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Abstract. The present paper revisits a stress update procedure for the Hoek-Brown plasticity model
enhanced by a Rankine type of tension cut-off failure criterion. Limiting tensile stresses not only
supports the behavior of weak rock masses with a very low tensile strength but in combination with the
original Hoek-Brown model improves robustness of the stress update procedure, i.e. the stress return
mapping algorithm. Herein, the primary focus is on the stress return from a space of inadmissible trial
stresses for which neither the Hoek-Brown yield surface nor its derivative can be evaluated. All potential
scenarios are thoroughly discussed both in the framework of single- and multi-surface plasticity. The
presented procedures were implemented and verified with the help of the Geo5 FEM software.
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element method, tension cut-off.

1. Introduction
In geological engineering, shear strength properties of
the rock mass are mostly expressed by the parameters
entering the formulation of the Hoek-Brown (HB)
plasticity model. These can be transformed into the
pair of basic shear strength parameters, i.e, cohesion c
and friction angle φ, exploiting similarity between the
Hoek-Brown and Mohr-Coulomb (MC) yield functions.
Then the numerical analysis can be simply governed by
the MC model. However, formulation of the HB model
is based on the assumption of a nonlinear development
of the rock mass strength with increasing loading. On
the other hand, equivalent shear strength parameters
derived by Hoek and Brown in [1] are independent
of the current stress state. Therefore, this approach
requires a proper estimation of the stress range for
obtaining comparable results, see [2]. In light of this,
a direct application of the HB model appears more
suitable, which also promoted a recent implementation
of the HB model into Geo5 FEM software [3].

In a numerical solution, violation of the yield func-
tion is followed by a correction step bringing the
stresses back to the yield surface. Formulation of
a suitable stress return algorithm typically calls for
the determination of the first derivative of a given
yield function. Point out that the HB yield function
is not defined for the maximum trial principal stress
exceeding the tensile strength of the rock mass mak-
ing the standard return mapping inapplicable. To
overcome this obstacle, the present paper introduces a
stress update algorithm that incorporates the Rankine
failure criterion in conjunction with the HB model
when moving from inadmissible to admissible stress
space. Within this concept, the Rankine failure cri-
terion may also represent a less or more significant
reduction of the tensile strength.

2. Governing equations
Application of the generalized Hoek-Brown criterion
covers the whole range of rock masses from an intact
one to a highly disturbed weak rock mass. The input
parameters of the HB model are [4]:

• uniaxial compressive strength σci and Hoek-Brown
constant mi provided by series of triaxial testing,

• geological strength index (GSI) used as a classifica-
tion number of the geological quality of rock mass
estimated from in situ geological observation,

• disturbance factor D describing the rate of distur-
bance by prior excavations or blasting, also esti-
mated from in situ geological observation.

The material constantsmb, s and a govern the shape of
the yield surface and are given by empirical equations
as

mb = mi exp GSI − 100
28 − 14D , (1)

s = exp GSI − 100
9 − 3D , (2)

a = 1
2 + 1

6

(
exp −GSI

15 − exp −20
3

)
. (3)

2.1. Hoek-Brown yield function
Assuming a standard order of principle stresses σ1 >
σ2 > σ3, the generalized yield function is defined as

f13(σ1, σ3) = σ1 − σ3 − σci

(
s−mb

σ1

σci

)a

, (4)

where σ1 and σ3 are the maximal and minimal ef-
fective principal stresses, respectively. Unlike typical
geotechnical notation, the compressive stresses are
assumed negative and σ1 has a meaning of confining
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pressure. Equation (4) represents the main sector of
the yield surface in the principle stress space. For
specific cases of triaxial compression (Lode’s angle
θ = 30◦) and triaxial extension (θ = −30◦) two more
sectors need to be considered. These are defined as

f23(σ2, σ3) = σ2 − σ3 − σci

(
s−mb

σ2

σci

)a

, (5)

f12(σ1, σ2) = σ1 − σ2 − σci

(
s−mb

σ1

σci

)a

. (6)

