłębienie 1. punktu badania pod powierzchnią terenu : d = 0,00 [m] Głębokość całkowita : dogr = 17,00 [m] Ø Badanie generuje profil Opis warstwy Informacje ogólne o próbce Zwierciadło wody podziemnej Numery Migzzość Głębokość Rodzaj gruntu Podaj > 1 0,70 0,000,70 Y 2 7,80 0,708,50 F8 3 8,50 8,5017,00 F6 1.0 0,000,70 Y 1.0 0,708,50 F8 3 8,50 8,5017,00 F6 1.1 0,708,50 F8 1.1 0,708,50 F8 <td>Nazwa otwo</td> <td>ru: JV1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Pro</td> <td>fil aruntu</td>	Nazwa otwo	ru: JV1								Pro	fil aruntu
Wysokość: definiuj z = 187,96 [m] Zagłębienie 1. punktu badania pod powierzchnią terenu: d1 = 0,00 [m] Głębokość całkowita: dot = 17,00 [m] V Badanie generuje profil	Współrzędne	e: x =	11,40	[m]	y =	88,00	[m]			0,0	
Zagłębienie 1. punktu badania pod powierzchnią terenu : d1 = 0,00 [m] 1,8 Głębokość całkowita : dot = 17,00 [m] 3,6 Øładanie generuje profil 1 Opis warstwy Informacje ogólne o próbce Zwierciadło wody podziemnej 4,5 Warstwy t [m] d [m] 0,00 0,00 V V 7,2 2 7,80 0,708,50 F8 7,2 3 8,50 8,5017,00 F6 10,8 10,8 11,7 11,7 12,6 11,7 12,6 11,7 12,6 11,7 12,6 11,7 12,6 11,7 12,6 12,6 165 13,5 13,5 14,4 15,3 14,4 15,3	Wysokość :	def	iniuj	•	• z =	187,96	[m]			0,9-	2
Eggiption 1 panaloguanis pop point comparison properties and response to the properties of the properties o	Zagłebienie 1	L nunktu ba	dania nod no	wierzchnia	terenu: di -	0.00	[m]			1,8-	
Greotosci Cakowita : dtot = 17,00 [m] Ø Badanie generuje profil Opis warstwy Informacje ogólne o próbce Zwierciadło wody podziemnej Numer Miąższość Głębokość Rodzaj gruntu warstwy t [m] d [m] 5,4 V 1 0,70 0,000,70 Y 2 7,80 0,708,50 F8 3 8,50 8,5017,00 F6 0 9,9 9,0 3 1,7 1,26 1,66 1,7 1,26 1,66 1,7 1,26 1,66 1,7 1,26 1,66 1,7 1,26 1,66 1,7 1,26 1,66 1,7 1,26 1,66 1,7 1,26 1,62 1,7 1,0 1,70	cu u ví		dama pod po	merzennią	icicia: uI=	17.00				2,7-	
Badanie generuje profil 4,5 68 Opis warstwy Informacje ogólne o próbce Zwierciadło wody podziemnej 5,4 warstwy t [m] d [m] 0,00	Głębokosc ci	ałkowita :			d _{tot} =	17,00	[m]			3,6-	
Opis warstwy Informacje ogólne o proble Zwierciadło wody podziemnej 5,4 Numer Miązszość Głębokość Rodzaj gruntu 	Badanie	generuje pr								4,5 - F8	
Numer Miąższość Głębokość Rodzaj gruntu Dodaj 6,3 * 1 0,70 0,000,70 Y 7,2 7,20 8,10 8,10 8,11 8,11 8,11 8,11 8,11 8,11 9,9 10,8 11,7 12,6 fb6 13,5 14,4 15,3 14,4 15,3 16,2 17,0 </td <td>Opis warstw</td> <td>/y Informa</td> <td>cje ogólne o p</td> <td>róbce Zv</td> <td>vierciadło wody</td> <td>podziemnej</td> <td></td> <td></td> <td></td> <td>5,4 -</td> <td></td>	Opis warstw	/y Informa	cje ogólne o p	róbce Zv	vierciadło wody	podziemnej				5,4 -	
Variativy t (m) d (m) > 1 0,70 0,000,70 Y 2 7,80 0,708,50 F8 3 8,50 8,5017,00 F6	Numer	Miąższość	Głęł	ookość		Rodzaj g	gruntu		Dodaj (na koniec)	6,3-	
2 7,80 0,708,50 F8 3 8,50 8,5017,00 F6	warstwy → 1	t [m] 0,7	0 0,00	0,70	Y					7,2-	
3 8,50 8,5017,00 F6 9,9 9,9 10,8 10,8 11,7 12,6 F6 13,5 14,4 15,3 16,2 17,0 17,0	2	7,8	0 0,70	8,50	F8					E .w 8,1-	X
9,9 10,8 11,7 12,6 F6 13,5 14,4 15,3 16,2 17,0	3	8,5	0 8,50	17,00	F6					\$ 9.0	3
3,3 10,8 11,7 12,6 16,2 17,0										<u>ل</u>	
10,3 11,7 12,6 16 13,5 14,4 15,3 16,2 17,0 1,0 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7										10.8	
11,7 12,6 16,2 17,0 1,7 12,6 14,4 15,3 16,2 17,0 17,0										10,8	
										11,/-	
13,5 14,4 15,3 16,2 17,0										12,6-10	
14,4 15,3 16,2 17,0										13,5-	
15,3 16,2 17,0										14,4	
										15,3-	
17,0										16,2-	
								~		17,0	
🖶 Drukuj kartę 🛃 Importuj OK + 🦊 🗸 Anuluj	🖶 Drukuj k	arte 💾 I	mportuj						OK + 🔸	🖌 ОК	🗙 Anuluj

