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Chapter 1

Basic notation, invariant stress and
strain measures, Hooke’s law

The present chapter introduces the basic notation adopted in the formulation of material models im-
plemented in the GEO5 FEM software. Unlike the results displayed by the program the formulations
presented in this manual consider standard elasticity sign convention with tension being pos-
itive. Both tensor and matrix-vector notation is used with matrices defined as capital bold letters A
and vectors defined as small italic letters a. Standard indicial notation is used to identify 4th order
Aijkl, 2nd order aij and 1st order ai, respectively with i, j, k,= 1, 2, 3.

1.1 Cartesian stresses and strains

In general three-dimensional stress space (3D) the stress and strain fields associated with standard
Cartesian coordinated system x, y, z can be presented in terms of

• Stress and strain tensors

[σij] =

 σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (1.1)

[εij] =

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 =

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 (1.2)

σij = σji, εij = εji (1.3)

• Stress and strain vectors

σT = {σ}T = {σx, σy, σz, τyz, τzx, τxy} (1.4)

εT = {ε}T = {εx, εy, εz, γyz, γzx, γxy} (1.5)

γij = 2εij for i 6= j (1.6)

where σi, εi represent the normal stress and strain components and τij and γij stand form shear stresses
and engineering strains, respectively. In GEO5 FEM the analysis is performed assuming either plane-
strain or axisymmetric state of stress. To this end, the x, z coordinate system is adopted to represent
the two-dimensional (2D) solution plane so that

σT = {σ}T = {σx, σz, τyz, σy} (1.7)

εT = {ε}T = {εx, εz, γxz} (1.8)
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1.2 Principal stresses and principal strains

It is often desirable to introduce the principal stresses and strains acting on the planes on which the
shear stress and strain components are zero. The principal stresses σ1, σ2, σ3 in particular are solution
of the eigenvalue problem

det [σij − σkδij ] =

∣∣∣∣∣∣
σ11 − σk σ12 σ13

σ21 σ22 − σk σ23

σ31 σ32 σ33 − σk

∣∣∣∣∣∣ = 0 (1.9)

Usually, the principal stresses are ordered to satisfy σ1 ≥ σ2 ≥ σ3 and are found from the solution of
the following cubic equation

−σ3
k + I1σσ

2
k − I2σσk + I3σ = 0 (1.10)

where I1σ, I2σ and I3σ are stress invariants introduced in Section 1.5.
The principal strains can be derived similarly and for linear elastic and isotropic materials their

direction coincides with the direction of the principal stresses.

1.3 Volumetric and deviatoric stresses and strains

Volumetric σm, εv and deviatoric sij , eij stresses and strains are introduced to describe deformations
associated with the change in volume and shape, respectively, and are defined as

• Mean stress

σm =
1

3
σii =

1

3
(σx + σy + σz) =

1

3
(σ1 + σ2 + σ3) = mTσ (1.11)

• Volumetric strain
εv = εii = εx + σy + εz = ε1 + ε2 + ε3 = 3mTε (1.12)

• Deviatoric stresses

sij = σij − σmδij (1.13)

s = σ − 3mσm = PQσ (1.14)

I1s = sii = sx + sy + zz = 0 (1.15)

• Deviatoric strains

eij = εij −
1

3
εvδij (1.16)

e = ε−mεv = PQε (1.17)

I1e = eii = ex + ey + ez = 0 (1.18)

where δij is the Kronecker symbol (δij = 1 if i = j and δij = 0 otherwise) and I1s, I1e are the first
deviatoric stress and strain invariants. The operators P,Q,m are defined as

• Operator matrix P

P = [P] =



2/3 −1/3 −1/3 0 0 0

−1/3 2/3 −1/3 0 0 0

−1/3 −1/3 2/3 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2



(1.19)
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• Operator matrix Q

Q = [Q] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1/2 0 0

0 0 0 0 1/2 0

0 0 0 0 0 1/2



(1.20)

• Operator vector m

mT =

{
1

3
,
1

3
,
1

3
, 0, 0, 0

}
(1.21)

• Mutual relations

mTQm = mTm =
1

3
PQP = P PQ = QP→ Q−1PQ = P PQm = Pm = 0 (1.22)

Note that these operators attain a slightly different forms when adopted with Eqs. (1.7), (1.8) in 2D
analyses.

1.4 Deviatoric stress and strain invariants

The following deviatoric stress and strain measures called invariants (do not depend on the choice of
the coordinate system) prove useful in the formulation of nonlinear material models used in GEO5
FEM.

• 2nd order stress invariants (equivalent deviatoric stress measures)

J =
√
I2s =

√
J2 =

√
1

2
sijsij =

√
1

2
sTQ−1s =

√
1

2
σTPσ (1.23)

=
1√
6

[
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

] 1
2 (1.24)

q =
√

3J (1.25)

Note that:
∂J

∂s
=

Q−1s

2J
=

Q−1PQσ

2J
=

Pσ

2J
=
∂J

∂σ
(1.26)

• 3rd order deviatoric stress invariant
I3s = det [s] (1.27)

• 2nd order strain invariants (equivalent deviatoric strain measures)

Ed =
√

2eijeij =
√

2eTQe =
√

2εTQPQε (1.28)

=
2√
6

[
(ε1 − ε2)2 + (ε1 − ε3)2 + (ε2 − ε3)2

] 1
2 (1.29)

γeq =
√

3Ed (1.30)

γs =
1

2
γeq =

√
3

2
Ed (1.31)
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1.5 Cartesian stress invariants

Apart from already introduced deviatoric invariant stress measures the 1st (I1σ), 2nd (I3σ), and 3rd
(I3σ) stress invariants expressed in terms of Cartesian stresses will also appear in some definitions.
These are given by