In the principal stress space, the HB model plots as
a irregular hexagonal pyramid with curved edges and
surfaces, see Figure 1. Assuming the uniaxial tensile
strength be equal to the biaxial one (σ3 = σ1 = σt)
yields the tensile strength of the rock mass adopting
Equation (4) as

σt = sσci

mb
. (7)

For the intact rock it holds GSI = 100 which gives
a = 0.5. As the minimum value of GSI is equal
to 0, the exponent a ranges from 0.5 to approximately
0.666. It is obvious that setting σmax > σt generates
singularity in Eqautions (4)–(6). The yield condition
is not defined beyond the apex and hence it cannot
be evaluated.

σm 

σ2 

σ3 

σ1 

Figure 1. Hoek-Brown yield surface plotted in prin-
cipal stress space.

Expressing the yield function in terms of stress
invariants, i.e., the mean stress σm, the deviatoric
stress measure J and the Lode’s angle θ gives

fHB(σm, J, θ) = (2J cos θ)1/a − sσ
1/a
ci +

+
(

cos θ − sin θ√
3

)
mbJσ

1/a−1
ci +mbσmσ

1/a−1
ci . (8)

Note that formulation (8) is not suitable for the com-
plex return mapping procedure, as the derivative of
the yield surface along the triaxial compression and
triaxial extension edges (Lode’s angle θ = ±30◦, re-
spectively) is singular, see [5] with reference to the
MC model.

2.2. Plastic potential
Plastic potential functions are formulated on the basis
of the MC yield criterion as

g13(σ1, σ3) = σ1
1 + sinψ
1 − sinψ − σ3, (9)

g23(σ2, σ3) = σ2
1 + sinψ
1 − sinψ − σ3, (10)

g12(σ1, σ2) = σ1
1 + sinψ
1 − sinψ − σ2, (11)

where ψ is well known dilation angle. Constant rate
of dilation is assumed in the present formulation. Vec-
tors normal to the plastic potential surfaces governing
the direction of the plastic yielding are therefore inde-
pendent of the current stresses and take the form

n1
g =

{
1 + sinψ
1 − sinψ ; 0; −1

}
T, (12)

n2
g =

{
0; 1 + sinψ

1 − sinψ ; −1
}

T, (13)

n3
g =

{
1 + sinψ
1 − sinψ ; −1; 0

}
T. (14)

More advanced formulations of the potential func-
tions are also available in literature, see, e.g., Carranza-
Torres and Fairhurst [6] who proposed the plastic po-
tential function based on the mobilized value of the
dilation angle ψmob depending on current stress state.
However, such formulations go beyond the present
scope.

2.3. Rankine yield function
Yield surfaces of the Rankine type are often used as
the additional tension cut-off surfaces. The model
assumes the material to be isotropic and unlike the
HB model, the stress return mapping is in general
driven by an associated flow rule. The Rankine yield
surfaces are defined as

T1(σ1, σt) = σ1 − σt, (15)
T2(σ2, σt) = σ2 − σt, (16)
T3(σ3, σt) = σ3 − σt, (17)

where σt ≤ σt is the prescribed tensile strength. The
vectors normal to individual sectors of the yield surface
are for the assumed associated flow rule given by

n1
t = {1; 0; 0} T, (18)

n2
t = {0; 1; 0} T, (19)

n3
t = {0; 0; 1} T. (20)

Note that apart from a physically accepted reduction
of a tensile stress σt, recall Equation (7), the return
to the Rankine yield surface will be adopted as an
intermediate step when an attempt to return to the
HB yield function is made from an inadmissible trial
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stress space1. To avoid failing the return process
we consider an upper limit of the tensile strength
σmax

t = σt − σ∗ where σ∗ = 1 kPa is assumed in
Geo5 FEM.