Wprowadzanie otworu JV1 – warstwy

Edycja parametrów badania polowego (otwór)	×
Parametry badania	Dane do karty ≫
Nazwa otworu : JV1	Profil aruntu
Współrzędne: x = 11,40 [m] y = 88,00 [m]	
Wysokość: definiuj 💌 z = 187,96 [m]	0,92
Zagłębienie 1. punktu badania pod powierzchnia terenu : dt = 0.00 [m]	1,8
	2,7-
	3,6
Dais wartuu Informacio oggilos o préhes Zwierziello wodu podriemani	4,5- 58-
	5,4
Nr Grépokosc d [m] Domysine Rodzaj ZWG Opis > 1 8.00 O Poziom wody nawiercony	6,3
2 8,00 O Pozion wody ustalony	_ 7,2-
	x 8,1-
	a 9,0 - <u> </u>
	9,9
	10,8
	11,7-
	12,6 - F6
	13,5
	14,4
	15.3-
	16.2
	17,0
i Importuj OK + 🔸	VK X Anuluj

Wprowadzanie otworu JV1 – ZWG

Edycja parametrów b	adania polowego (otwór))						
— Parametry badan	ia							Dane do karty ≫
Nazwa otworu :	JV2							Profil gruptu
Współrzedne : x =	15.00 [m]	v =	113.00	[m]			0,0-	
Where ke ść i	definiti		197.90	[]			1,0-	<u> </u>
wysokosc :	definiuj	• Z =	187,80] [m]			2,0-	F8
Zagłębienie 1. punk	tu badania pod powierzch	nnią terenu : d ₁ =	0,00	[m]			30-	
Głębokość całkowita	a :	d _{tot} =	18,60	[m]			4.0	4
 Badanie generu 	je profil						4,0-	
Opis warstwy Info	rmacie ogólne o próbce	Zwierciadło wody	podziemnei				5,0-	
Numera Minin		,	Padasi.			Deulei	6,0-	
Numer Miązs	zosc Głębokośc		Rodzaj g	gruntu		+ Dodaj (na koniec)	7,0-	F8
> 1	0,70 0,00 0,70	Y					_ 8.0-	
2	2,50 0,70 3,20	F8			1		E Non-	
3	0,30 3,20 3,50	S3					8 9,01	
4	7,20 3,50 10,70	F8						
5	1,80 10,70 12,5	D F6			-		11,0-	5
6	0,20 12,50 12,7	0 G3			-		12,0-	
	5,90 12,70 18,6	D F6			-		13.0-	7
							13,0	
							14,0-	
							15,0-	F6
							16,0 -	
							17,0-	
							18.0-	
					$\mathbf{\nabla}$		18,6-	
🖶 Drukuj kartę	💾 Importuj			0	K + 🤺	î	-	OK X Anuluj