I1σ = σii = σ11 + σ22 + σ33 (1.32)

I2σ =
1

2

(
I2

1σ − σijσij
)

= (1.33)

=
1

2

[
(σ11 + σ22 + σ33)2 −

[
σ2

11 + σ2
22 + σ2

33 + 2σ2
12 + 2σ2

13 + 2σ2
23

)]
I3σ = det[σ] (1.34)

The introduced stress measures σm, J2, I3s can be written in terms of the above invariants as

σm =
1

3
I1σ (1.35)

J2 =
1

3
I2

1σ − I2σ (1.36)

I3s =
2

27
I3

1σ −
1

3
I1σI2σ + I3σ (1.37)

1.6 Lode’s angle θ

It will be seen that a given stress state can be visualized in the principal stress space with the help of
the mean stress σm, the equivalent deviatoric stress J and so called Lode’s angle provided by

θ = tan−1

[
1√
3

(
2
σ2 − σ3

σ1 − σ3
− 1

)]
= −1

3
arcsin

(
3
√

3

2

I3s

J3

)
(1.38)

It ranges from −30◦ to 30◦. The limiting values correspond to states of triaxial extension and com-
pression.

1.7 Principal stresses in terms of σm, J2, θ

It is seen in Fig. 1.1 that the conveniently chosen stress measures σm, J2, θ have geometric meaning in
the principal stress space. It is now clear that Lode’s angle defines the orientation of the current stress
state in the deviatoric plane. Note that most of the nonlinear models implemented in GEO5 FEM
show dependency on Lode’s angle θ. Because σm is a measure of the distance along the hydrostatic

3σm 

-σ1 

σ1=σ2=σ3 
hydrostatic axis 

P 
-σ3 

-σ2 

-σ1 -σ2 

-σ3 

σ1=σ2=σ3 

hydrostatic
axis 

P 

2 JP 

 
θP 

P  

Figure 1.1: Graphical representation of stress point P [σ1, σ2, σ3] in deviatoric plane

axis (space diagonal) and J measures the distance from the hydrostatic axis in the deviatoric plane it
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becomes possible to express the principal stresses as

σ1 = σm +
2√
3
J sin

(
θ +

2π

3

)
σ2 = σm +

2√
3
J sin (θ)

σ3 = σm +
2√
3
J sin

(
θ − 2π

3

)
σ1 > σ2 > σ3

1.8 Linear elastic constitutive law - Hooke’s law

All material models implemented in GEO5 FEM assume isotropic materials that can described by
only two material parameters such as Young’s modulus E and Poisson’s ratio ν. The linear elastic
stress-strain relationship (Hooke’s law) can be written as



εx
εy
εz
γyz
γzx
γxy


=



1

E
− ν
E

− ν
E

0 0 0

− ν
E

1

E
− ν
E

0 0 0

− ν
E

− ν
E

1

E
0 0 0

0 0 0
2(1 + ν)

E
0 0

0 0 0 0
2(1 + ν)

E
0

0 0 0 0 0
2(1 + ν)

E





σx
σy
σz
τyz
τzx
τxy


(1.39)

where the 6 × 6 matrix is termed the compliance matrix and is usually denoted as C. An inverse
relationship in terms of the stiffness matrix D = C−1 attains the form



σx
σy
σz
τyz
τzx
τxy


=

E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0

0 0 0
1− 2ν

2
0 0

0 0 0 0
1− 2ν

2
0

0 0 0 0 0
1− 2ν

2





εx
εy
εz
γyz
γzx
γxy


(1.40)

Employing tonsorial notation the above equations receive the following forms

εij = Cijklσkl (1.41)

Cijkl =
1 + ν

E

[
δikδjl −

v

1 + ν
δijδkl

]
(1.42)

σij = Dijklεkl (1.43)

Dijkl =
Eν

(1 + ν)(1− 2ν)
δijδkl +

E

2(1 + ν)
[δikδjl + δilδjk] (1.44)
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It is often more convenient to introduce another two parameters, namely the bulk modulus K and the
shear modulus G. The following mutual relationships can be established

G =
E

2(1 + ν)
=

3(1− 2ν)

2(1 + ν)
K =

3KE

9K − E

K =
E

3(1− 2ν)
=

GE

3(3G− E)
=

2(1 + ν)

3(1− 2ν)
G

E = 2G(1 + ν) = 3K(1− 2ν) =
9KG

3K +G

ν =
E

2G
− 1 =

3K − 2G

2(3K +G)
=

3K − E
6K

This allows us to write the stiffness matrix D in terms of K and G as

D =



K +
4

3
G K − 2

3
G K − 2

3
G 0 0 0

K − 2

3
G K +

4

3
G K − 2

3
G 0 0 0

K − 2

3
G K − 2

3
G K +

4

3
G 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G


(1.45)

When splitting the Cartesian stresses and strains into their deviatoric and volumetric parts we arrive
at relatively simple forms of Hook’s law

sij = 2Geij (1.46)

s = 2GQe (1.47)

σm = Kεv = 3KmTε (1.48)

The following relationships between deviatoric invariant stress and strain measures are also available

J = GEd (1.49)

q = Gγeq (1.50)

q = 2Gγs (1.51)

Recall also the strain energy defined as

W (ε) =
1

2
σε =

1

2
{σ}T{ε} =

1

2
(JEd + σmεv)

=
1

2
Eε2 =

1

2
{ε}T [D] {ε} =

1

2

(
GE2

d +Kε2
v

)
(1.52)

σ

ε

W

Figure 1.2: One-dimensional representation of strain energy density W (ε)
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1.9 Depth dependent stiffness

Various models in GEO5 FEM allow for adjusting the soil stiffness with depth as

Eh = E + kdh (1.53)

where E is the originally assigned Young’s modulus of a given soil and kd is the rate with which the
soil stiffness increases with depth. The depth h is the vertical distance from the terrain surface. This
option is not available to Hardening soil, Soft soil, Modified Cam-clay, Generalized Cam-clay, and
Hypoplastic models where the stiffness evolves with the current value of the mean effective stress σm.