For the sake of completeness we present the Rankine
yield function, which plots as a regular triangular
pyramid in the principal stress space, also in terms of
stress invariants as

fR(σm, J, θ) = 2
√

3J cos
(
θ + π

6

)
+

+ 3σm − 3σt. (21)

3. Stress update algorithm
In the presented approach, the rock mass is treated
as isotropic and no hardening is considered. Stress
update algorithm respects the standard theory of plas-
ticity. Elastic region of the strain is bounded by the
yield surface. In case of plastic yielding both the yield
and consistency condition must be satisfied. The
Geo5 FEM software assumes the stress-strain rela-
tion to be linearly elastic perfectly plastic for the HB
model. The total strain increment decomposes into
elastic and plastic parts as

dε = dεel + dεpl. (22)

The increment of stress relates to the elastic part of
the total strain and follows the linear relation

dσ = Del( dε − dεpl). (23)

For non-associated plasticity the plastic part of the
strain increment is defined as

dεpl = ∆λ∂g(σ)
∂σ

, (24)

with ∆λ being positive for plastic yielding, otherwise
it is equal to 0. An associated plastic flow rule assumes
g(σ) = f(σ). As already mentioned, a non-associated
flow rule is applied when returning to the HB yield
surface, while associated plasticity is adopted for the
Rankine yield surface.

Derivation of the plastic strain increment follows
standard two step procedure employing elastic predic-
tor and plastic corrector steps. The former step gives
the trial stresses in the form

σtr = σj−1 + Del dε. (25)

Once the yield condition is violated, i.e., f(σtr) > 0,
the return mapping is carried out to bring the trial
stresses back to the yield surface. Depending on the
orientation of the elastic guess and the direction of the
plastic strain increment, reordering of the principal
stresses may occur, i.e. σ1 > σ2 > σ3 may no longer
apply. As will be graphically shown in the next section,
reordering of principal stresses requires formulation

1The trial stress space is assumed inadmissible whenever
condition σmax > σt occurs regardless of whether or not the
HB model is defined.

of the return mapping algorithm in the framework of
multi-surface plasticity. This is because the updated
stress, although theoretically located on the yield
surface, gives Lode’s angle which falls outside the
limits −30◦ ≤ θ ≤ 30◦. In such a case, the correct
stress lies on the triaxial edge, where two sectors of the
yield surface intersect so both corresponding surfaces
become active in return mapping.

3.1. Single yield surface return
strategy

Implicit return mapping is applied using the Newton-
Raphson method in the form

(∆λ)i+1 = (∆λ)i − (f13)i

( df13)i
, (26)

where df13 is the derivative of the yield function
associated with the main sector and ∆λ is the plastic
strain increment. The updated stress is provided by

σi+1 = σtr − (∆λ)i+1Deln1
g, (27)

where the direction of the plastic strain increment
n1

g remains constant during the return mapping, re-
call Equations (12)–(14). Writing the direction of
principal plastic corrector as

Deln1
g = σpl =

{
σpl

1 , σ
pl
2 , σ

pl
3

}
T (28)

gives

σ1(∆λ) = σtr
1 − ∆λσpl

1 , (29)

σ2(∆λ) = σtr
2 − ∆λσpl

2 , (30)

σ3(∆λ) = σtr
3 − ∆λσpl

3 . (31)

Substituting Equations (29)–(31) into Equation (4)
gives the yield function f13 in the form

f13(∆λ) = (σtr
1 − σtr

3 ) − ∆λ(σpl
1 − σpl

3 )−

− σci

[
s− mb

σci

(
σtr

1 − ∆λσpl
1

)]a

(32)

and the corresponding derivative w.r.t. ∆λ as

df13(∆λ) = σpl
3 − σpl

1 −

− ambσ
pl
1

[
s− mb

σci

(
σtr

1 − ∆λσpl
1

)]a−1
. (33)

Return to the Rankine yield surface T1 follows the
same minimization procedure. Owing to the linear
form of the yield function, the correct increment of the
plastic strain is found in one iteration step. Therefore

∆λ = − T1

dT1 . (34)