Wprowadzanie otworu JV2 – warstwy

Edycja parametrów badania polowego (otwór)				×
— Parametry badania —————				Dane do karty 🚿
Nazwa otworu : JV2				Profil gruntu
Współrzędne: x = 15,00 [m]	y = 113,00	[m]		
Wysokość : definiuj	▼ z = 187,80	[m]		1,0 2
Zagłębienie 1. punktu badania pod powierzchn	ią terenu : d1 = 0,00	[m]		2,0-10
Głebokość całkowita :	d _{tot} = 18.60	[m]		3,0-
Badanie generuje profil	-101			4,0
Opis warstwy Informacie ogólne o próbce	Zwierciadło wody podziemnej			5,0
Nr Głebokość d [m] Domyś	Ine Rodzai ZWG	Opis	🖶 Dodai	6,0
▶ 1 8,50 O	Poziom wody nawiercony	- p	•	7,0- F8
2 8,50 📀	Poziom wody ustalony			E 8,0
				l ⅔ 9,0-
				흋10,0
				11,05
				12,0
				13,07
				14,0
				15,0 -
				16,0
				17,0-
				18.0
		×		18,6
🖶 Drukuj kartę 🛛 💾 Importuj		OK + 🟫		🗸 OK 🔀 Anuluj

Wprowadzanie otworu JV2 – ZWG

Należy również zdefiniować wyniki badań CPT – pomierzonych wartości nie będziemy wprowadzać manualnie, a wykonamy import danych w formie tabelarycznej. Import wykonuje się poprzez przycisk "Importuj" oraz wybranie odpowiedniego typu badań polowych (CPT).

Ramka "Badania polowe" – import danych CPT

Nie posiadamy żadnych danych dotyczących współrzędnej "z" punktów badawczych CPT. Wysokość ustawimy automatycznie na wygenerowanym terenie zgodnie z wysokościami otworów *JV1* oraz *JV2*.

Ciśnienie porowe (u_2) nie zostało pomierzone podczas sondowań CPT. Pozwolimy programowi na automatyczne obliczenie ciśnienia porowego na podstawie stwierdzonego poziomu zwierciadła wody gruntowej w otworach *JV1* oraz *JV2*.

Punkt badawczy *SP1* znajduje się blisko odwiertu *JV1*, można zatem przyjąć poziom ZWG o wartości 8m poniżej powierzchni terenu. Punkt badawczy *SP2* znajduje się blisko odwiertu *JV2*, można przyjąć poziom ZWG znajdujący się 8,5m poniżej powierzchni terenu.