1.10 Special stress and strain states assuming linear elasticity

As two illustrative examples we present some specific stress-strain relationships associated with basic
laboratory tests such as drained triaxial compression and oedometric compression.

1.10.1 Triaxial compression

Consider the following two loading steps:

1. Isotropic compression: σ1 = σ2 = σ3 = σm = σ0
m

2. Triaxial compression: ∆σ3 = −∆σv 6= 0,∆σ1 = ∆σ2 = ∆σr = 0

∆σ
v

∆
σ

  
=

 0
r

Loading

path

−σ m

J

p

3

1

1/2

−ε3

1

E

J, q3
1/2

(a) (b) (c)

Figure 1.3: a) Triaxial compression step, b) loading path, c)Hooke’s law

The triaxial compression step in Fig. 1.3 generates the following state of stress and strain

σm =
1

3
(2σ1 + σ3) (1.54)

εv = 2ε1 + ε3 (1.55)

J =

√
3

3
(σ1 − σ3) =

1√
3
q (1.56)

Ed =
2
√

3

3
(ε1 − ε3) =

1√
3
γeq =

2√
3
γs (1.57)

σ3 = −p+ ∆σ3, σ1 = σ2 = −p, ∆σ1 = ∆σ2 = 0 (1.58)

(1.59)

Because

J i+1 =

√
3

3
(σi1 − σi3 −∆σ3) = J i + ∆J (1.60)

Ei+1
d =

2
√

3

3
(εi1 + ∆ε1 − εi3 −∆ε3) = Eid + ∆Ed (1.61)
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we get the stress and strain increments in the form

∆σm =
∆σ3

3
(1.62)

∆J = −
√

3∆σm (1.63)

∆εv = 2∆ε1 + ∆ε3 =
∆σm
K

= − ∆J√
3K

(1.64)

∆Ed =
∆J

G
=

3

2
√

3G

1

(∆ε1 −∆ε3)
(1.65)

Combing Eqs. (1.64) and (1.65) provides

√
3∆J = − 9KG

3K +G
∆ε3 = −E∆ε3 = ∆q (1.66)

1.10.2 Oedometric compression

Consider the following loading and constrain conditions:

• Prescribed loading: −∆σ3 = ∆σv 6= 0

• Prescribed constraints: ∆ε1 = ∆ε2 = 0

• Measured and computed variables: −∆ε3 = εv 6= 0,∆σ1 = ∆σ2 6= 0

∆σ
v

ε
  

=
 0

r

3ε

1

3σ

oed
E

(a) (b)

Figure 1.4: a) Oedometric test setup, b) Hooke’s law

Adopting Eq. (1.40) and setting σx = σ1, σy = σ2, σz = σ3, εz = ε3 we get

∆σ1 =
νE

(1+ν)(1− 2ν)
∆ε3 (1.67)

∆σ2 =
νE

(1+ν)(1− 2ν)
∆ε3 (1.68)

∆σ3 =
(1− ν)E

(1+ν)(1− 2ν)
∆ε3 =

(
K +

4

3
G

)
ε3 = Eoed∆ε3 (1.69)

where Eoed is the oedometric modulus when limiting attention to elasticity. Inverting the above
equations or simply using Eq. (1.39) gives

σ1 = σ2 =
ν

1− ν
σ3 = K0σ3 (1.70)

where K0 is the lateral earth pressure at rest. Note that in most practical applications the elastic
coefficient of lateral earth pressure at rest is replaced by Jaky’s formula

K0 = 1− sinϕ (1.71)
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where ϕ is the angle of internal friction. For overconsolidated soils the following representation is also
available in GEO5 FEM

K0 = 0.5(OCR)0.5 (1.72)

where OCR is the overconsolidation ratio described in Section 1.13.

1.11 Void ratio e

An important parameter in soil mechanics which also appears in the formulation of several advanced
constitutive models is the void ratio. The evolution of this parameter can be tied to the evolution of
the volumetric strain. It represents the current state of soil and is defined as the ratio of the volume
of pores Ωp and the volume of the solid phase (grains/matrix) Ωm

e =
Ωp

Ωm
(1.73)

where Ω = Ωp + Ωm = Ωm(1 + e) is the total volume of the porous skeleton, where (1 + e) is called
the specific volume. Assuming incompressibility of the solid phase, i.e., Ωm = 0, we write the change
in void ratio as

ė =
Ω̇p

Ωm
= (1 + e)

Ω̇p

Ω
(1.74)

Because of incompressibility of the solid phase (Ω̇p = Ω̇) Eq. (1.74) rewrites as

ė

1 + e
=

Ω̇

Ω
= ε̇v (1.75)

Integrating Eq. (1.75) yields

εv − εinv = ln

(
1 + ein
1 + e

)
(1.76)

Assuming small strain theory the term on the right-hand side of equation(1.76) can be linearized via
Taylor series to get

εv − εinv ≈
e− ein
1 + ein

(1.77)

To update the initial void ratio, the GEO5 FEM program assumes εinv = ε1ststage
v (the volume strain

at the end of the 1st calculation stage, which is assumed to set the initial stress state) so that

e = (1 + ein)(εv − ε1ststage
v ) + ein (1.78)

where ein is the initial void ratio assumed again at the end of the 1st calculation stage. Providing
the initial void ratio is not specified, neither inputted nor calculated in dependence of the selected
constitutive model, the value of e = 0 is considered. When the initial void ratio ein is specified and
the soil is introduced already in the 1st calculation stage, we keep e = ein within this stage.