The tensile yield surface defined in terms of the plastic
multiplier is given by

T1 = σtr
1 − ∆λσpl

1 − σt (35)
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Figure 2. Non-associated return to the HB surface from trial stress violating T1 in two consecutive steps (ψ = 0):
first - from trial stress (red point) onto the Rankine yield surface (orange point), second - from Rankine surface to
HB surface (green point) plotted in the deviatoric plane (left), σm − J plane (middle), σ1 − σ3 plane (right).

and the derivative w.r.t. ∆λ is therefore constant

dT1 = −σpl
1 . (36)

Returning from the trial stress space violating the
Rankine failure criterion considers two scenarios:
• Correct return to the HB yield surface is expected:

This is a two-step return where returning to the
Rankine yield surface is performed first assuming
the direction of plastic corrector given by the HB
model, i.e., σpl = Deln1

g (non-associated flow rule).
The procedure then continues with the second step
bringing the stresses back onto the HB yield sur-
face along the same direction. The total plastic
strain increment is then the sum of plastic strain
increments generated by both steps. See Figure 2.

• Correct return to the Rankine yield surface is ex-
pected: This is a one-step return along the direction
given by σpl = Deln1

t (associated flow rule).

3.2. Triaxial lines return strategy
Two active sectors of the HB yield surface apply to
both the state of triaxial compression and triaxial
extension. Considering triaxial stress state in com-
pression for the determination of the multi-surface
plasticity return, two yield functions, f13 and f23, are
active and the iterative scheme takes the form{

∆λ1
∆λ2

}i+1
=

{
∆λ1
∆λ2

}i

−(H−1)i

{
f13

f23

}i

, (37)

where the Jacobian matrix is composed of the partial
derivatives of the yield functions with respect to two
plastic multipliers ∆λ1 and ∆λ2. Therefore

H =


∂f13

∂(∆λ1)
∂f13

∂(∆λ2)

∂f23

∂(∆λ1)
∂f23

∂(∆λ2)

 . (38)

The vector of updated principle stresses for the current
iterative step is given by

σi+1 = σtr − (∆λ1)i+1Deln1
g − (∆λ2)i+1Deln2

g. (39)

Vectors providing the orientation of the plastic correc-
tor are defined as

σpl
1 = Deln1

g =
{
σpl

11;σpl
12;σpl

13

}T

, (40)

σpl
2 = Deln2

g =
{
σpl

21;σpl
22;σpl

23

}T

(41)

and individual components of the stress vector for
j = 1 → 3

σj(∆λ1,∆λ2) = σtr
j − ∆λ1σ

pl
1j − ∆λ2σ

pl
2j . (42)

Expressing the yield function in terms of two plastic
multipliers provides the yield function f13 as
f13(∆λ1,∆λ2) =

= (σtr
1 − σtr

3 ) − ∆λ1(σpl
11 − σpl

13) − ∆λ2(σpl
21 − σpl

23)−

− σci

[
s− mb

σci

(
σtr

1 − ∆λ1σ
pl
11 − ∆λ2σ

pl
21

)]a

(43)

and its partial derivatives in the form
H11 = σpl

13 − σpl
11 − ambσ

pl
11[

s− mb

σci

(
σtr

1 − ∆λ1σ
pl
11 − ∆λ2σ

pl
21

)]a−1
, (44)

H12 = σpl
23 − σpl

21 − ambσ
pl
21[

s− mb

σci

(
σtr

1 − ∆λ1σ
pl
11 − ∆λ2σ

pl
21

)]a−1
. (45)

The other yield function and components of the H
matrix would be expressed similarly and the same
approach is applied to the state of triaxial extension
with sectors f13 and f12 being simultaneously active.