Edycja para	metrów badai	nia polowego (:	sondowanie st	atyczne)				X	
- Parametr	v badania					_		Dana da kartu 🔪	
								Dane do karty //	
Nazwa bao	iania: : SP.	1				Opór na stożku	Tarcie lokalne	Ciśnienie porowe	
Współrzędi	ne: x =	6,00 [m]	y =	39,00 [m]	0	0	0	
Wusekaść		amaturania na ta	rania 💌	- 1	27.06 [m]	1-	1-	1	
vv ysokose .	. dut	omatycznie na te		2 - 10	57,90 [iii]	2	2	2-	
Zagłębienie	e 1. punktu bad	lania pod powierz	chnią terenu :	d ₁ =	0,00 [m]	3-	3	3	
✓ Badani	ie generuje pro	fil				4-	4-5	4-	
- Punkty b	adania								
Numer	Chabalta	Onde an atalia	Tancia lalvalta	Ciésissis seren	-l- p- t-i			2	
numer	d [m]	o MPal	f I/Dal	Us RPs1	- Dodaj	6-	6-	6-	
	0.00	4c [MPA]	1 ₅ [N ⁻ a]	0.00		7-	7-	7-	
2	0,00	36.74	235.00	0.00		8	8-	8-	
3	0,40	25,96	120.00	0.00		E 9	Ξ 9-	Ξ9-	
4	0,60	3,06	420,00	0,00		;× 10-	8 10	30 10	
5	0,80	2,16	227,00	0,00		4			
6	1,00	2,56	129,00	0,00		<u>5</u> 11	š'' T	5 ¹¹	
7	1,20	1,38	91,00	0,00		12-	12-	12-	
8	1,40	2,36	69,00	0,00		13-	13-	13	
9	1,60	1,92	87,00	0,00		14-	14-	14-	
10	1,80	0,64	99,00	0,00		15	15-	15-	
11	2,00	0,62	28,00	0,00		16-	16-	16-	
12	2,20	1,88	149,00	0,00					
13	2,40	4,20	127,00	0,00		1/-		1/-	
14	2,60	6,66	97,00	0,00		18-	18	18	
15	2,80	4,12	187,00	0,00		19	19	19	
16	3,00	1,48	243,00	0,00		20	20	20	
1/	3,20	1,48	117,00	0,00		0 10 20 30 40	0 200 400500 f Rop-1	0 70 140 200	
18	3,40	2,00	81,00	0,00	•	dc [mea]	T _S [KPd]	uz (kPaj	
🖶 Drukuj	🛱 Drukuj kartę 💾 Importuj 🕴 Oblicz u 2 OK 🗙 Anuluj								

Zaimportowane sondowania CPT przedstawiono na poniższych rysunkach:

Import danych CPT – SP1

Edycja parametrów badania polowego (sondowanie statyczne)								
Parametry badania								
Nazwa bada	Nazwa badania: SP2							
	Opór na stożku Tarcie lokalne Ciśnienie porowe							Ciśnienie porowe
Współrzędr	Współrzędne : x = 19,00 [m] y = 125,00 [m] 0							
Wysokość :	Wysokość : automatycznie na terenie 💌 z = 187,80 [m]							
Zagłębienie 1. punktu badania pod powierzchnią terenu : d ₁ = 0,00 [m]								
Z Badanie	e generuie pro	fi						
Duralita ha	e generaje pro					*7	*13	
Punkty ba	auania					5-	5-	5-
Numer	Głębokość	Opór na stożku	Tarcie lokalne	Ciśnienie porowe	🕂 Dodaj	6-)	6-2	6
punktu	d [m]	q _c [MPa]	f _s [kPa]	u ₂ [kPa]		7-	7-5	7
> 1	0,00	0,00	0,00	0,00 🔺		8-	8-	8-
2	0,20	33,44	147,00	0,00				
3	0,40	17,26	304,00	0,00		E 9-	5.9-	- 9-
4	0,60	3,40	348,00	0,00		<u>8</u> 10 -	<u>ğ</u> 10-	<u>8</u> 10-
5	0,80	7,28	212,00	0,00		₽ ¹¹	∯11-	₽ ¹¹
6	1,00	1,76	33,00	0,00		12	°,,	12
7	1,20	1,56	88,00	0,00		12	- <u>"</u> S	
8	1,40	1,30	64,00	0,00		13-	13-	13
9	1,60	2,40	85,00	0,00		14-	14-	14-
10	1,80	1,02	73,00	0,00		15-	15-5-	15-
11	2,00	1,74	47,00	0,00		16-	16-	16-
12	2,20	2,96	176,00	0,00		10		10
13	2,40	7,44	95,00	0,00		17-	17-	1/-
14	2,60	4,50	227,00	0,00		18	18	18-
15	2,80	4,12	132,00	0,00		19	19	19
16	3,00	22,08	344,00	0,00		20	20	20
17	3,20	10,50	104,00	0,00		0 10 20 30 40	0 150 300 400	0 70 140 200
18	18 3,40 2,92 279,00 0,00 v qc [MPa] fs [kPa] u2 [kPa]							
등 Drukuj kartę 📴 Importuj 🕴 Oblicz u2 OK + 🏠 💙 OK 🗙 Anuluj								

Import danych CPT – SP2

Wprowadzimy wszystkie grunty z otworów *JV1* oraz *JV2* (*Y, F6, F8, S3, G3*) wybierając przycisk "Przyjmij z badań polowych". Można dodatkowo przyporządkować parametry geotechniczne do poszczególnych gruntów. Parametry te nie mają żadnego wpływu na model – wykorzystywane są do generowania dokumentacji geologicznej lub eksportu danych do innych programów pakietu GEO5. W tym przypadku nie będziemy przypisywać żadnych parametrów do gruntów.