1.12 Dilation angle ψ

The angle of dilation controls an amount of plastic volumetric strain developed during plastic shearing
and is assumed constant during plastic yielding. The value of ψ = 0 corresponds to the volume
preserving deformation while in shear.

Clays (regardless of overconsolidated layers) experience a relatively low dilation (ψ ≈ 0). As for
sands, the angle of dilation depends on the angle of internal friction. For non-cohesive soils (sand,
gravel) with the angle of internal friction ϕ > 30◦ the value of dilation angle can be estimated as
ψ = ϕ − 30◦. A negative value of dilation angle is acceptable only for rather loose sands. In most
cases, however, the assumption of ψ = 0 can be adopted.
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The value of dilation angle ψ can also be estimated from Rowe’s dilation theory as

sinψm =
sinϕ− sinϕcv

1− sinϕ sinϕcv
(1.79)

where ϕ is the peak angle of internal friction and ϕcv represents the angle of internal friction at critical
state. Such an approach is adopted for example in the formulation of Hardening soil model where ϕcv
is derived from

sinϕcs =
sinϕ− sinψ

1− sinϕ sinψ
(1.80)

where ψ is the peak dilation angle. Because the soil cannot expand its volume infinitely, the dilation
is typically terminated when the current void ration e exceeds an allowable limit emax.

1.13 Overconsolidaion ratio OCR and preoverburden pressure POP

The concept of overconsolidation ratio allows us to take into consideration the stress history, e.g.,
unloading-reloading. In one-dimensional consolidation such as oedometer test it is commonly observed
that the response of a soil at the initial stage of loading is considerably stiffer in comparison to a
normally consolidated soil. Such a soil is termed overconsolidated and can be characterized by a
overconsolidation ratio OCR given by

OCR =
σpcz
σ0
z

(1.81)

where σ0
z is the current in-situ stress, e.g., the initial geostatic stress introduced via the K0 procedure

and σpcz is the preconsolidation vertical stress, i.e., the maximum vertical stress the soil has witnessed
in the past. For constant OCR the evolution of preconsolidation stress σpcz appears in Fig. 1.5. The
value of σpcz can also be determined via a preoverburden pressure POP as

σpcz = σ0
z − POP, assuming σ0

z < 0, POP > 0 (1.82)

as shown in Fig. 1.5. When computing the preconsolidation stress σpcz from POP we arrive at a
variable OCR profile as plotted in Fig. 1.5(c). An illustrative example is presented in Fig. 1.6 for five

σz

σpc
OCR = 

σ

z

σz
0 pc

z

POP

σ σ
pc

z
0

z

OCR

variable

OCR

constant

(a) (b) (c)

Figure 1.5: Vertical preconsolidation stress based on: a) overconsolidation ratio OCR, b) preoverbur-
den pressure POP , c) Variation of OCR with depth

different values of POP . The current in-situ stress σ0
z is derived from gravity loading as

σ0
z = −γ z (1.83)

where γ is the self-weight of the soil set equal to 20kN/m3 in the present example and z is the vertical
coordinate shown in Fig. 1.5(a).

As an example of application of in-situ measurements we present for illustration two expressions
derived from a dilatometer test

OCR = (0.5KD)1.56, for ID < 1.2, Totani et al. [77] (1.84)

OCR = 0.225K1.35÷1.67
D , Lacasse and Lunne [48] (1.85)
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Figure 1.6: Variation of OCR derived from application of Eqs. (1.81) and (1.82) for five different
values of POP

where KD is the measured horizontal stress index.

In GEO5 FEM program the overconsolidation ratio serves to adjust the initial value of precon-
solidation pressure characterizing the evolution of a cap yield surface in advanced plasticity models,
i.e., the Modified Cam-clay, Generalized Cam-clay, Hardening soil and Soft soil models. This op-
tion, however, is available to initial stress states generated with the help of the K0 procedure, see
Section 1.14. To this end we start from the definition of a one-dimensional preconsolidation stress
using either Eq. (1.81) or Eq. (1.82) with the in-situ vertical stress σ0

z provided by Eq. (1.83). Be-
cause the preconsolidation stress state is expected to be reached through a normal consolidation, the
corresponding horizontal stress σpcx is provided by

σpcx = KNC
0 σpcz (1.86)

σpc3 = σpcz , σ
pc
1 = σpc2 = σpcx , recall Eq. (1.70) (1.87)

where KNC
0 is the K0 value of a normally consolidated soil. As mentioned in Section 1.14, this value

should be specified when defining an arbitrary material model to be adopted in the K0 procedure. In
material models where KNC

0 is one of the model parameters, e.g., the Soft soil model or potentially
the Hardening soil model, this value is automatically accepted by the model. For the Modified and
Generalized cam clay models, the value of KNC

0 can be estimated from Eq. (1.92).