Attention should be also paid to the triaxial corner
of the tensile yield surface. In this case, the proposed
approach is adopted for the intersection of the yield
functions T1 and T2 and, similarly to a single surface
plasticity with one iteration step needed. Again, both
non-associated and associated plasticity is considered
in return mapping scheme depending on whether the
stress is expected to be brought back to HB model or
directly to the Rankine yield surface, recall the last
paragraph in the previous section. As an example of
the former case, see Figure 3.
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Figure 3. Demonstration of the return to the triaxial
corners of the HB yield surface from trial stress vio-
lating tensile yield condition (ψ = 0 is assumed):
σtr violates T1 condition (TC corner)
σtr′

violates both T1, T2 conditions (TC corner)
σtr∗ violates T1 condition (TE corner).

4. Complex return mapping scheme
Here, only the return from an inadmissible trial stress
space is discussed. As already explained in the pre-
vious sections, a direct return of the trial stress for
the condition σtr

1 > σt onto the HB yield surface
fails as the HB yield function is undefined. The re-
turn mapping therefore begins with evaluating the
tensile condition (15) employing the reduced tensile
strength σt ≤ σt − σ∗. Violating this condition calls
a non-associated return onto the Rankine yield func-
tion controlled by the plastic potential formulated for
the HB model. If the stress point violates the HB
criterion, a non-associated return from the point on
the Rankine surface onto the HB yield surface fol-
lows, see Figure 2. Otherwise, associated plasticity
is adopted for bringing the original trial stress back
onto the Rankine tensile yield surface, recall the last
paragraph in Section 3.1.

Special attention should be paid to the intersection
of T1 and f13 surfaces with reference to Figure 5.
The proposed algorithm first predicts that the return
mapping will continue to the HB surface after being
preceded by a non-associated return to the tensile
yield surface. If no violation of the HB criterion is
detected after the first step, the associated return of
the trial stress to the tensile surface is called. Af-
ter this attempt, violation of the HB condition may
eventually occur. If it does, the HB criterion is substi-
tuted with the linear function fsub, see Equation (46),
which satisfies T1 condition (σ1 = σt), and the trial
stress is shifted to the intersection of two planes using
multi-surface plasticity.

fsub(σ3) = σt − σ3 − σci

(
s−mb

σt

σci

)a

(46)

It is appropriate to point out that reordering of the

principle stresses, and thus detection of the triaxial
corner return, may occur during the described steps.
In such a case, the above two-step procedure would
also be performed in the framework of multi-surface
plasticity. A graphical representation is evident in
Figure 3. The complete return mapping scheme in-
cluding all potential scenarios is then summarized in
Figure 4.

Figure 4. Full return mapping scheme including all
potential scenarios.
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Figure 5. Sequence of the return attempts leading to correct stress lying on the intersection of T1 and f13 (ψ = 0)
plotted in the deviatoric planes (top) and σm − J planes (bottom).

5. Conclusions
A detailed description of the return mapping algorithm
for the case of inadmissible trial stresses, here defined
as the stress space for which σtr

1 > σt, is presented.
To the authors knowledge the number of contribu-

tions addressing this issue is limited. In [7] a smooth
variant of the HB model is presented and the tension
cut-off condition is introduced via an allowable tensile
mean stress instead of actual tensile strength. In [8, 9]
the authors also deal with the issue of tensile stresses.
However, the approach is not explained in all details
and its effectivity is not obvious.

The present approach exploits simplicity of the
Rankine yield surface, which is often used as a ten-
sion cut-off criterion. The return of inadmissible trial
stresses to the main sector or triaxial edges of the HB
yield surface assumes two consecutive steps. First, the
stress is brought back to the Rankine yield surface
defined by the reduced tensile strength. Second, the
implicit iterative procedure for shifting the stress onto
the HB surface is applied. Both steps assume the
same orientation of the plastic corrector. It is shown,
that the prediction of all possible situations, which
can lead to exceeding the tensile strength and failing
the solution, results in the complex algorithm further
complicated by the assumption of associated plasticity
for tensile yielding. This assumption becomes active
once the two-step return procedure onto the HB sur-
face fails and the trial stress is then brought back
directly to the Rankine yield surface.

This algorithm was implemented into Geo5 FEM
software and thoroughly tested.
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