🕤 Przyjm	nij z badań polowych 🛛 🕂 🛅 Dodaj		🖌 Edytuj (nr 1)	nr 1)	
Nr	Nazwa gruntu		Y		
> 1	Υ		Ciężar objętościowy :	$\gamma = kN/m^3$	
2	F8	1	Stan naprężeń :	efektywne	
3	F6	1	Kąt tarcia wewnętrznego : Spójpość gruptu :	$\phi_{ef} = - k P_{P}$	
4	53	1	Współczynnik Poisson'a :	V =	
5	G3		Moduł odkształcenia :	E _{def} = MPa	
			Ciężar gruntu nawodn. :	$\gamma_{sat} = kN/m^3$	
		-			

Dodawanie gruntów na podstawie badań polowych

Przejdziemy teraz do ramki "Profile badań". Widzimy, że profile zostały utworzone automatycznie na podstawie odwiertów *JV1* oraz *JV2*. Każdorazowo po automatycznym utworzeniu profili z sondowań CPT należy zinterpretować pomierzone wartości w odniesieniu do profilu geologicznego. Można to zrobić ręcznie lub skorzystać z klasyfikacji gruntów według Robertsona (z 1986 lub 2010 roku). Mając na uwadze przejrzyste przedstawienie problematyki w niniejszym przewodniku omówimy obydwa podejścia.

Na początku utworzymy ręcznie profil na podstawie sondowania CPT punktu *SP1*. Jako metodę klasyfikacji wybierzemy opcję "nie klasyfikuj" (wybór opcji z okna rozwijanego w środkowej części okna dialogowego).

Po lewej stronie okna dialogowego możemy zobaczyć wykres oporu na stożku *q*_c. Wykorzystując lewy przycisk myszy możemy wybrać na wykresie warstwy, które chcemy dodać do profilu pokazanego w prawej części okna dialogowego. Przyporządkujemy grunty do warstw zgodnie z oznaczeniem wykonanym w odwiercie *JV2*. Poziom zwierciadła wody gruntowej nie został zbadany, pozostawiamy więc puste miejsce. Zostanie on wygenerowany automatycznie na podstawie poziomów ZWG zdefiniowanych w odwiertach *JV1* oraz *JV2*.

Ręczne tworzenie profilu geologicznego na podstawie sondowania CPT

Przejdziemy teraz do punktu badawczego *SP2*. Skorzystamy z możliwości automatycznego tworzenia profilu na podstawie klasyfikacji gruntów (metoda Robertsona z 2010 roku). Wykonana interpretacja badania prowadzi do uzyskania profilu składającego się z dużej liczby warstw o niewielkiej miąższości. Nie jest łatwo pracować z tak znaczną liczbą warstw, więc przefiltrujemy je przy założeniu minimalnej miąższości warstwy o wartości 0,3m.

Wynik klasyfikacji gruntów na podstawie badania CPT

Korzystając z przycisku "Tabela gruntów – Robertson 2010" przyporządkujemy wprowadzone grunty (z odwiertów *JV1* oraz *JV2*) do warstw otrzymanych z interpretacji sondowań CPT.