In light of one-dimensional (oedometer) consolidation we get the preconsolidation mean σpcm ,
Eq. (1.54), and equivalent deviatoric Jpc, Eq. (1.56), stresses in the form

σpcm =
1

3

(
1 + 2KNC

0

)
σpcz (1.88)

Jpc =

√
3

3
|σpcx − σpcz | (1.89)

The above two definitions of invariant stress measures can be then substituted into the cap failure
criteria of advanced plasticity models to give the preconsolidation pressure pc. Referring to Chap-
ters, 8, 9, 11 and 12 the following results are obtained

1. Hardening Soil model - KNC
0 is either directly specified as one of the input parameters, thus

known, or can be estimated based on the Jaky formula (1.105) as the peak angle of internal
friction ϕ is one of the input parameters.

• Cap yield surface

f =
3(Jpc)2

χ2M2
+ (σpcm )2 − p2

c = 0, χ = 1 in K0 procedure (1.90)
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• Preconsolidation pressure

pc =

√
3(Jpc)2

M2
+ (σpcm )2 (1.91)

2. Soft soil model - KNC
0 is one the input parameters, the model parameter M is provided by

Brinkgreve [70] as

M =
√

3

√√√√√√√ (1−KNC
0 )2

(1 + 2KNC
0 )2

+

(1−KNC
0 )(1− 2ν)

(
λ∗

κ∗
− 1

)
(1 + 2KNC

0 )(1− 2ν)
λ∗

κ∗
− (1−KNC

0 )(1 + ν)

(1.92)

where ν is the Poisson ratio and κ∗, λ∗ are stiffness parameters all stored in the list of input
parameters, see Chapter 9 for further details.

• Cap yield surface

f =
(Jpc)2

χ2M2
+ (σpcm − c cotϕ)(σpcm + pc) = 0, χ = 1 in K0 procedure (1.93)

where c, ϕ are the cohesion and angle of internal friction, respectively.

• Preconsolidation pressure

pc = − (Jpc)2

M2(σpcm − c cotϕ)
− σpcm (1.94)

3. Modified Mohr-Coulomb model - formulation of the cap yield surface is identical to that in
the Soft soil model.

4. Modified Cam-clay model - the slope of the critical state line Mcs is one of the input pa-
rameters so that the associated value of KNC

0 , if not directly inputted, might be calculated from
Eq. (1.92) while setting M = Mcs and subsequently used to setup the K0 procedure.

• Cap yield surface

f =
(Jpc)2

M2
cs

+ (σpcm )2 + (σpcm )pc = 0 (1.95)

• Preconsolidation pressure

pc = − (Jpc)2

M2
csσ

pc
m
− σpcm (1.96)

5. Generalized Cam-clay model - the model parameter Mϕcs is provided by

Mϕcs =
2
√

3 sinϕcs
3− sinϕcs

(1.97)

where ϕcs is the critical angle of internal friction. The value of KNC
0 can be either inputted,

or again estimated, similarly to the Modified Cam-clay model, from Eq. (1.92) when setting
M = Mϕcs . One may also adopt the Jaky formula (1.105) as the peak angle of internal friction
ϕ is one of the input parameters.

• Cap yield surface

f =
(Jpc)2

χ2M2
ϕcs

+ (σpcm )2 + σpcmpc, χ = 1 in K0 procedure (1.98)

• Preconsolidation pressure

pc = − (Jpc)2

M2
ϕcsσ

pc
m
− σpcm (1.99)
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1.14 K0 procedure to generate initial (geostatic) stress state

It is often desirable to generate an initial stress state that differs from the one provided by standard
elasticity analysis. It is a well known fact that in rock analysis the lateral earth pressure often exceeds
the vertical stress as a consequence of various deformation processes that took place in the past. Such
a stress state, however, cannot be attained for a general class of materials when adopting classical
constitutive equations of elasticity. Recall that in the case of linear elasticity and assuming standard
boundary conditions (εx = 0 in the case of a homogeneous stress state) the following relation holds

σx =
ν

1− ν
σz (1.100)

where σx and σz represent the lateral and vertical normal stress, respectively, and ν is the Poisson
ratio. Equation (1.100) can be generalized to get

σx = K0σz (1.101)

where K0 is known as the coefficient of lateral earth pressure at rest introduced already in Sec-
tion 1.10.2. Thus setting

K0 =
ν

1− ν
(1.102)

corresponds to a standard elasticity approach. In the plane strain and axisymmetric analyses the third
principal stress follows from the geometrical symmetry

σy = σx = K0σz. (1.103)

The stress τxy is obviously zero.
Adopting Eq. (1.102) the K0 variable may in general attain values ranging from 0 to 1. To overcome

this limitation most geotechnical software products offer an option called the K0 procedure that allows
an arbitrary selection of K0 when generating an initial geostatic stress state prior to any construction
stage (stress state that exists in the earth body prior to any mankind activities).

For normally consolidated soils the value of K0 = KNC
0 . The most common approximation is the

Jaky formula [39]

KNC
0 =

1− sinϕ

1 + sinϕ

(
1 +

2

3
sinϕ

)
(1.104)

assumed usually in the form
KNC

0 = 1− sinϕ (1.105)

where ϕ is the effective angle of internal friction. Another estimate available in [75, 74] reads

KNC
0 =

√
2− sinϕ√
2 + sinϕ

(1.106)

For overconsolidated soils a general form of K0 is provided by, recall Eq. (1.72),

K0 = KNC
0 OCRα (1.107)

α = 0.5, Meyerhof [56]

α = sinϕ, Mayne&Kulhawy [54]

where OCR is the overconsolidation ratio described in Section1.13. Experimental evidence for the
K0 − OCR relationship can be found for example in [76]. Similarly to Section 1.13, the dilatometer
measurements can be exploited to estimate the value of K0 employing the measured horizontal stress
index KD as

K0 =
KD

1.5

0.47

− 0.6, Marchetti [53] (1.108)

K0 = 0.34K0.44÷0.64
D , Lacasse and Lunne [47] (1.109)
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Such a test was numerically simulated in [12]. As a general conclusion for a reliable determination
of the K0 value the authors recommend combination of laboratory tests, field measurements and
numerical analysis. While this may play a significant role for cohesive soils such as stiff clays, the
cohesionless soils such as sands are usually assumed normally consolidated, i.e., OCR = 1,K0 = KNC

0 .