Tabela gruntów (Robertson 2010) X						
Opis gruntu		Przyporządkowany grunt				
Wrażliwy grunt drobnoziarnisty		(nie przyporządkowany)	-	Dodaj grunt		
Grunty organiczne - ił		(nie przyporządkowany)	•	Dodaj grunt		
Iły - ił pylasty, ił		F8	•	Dodaj grunt		
Mieszaniny pylaste - pył ilasty, ił pylasty		F6	·	Dodaj grunt		
Mieszaniny piasku - piasek pylasty, pył piaszczysty		(nie przyporządkowany)	•	Dodaj grunt		
Piaski - czysty piasek, piasek pylasty		S3	$\begin{array}{c} \bullet & \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] \left[\frac{1}{2} + \frac{1}{2} \right] \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] \left[\frac{1}{2} + \frac{1}{2$	Dodaj grunt		
Piasek ze żwirem, piasek zagęszczony		Y	-	Dodaj grunt		
Bardzo zagęszczony piasek, piasek ilasty		(nie przyporządkowany)	•	Dodaj grunt		
Bardzo zwarte grunty drobnoziarniste		(nie przyporządkowany)	•	Dodaj grunt		
→ OK × Anuluj						

Tabela przyporządkowywania gruntów

Przy pomocy przycisku "Kopiuj profil z badania polowego" możemy wygenerować profil geologiczny na podstawie wyników badania CPT oraz gruntów przypisanych wcześniej do wyróżnionych w wyniku sondowania warstw.

Identyfikacja - Klasyfi Nazwa : SP2 Metoda k	yfikacja	- Parametry		
Współrzędne : x = 19,00 [m] y = 125,00 [m] Wskaźnik	źnik penetrometru : α = 0,75 [+]	Profil jest aktywny do generowania modelu podłoża		
z = 187,80 [m] Ciężar ob	objętościowy : wyznacz 💌			
Zagłębienie 1. punktu badania pod powierzchnią terenu : d1 = 0,00 [m] Minimalna	alna miąższość warstwy : h = 0,30 [m]			
- Podgląd badania		- Warstwy profilu badania		
Metoda klasyfikacji : Robertson 2010	Opór na stožku g _c	Nr Miąższość [m] Głębokość [m] Grunt 🔔 Dodaj		
Ity - it pylasty, it	- 8,00 Kopiuj profil	0 • 1 1,20 0,001,20 Y		
	2,00 - Mieszaniny pylaste -	2- F6 2- 2 1,80 1,203,00 F6		
Mieszaniny pylaste - pył ilasty, ił pylasty	400-	4 4 4 4 960 340 1300 53		
Piaski - czysty piasek, piasek pylasty				
Disask za jevicen, nistak zanasztrany	6,00	6		
Plasek ze zivilelil, plasek zagęszczony	8,00 - H	8		
	10,00 -	10-		
	12,00 -	12		
	14,00 -	14 5-		
	16,00 - Pytilasty, if	16 F6		
	18,00 -	18		
	20,00 B Robertson 2010			
一 同 Drukui karte		OK + 🔶 🖌 OK 🗶 Anikii		

Automatyczne tworzenie profilu geologicznego zgodnie z klasyfikacją gruntów wykonaną na podstawie badania CPT

Przejdziemy następnie do ramki "Model geologiczny". Możemy zobaczyć tutaj "otwory" (profile geologiczne), które utworzono na podstawie odwiertów (*JV1*, *JV2*) oraz sondowań CPT (*SP1*, *SP2*). Wybierzemy następnie odwiert *JV2* jako bazowy – ten odwiert jest najgłębszy i zawiera wszystkie rodzaje gruntów – z tego względu najlepiej obrazuje warunki geologiczne występujące na placu budowy.

Ramka "Model geologiczny" – wybór otworu bazowego

Pozostałe otwory oznaczone są kolorem czerwonym, co oznacza, że nie są kompatybilne z otworem bazowym. Model geologiczny jest generowany na podstawie otworu bazowego i innych otworów, które są z nim kompatybilne. Biorąc to pod uwagę należy zmodyfikować wszystkie otwory, aby odpowiadały one otworowi bazowemu (były kompatybilne). Po wprowadzeniu zmian model geologiczny generowany będzie na podstawie wszystkich wprowadzonych danych źródłowych. Zmodyfikujemy teraz wszystkie otwory, tak aby były kompatybilne z otworem bazowym.

Modyfikacja odwiertu JV1

Zaczniemy od zmodyfikowania odwiertu JV1. Po wybraniu odwiertu możemy zobaczyć zaznaczony otwór w lewej części okna dialogowego. Otwór bazowy (JV2) wyświetlany jest po prawej stronie. Jak widać na rysunku, otwory nie są kompatybilne.