PLAXIS [63] finite element program offers a simple two-step loading/unloading procedure with
the assumption of an elastic behavior to estimate the horizontal overconsolidated stress σ0

x associated
with the in-situ vertical stress σ0

z :

1. The soil is first normally consolidated to a stress σpcz , i.e., σpcx = KNC
0 σpcz

2. Next, the soil is elastically unloaded, i.e., ∆σx =
ν

1− ν
∆σz, to an overconsolidated state σ0

x, σ
0
z

−σ0
x

−σ z

−σ z
pc

−σ x

K
0
NC

K
0

elastic

unloading

1−ν

ν

1

1

−σ z
0

primary loading

Figure 1.7: Loading/unloading sequence to define overconsolidated state of stress

A graphical presentation of individual steps is plotted in Fig. 1.7. As suggested in Section 1.13
there are two options to generate the overconsolidated state of stress:

1. Using OCR - consider the unloading path together with Eqs. (1.81) and (1.86) to get

∆σx
∆σz

=
ν

1− ν
=
σpcx − σ0

x

σpcz − σ0
z

=
KNC

0 OCRσ0
z − σ0

x

(OCR− 1)σ0
z

(1.110)

σ0
x =

(
KNC

0 OCR− ν

1− ν
(OCR− 1)

)
︸ ︷︷ ︸

K0

σ0
z (1.111)

2. Using POP - consider the unloading path together with Eqs. (1.82) and (1.86) to get

∆σx
∆σz

=
ν

1− ν
=
σpcx − σ0

x

σpcz − σ0
z

=
KNC

0 (σ0
z + POP )− σ0

x

(σ0
z + POP )− σ0

z

(1.112)

σ0
x = KNC

0 σ0
z + POP

(
KNC

0 − ν

1− ν

)
(1.113)

Notice that both expressions (1.111) and (1.113) reduce to σ0
x = KNC

0 σ0
z for normally consolidated

soils with OCR = 1, POP = 0. Point out that in GEO5 FEM the value of KNC
0 is introduced when

setting up the material model within the K0 procedure. The Jaky formula (1.105) is usually adopted
for non-cohesive soils, while cohesive soils typically assume the value of KNC

0 based on Eq. (1.102).
When the peak angle of internal friction ϕ is not one of the input parameters, such as the Modified
Cam-clay model, the value of KNC

0 can be estimated by solving Eq. (1.92).
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1.14.1 Restriction on combination of parameters KNC
0 , K0, OCR

As pointed out in the previous Section 1.13 the degree of overconsolidation is projected into the defi-
nition of preconsolidation pressure pc determining the initial size of the compression cap in advanced
plasticity models. This step requires introduction of the coefficient of lateral earth pressure at rest
of a normally consolidated soil KNC

0 and one of the two overconsolidation parameters, either OCR
or POP . The structure of governing equations makes this procedure applicable only when generat-
ing the initial stress state σ0 with the K0 procedure. Note that one of the options in GEO5 FEM
is to specify both OCR and K0 arbitrarily without considering their mutual relation, e.g., through
Eq. (1.107) or (1.111), which may lead to an unacceptable stress state. Such a stress state might
be identified with the preconsolidation pressure pc(K

NC
0 , OCR) pertinent to the original normally

consolidated soil, recall Section 1.13, being smaller than the preconsolidation pressure p0
c(K0) associ-

ated with the overconsolidated soil, e.g., a soil underwenting some sort of unloading from the original
normally consolidated state.

It turns out that regardless of the material model an allowable stress state requires

|σpcm | ≥ |σ0
m| (1.114)

where σpcm and σ0
m are the mean effective stresses associated with normally consolidated and overcon-

solidated stress states, respectively. In light of K0 procedure and the notation introduced in previous
sections they read

σpcm =
1

3

(
1 + 2KNC

0

)
OCRσ0

y (1.115)

σ0
m =

1

3
(1 + 2K0)σ0

y (1.116)

where σ0
y is the initial vertical stress given, e.g., by Eq. (1.83). These definitions when introduced

into Eq. (1.114) thus provide some restrictions on the combination of parameters KNC
0 ,K0 and OCR

expressed as follows

K0 ≤
1

2

((
1 + 2KNC

0

)
OCR− 1

)
or OCR ≥ 1 + 2K0

1 + 2KNC
0

(1.117)

While these inequalities should be satisfied in general, they are checked in GEO5 FEM only for
advanced constitutive models with the compression cap including the Hypoplastic clay model.