GEO5

Pierwotny profil otworu JV1

W odwiercie *JV1* nie występują warstwy piasku oraz żwiru (S3, G3). Zakładamy, bazując na ogólnej wiedzy na temat geologii tego obszaru, że bieg warstw jest poziomy. Z tego powodu wydzielimy warstwy F6 i F8 oraz wprowadzimy warstwy S3 i G3 o zerowej grubości pomiędzy nowo utworzonymi warstwami. Profil geologiczny otworu JV1 nie zostanie w żaden sposób zmieniony, ale będzie teraz odpowiadać otworowi bazowemu.

Na początku podzielimy warstwę nr 2 w stosunku 4:6 (wyżej znajdująca się warstwa ma miąższość równą 40% miąższości warstwy pierwotnej).

Podział warstwy nr 2 (F8)

Wprowadzimy teraz nową warstwę gruntu S3 o zerowej miąższości pomiędzy nowo utworzonymi warstwami korzystając z przycisku "Wstaw (przed 3)".

Edycja otworu		
Nazwa : 3V1 Współrzędne : x = 11,40 [m] y = 88,00 [m]	Dodaj warstwę na dole (do otworu)	
z =	Kopiuj z profilu badana - Łaczenie obwośw 0 2 4 6 9 4 6 9 9 1	N Wetgzool (m) Grunt 2 2,50 0,70 0,00 0,70 V 3 0,00 3,20 5,25 4 Pedgg V
Magraod : t = 0,00 [m] Grunt: 53 V Star Dodaj grunt Brown Markow Anula Grunt: 53 V Star Dodaj grunt Brown Markow Manual Brown Markow	10- 5 10- 12- 10- 12- 12- 12- 12- 12- 14- 14- 15- 12- 14- 15- 12- 14- 15- 12- 14- 15- 13- 12- 14- 15- 13-	
		OK + 🦺 🗸 Anuluj

Definiowanie nowej warstwy S3 o zerowej miąższości

Zmodyfikujemy dolne warstwy naszego otworu w analogiczny sposób. Najpierw podzielimy warstwę nr 5 (F6) w stosunku 1:1 korzystając z przycisku "Podziel (numer 5)". Wprowadzimy następnie nową warstwę gruntu G3 (o zerowej miąższości) korzystając z przycisku "Wstaw (przed 6)". Otwory *JV1* oraz *JV2* są teraz kompatybilne.

Definiowanie nowej warstwy G3 o zerowej miąższości

Modyfikacja otworu SP1

Możemy teraz przejść do modyfikacji otworu SP1 – profil geologiczny w tym punkcie badawczym został utworzony ręcznie na podstawie interpretacji wartości oporu na stożku q_c pomierzonego podczas badania CPT dla otworu SP1. W oknie dialogowym możemy zobaczyć, że otwór SP1 nie odpowiada układowi warstw otworu bazowego. W tym przypadku jedynie dolna część profilu nie jest kompatybilna z otworem bazowym. Górna część profilu odpowiada otworowi bazowemu – obydwa otwory zawierają warstwę piasku (S3).

Pierwotny profil otworu SP1

Warstwa żwiru (G3) nie występuje w otworze badawczym *SP1*. Wprowadzimy podobne zmiany, jakie zostały wprowadzone w odwiercie *JV1*. Najpierw podzielimy warstwę nr 5 (F6) – nowo utworzona, znajdująca się wyżej warstwa będzie stanowić 25% miąższości pierwotnej warstwy.

Podział warstwy nr 5 (F6)

Wprowadzimy teraz warstwę gruntu G3 (o zerowej miąższości) pomiędzy utworzonymi warstwami.

Wprowadzanie nowej warstwy G3 o zerowej miąższości

Otwór SP1 jest teraz kompatybilny z otworem bazowym JV2.

Profil otworu SP1 po zmianach – otwór jest kompatybilny z otworem bazowym

Modyfikacja otworu SP2

Należy teraz zmodyfikować ostatni otwór *SP2* – profil geologiczny w tym otworze został utworzony na podstawie automatycznej klasyfikacji gruntów (metoda Robertsona z 2010 roku). Pierwotny profil otworu przedstawiony jest na poniższym rysunku. Otwory nie są kompatybilne i należy wprowadzić pewne modyfikacje.