As an illustrative example we now present application of Eq. (1.117)1 to the Modified Cam-clay
model. Recall Eqs. (1.96) to write the preconsolidation pressures associated with the mean stresses in
Eqs. (1.115) and (1.115) as

pc = − (Jpc)2

M2
csσ

pc
m
− σpcm (1.118)

p0
c = − (J0)2

M2
csσ

0
m

− σ0
m (1.119)

where the equivalent deviatoric stresses are, with reference to Eqs. (1.89) and (1.86), provided by

Jpc =

√
3

3
|
(
KNC

0 − 1
)
OCRσ0

y | (1.120)

J0 =

√
3

3
| (K0 − 1)σ0

y | (1.121)

Adopting Eq. (1.117)1 and setting, e.g., KNC
0 = 0.5 and OCR = 2 gives K0 ≤ 1.5. The corresponding

stresses are listed Table 1.1 for a specific choice of Mcs = 1, σ0
y = −100kPa→ σpcm − 133.3 kPa, Jpc =

86.6 kPa, ppcc = 189 kPa.
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Table 1.1: Testing influence of condition (1.117)1

K0 σ0
m J0 p0

c

1 -100 0 100< ppcc
2 -166.7 100 200> ppcc

It is clear that setting K0 = 2 violates Eq. (1.117)1 and thus also Eq. (1.114) suggesting in turn an
unacceptable initial geostatic stress state σ0. A graphical representation is plotted in Fig. 1.8, where
p1
c , p

2
c represent p0

c for K0 = 1 and K0 = 2, respectively.

Figure 1.8: Example of acceptable (σ0
m = σ1

m) and unacceptable (σ0
m = σ2

m) initial stress state

1.15 Mobilized shear strength Rmob

Next to the equivalent deviatoric plastic strain Epld the mobilized shear strength Rmob is another
parameter to provide a graphical testimony about accessibility of a structure to a catastrophic failure.
It gives the degree of shear strength mobilization in light of the critical or limit shear yield surface.

Considering models of the Mohr-Coulomb type this parameter is given by

Rmob =
Mϕm

Mϕ
× 100 [%] (1.122)

where Mϕ represents the slope of the yield surface projected into the meridian plane and Mϕm is the
slope associated with currently mobilized angle of internal friction ϕm, which in turn depends on the
current stress state [σcm, J

c], see Fig. 1.9.

ϕM

ϕM
m

−σm
−σm

1

J

c cotgϕ

f

1

J
c

c

Figure 1.9: Graphical representation of mobilized shear strength

Similarly we proceed with the Modified and Generalized Cam-clay models where the slope Mϕ

is now replaced with the slopes representing the critical state Mcs and g in Figs. 11.2 and 12.1,
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respectively. These figures also suggest that the mobilized shear strength may exceed 100% if the
material point is found above the critical state line within the supercritical region. At critical state
we get Rmob = 100%.

When the limit shear yield surface is formulated on the basis of Matsuoka-Nakai failure criterion
is appears advantageous to compute the mobilized shear strength directly in terms of the mobilized
friction angle as

Rmob =
sinϕm
sinϕ

× 100 [%] (1.123)

where ϕ is the peak friction angle and ϕm is the mobilized friction angle associated with, see ahead
Eq. (8.48),

sinϕm =
√
Icσ (1.124)

where the current value of Icσ follows from Eqs. (8.24) - (8.27). Such a formulation is adopted for the
Hardening soil, Soft soil, and Hypoplastic clay models. In the latter model the peak internal friction
is replaced with the critical state friction angle ϕcs.

In some applications, e.g., when performing the analysis in undrained conditions, the undrained
angle of internal friction ϕu = 0. This is the case of Mises and Tresca material models where the
mobilized shear strength is then provided by

Rmob =
Jc

Jf
× 100 [%] (1.125)

where Jf represents the value of equivalent deviatoric stress for a material point sitting on the yield
surface. This formulation is also adopted for the Hoek-Brown model where Jf is derived for the current
value of mean stress σcm.
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Chapter 2

Material models and analyses types

The material models implemented in GEO5 FEM are classified in light of the type of analysis as

• Stress-strain analysis

1. Elastic models can be used to perform standard elastic analysis with no account for
evolution of plastic strains. Therefore, these models are typically employed to check the
computational model, i.e., geometry, finite element mesh, boundary conditions, construction
sequence, etc. Further details are provided in Chapter 3

– Linear elastic (elastic), Section 3.1

– Bilinear elastic (elastic modified), Section 3.2

2. Basic plastic models fall into the category of elastic perfectly plastic materials of the
Mohr-Coulomb type. They are characterized by a linear elastic response within the yield
surface with potential variation of elastic stiffness as a function of depth. In isotropic
compression their behavior is purely elastic. Their application is expected in a structural
analysis where potential failure is driven by shear.

– Drucker-Prager (Mises used with undrained analysis in total stresses), Chapter 4

– Mohr-Coulomb (Tresca used with undrained analysis in total stresses), Chapter 5

– Hoek-Brown, Chapter 6

– Hoek-Brown modified, Chapter 7

3. Elasto-plastic models with hardening/softening fall into the category of advanced
plasticity models taking into account potential evolution of yield surfaces with plastic
strains. Apart from shear yield surface the evolution of plastic strains in isotropic com-
pression is monitored by the cap yield surface. In both shear and compression the yield
surfaces assume Matsuoka-Nakai projection into the deviatoric plane. Nonlinear elastic
response with stress dependent stiffness is allowed with some models. A better prediction
of settlement in comparison to basic plastic models can therefore be expected.

– Hardening soil, Chapter 8

– Soft soil, Chapter 9

– Modified Mohr-Coulomb, Chapter 10

4. Critical state models are advanced constitutive models particularly suitable in applica-
tions where a correct prediction of settlement plays a crucial role. Their formulation allows
for representation of most of the features of soils observed experimentally such as nonlinear
elastic response with stress dependent stiffness, dependence of soil response on porosity,
possibility to define a limit surface in the stress and porosity space, etc.

– Modified Cam clay, Chapter 11

– Generalized Cam clay, Chapter 12

– Hypoplastic clay, Chapter 13

– Hypoplastic sand, Chapter 14

25
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• Water flow analysis
To represent the water flow in partially saturated zones in both steady state and transient
seepage analyses the program GEO5 FEM introduces three material models for the prediction
of relative permeability and degree of saturation. Details can be found in Chapter 16.