Pierwotny profil otworu SP2

Sytuacja jest bardziej skomplikowana w górnej części otworu. Warstwa gruntu F6 w otworze *SP2* jest powyżej warstwy piasku, a w otworze bazowym w tym miejscu profilu zlokalizowana jest warstwa gruntu F8. Aby zapewnić zgodność układu warstw w tym otworze z otworem bazowym moglibyśmy wprowadzić takie same modyfikacje, jak w poprzednich otworach (dzieląc i dodając nowe warstwy). Biorąc pod uwagę fakt, że taki układ warstw nie występuje w żadnym innym otworze a profil w tym otworze został wygenerowany z wykorzystaniem automatycznej klasyfikacji gruntów, która nie zawsze jest dokładna (szczególnie dla podobnych rodzajów gruntów – F6, F8) przyjmiemy, że warstwa gruntu F8 występuje także w tym otworze powyżej warstwy piasku. Zaznaczymy zatem warstwę nr 2 i zmienimy przyporządkowany grunt z F6 na F8.

Zmiana rodzaju gruntu dla warstwy nr 2 (F6 -> F8)

Wprowadzone zmiany prowadzą do zgodności profili w górnej części otworów. W przypadku dolnej części otworu wprowadzimy takie same zmiany, jak dla otworów *JV1* oraz *SP1*. Podzielimy następnie warstwę nr 5 (nowa górna warstwa stanowiąca 10% miąższości warstwy oryginalnej) i wprowadzimy nową warstwę żwiru (G3) o zerowej miąższości.

Podział warstwy nr 5 (F6)

Wprowadzanie nowej warstwy G3 o zerowej miąższości

Otwór SP2 jest teraz kompatybilny z otworem bazowym JV2.

Profil otworu SP2 po zmianach – otwór jest kompatybilny z otworem bazowym

Zmiany końcowe

W ramce "Model geologiczny" możemy teraz zobaczyć, że wszystkie otwory są kompatybilne. Model geologiczny generowany jest z wykorzystaniem wszystkich wykonanych badań (wierceń i sondowań CPT).

Ramka "Model geologiczny" – generowanie modelu

W celu zapewnienia większej przejrzystości modelu otworzymy opcje konfiguracji rysunku (przycisk wyobrażający koło zębate znajdujący się po lewej stronie) i wybierzemy opcję "Boczne krawędzie gruntów".

Ramka "Model geologiczny" – wyświetlanie bocznych krawędzi gruntów

Ostatnim krokiem będzie przejście do ramki "Przekroje wynikowe", w której dodamy dwa prostopadłe przekroje. Przekroje zdefiniujemy następująco: CV1 [13,0; 125,0]; [13,0; 88,0] oraz CV2 [6,0; 107,0]; [19,0; 107,0].

Ramka "Przekroje wynikowe"

Wnioski

W tym Przewodniku Inżyniera przedstawione zostały wybrane, podstawowe funkcje programu GEO5 Stratygrafia 3D, w szczególności tworzenie profili geologicznych na podstawie przeprowadzonych wierceń i sondowań statycznych sondą stożkową (CPT).

Przeprowadziliśmy ponadto modyfikację profili geologicznych w celu ich uzgodnienia. Należy tutaj podkreślić, że zaprezentowany model został stworzony z myślą o przedstawieniu różnych funkcji programu i możliwości modelowania. W praktyce inżynierskiej przedmiotowy model mógłby zostać utworzony w inny sposób – np. warstwy piasków i żwirów o niewielkiej miąższości mogłyby zostać pominięte. Program Stratygrafia 3D pozwala użytkownikowi na stworzenie skomplikowanego modelu w relatywnie prosty sposób. Kolejny Przewodnik Inżyniera (nr 39) skupia się na takich aspektach jak proste modyfikacje warstw geologicznych, a także prezentuje bardziej skomplikowane tematy, jak tworzenie soczewek gruntowych oraz uskoków geologicznych.