– Log-linear

– Gardner

– van Genuchten

2.1 Drained and undrained conditions in stress-strain analysis

When performing standard time independent stress-strain analysis the program GEO5 FEM offers
two options to treat the presence of ground water in subsoil. In particular, the two boundary states
in more general consolidation problem, see Section 17.4.5, are represented by

• Drained boundary conditions corresponding to steady state of pore pressure attained at the
end of consolidation for time t→∞.

• Undrained boundary conditions corresponding to the onset of consolidation at time t = 0.
The analysis thus generates transient pore pressures to be dissipated in the consolidation step.

To introduce the subject we imagine soil as a partially saturated three-phase porous medium consisting
of grains (a solid phase s) and pores filled with liquid water (w) and moist air (g) as sketched in
Figure 2.1.
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Figure 2.1: Simplified definition of a two-phase medium

The pore pressure ps acting on a solid phase can be then expressed as

ps = Swp
w + Sgp

g (2.1)

where pw, pg are the pressures in liquid and gaseous phase, respectively, Sw, Sg are corresponding
degrees of saturation satisfying Sw + Sg = 1. Point out that the pore pressure is assumed positive
when in compression while negative value represents suction. The saturation Sw can also be expressed
in terms of the volumetric water content θ [m3/m3]

θ =
Ωw

Ω
(2.2)

as

Sw =
Ωw

Ωp
=

Ωw

nΩ
=
θ

n
(2.3)
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where Ω = Ωm + Ωw + Ωg is the total volume equal to the sum of the volume of solid phase Ωm,
volume of water Ωw and volume of air space Ωg with Ωp = Ωw + Ωg be the volume of pores, and n is
the porosity typically written in terms of the void ratio e introduced in Section 1.11 as

n =
Ωw + Ωg

Ω
=

e

1 + e
, e =

Ωw + Ωg

Ωm
=

Ωp

Ωm
=

n

1− n
(2.4)

To simplify the model it is often assumed that during the flow the moist air remains at atmospheric
pressure. Next, taking the atmospheric pressure as the reference pressure gives pg = 0 so that, see
also [45],

ps = Swp
w = Sp (2.5)

The effective mass density ρ is then given by

ρ = (1− n)ρs + nSρw (2.6)

Note that in GEO5 FEM the effective mass density ρ = ρdry or ρ = ρsat depending on whether
the macroscopic point is found above or below the ground water table. Such a simplification of the
two-phase model, which essentially treats the liquid and gaseous phases as the mixture of a one-phase
compressible fluid moving throughout the porous skeleton (Figure 2.1) is adopted in GEO5 FEM.
Readers interested in a more general description of moisture and heat transfer in porous media are
referred to [50, 45].

A standard volume averaging already employed to define the effective mass density in Eq. (2.6) of
the porous medium filled with fluid phases allows us to write the total stress σ in terms of the stress
σm developed in the solid phase and the stress Sp transmitted by the pores as

σ = (1− n)σm − 3m(nSp) = (1− n)(σm + 3mSp)︸ ︷︷ ︸
σeff

−3mSp (2.7)

where the operator m is defined by Eq. (1.21). Recall that σeff represents the effective stresses
between the grains. Taking on the other hand the strains in the bulk material due to changes of the
pore pressure Sp into account yields the constitutive equation (1.40) in a slightly modified format

σeff = D(ε−mεpv) (2.8)

where D is the elastic stiffness matrix of the porous skeleton, recall Eq. (1.45) and

εpv = − Sp

Km
(2.9)

represents the volumetric strain of the solid phase due to changes of the pore pressure Sp with Km

being the bulk modulus of the solid phase. Following [10, 50, 45] allows us to rewrite Equation (2.7)
as

σ = Dε− α3mSp = σε − α3mSp (2.10)

where the Biot constant α reads

α = mT

(
I− D

3Km

)
3m = 1− Ksk

Km
< 1 (2.11)

and Ksk is the bulk modulus of the porous skeleton. For a material without any pores we get Ksk =
Km. For cohesive soils we typically have Ksk << Km and α = 1.

2.1.1 Drained conditions

In GEO5 FEM suction in standard stress-strain analysis is neglected. Thus for drained analysis we
set saturation S = 0 for the stress point found above the ground water table and S = 1 for the stress
point located below the ground water table to modify Eq. (2.10) accordingly. The analysis is carried
out in effective stresses using effective strength parameters when applicable, i.e., effective cohesion c
and effective angle of internal friction ϕ. The steady state pore pressure p is prescribed and does not
change with the deformation of porous skeleton.
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2.1.2 Undrained conditions

When running undrained analysis with GEO5 FEM the soil is considered fully saturated in the entire
solution domain with S = 1. Three options to address undrained conditions are available

1. Analysis in effective stresses (ϕeff , ceff )

2. Analysis in effective stresses (Su)

3. Analysis in total stresses (Su)

Type (1): Analysis in effective stresses (ϕeff , ceff )

This type of undrained analysis is essentially a solution of a coupled problem where evolution of
excess pore pressure results from deformation of the porous skeleton. In undrained analysis this boils
down to finding a relationship between the increment of excess pore pressure ∆p and the increment
of volumetric strain ∆εv. The volume averaging renders the latter quantity in the form

∆εv = (1− n)
∆Ωm

Ωm
+ n

∆Ωw

Ωw
(2.12)

Combining Eqs. (2.7) - (2.9) allows us to write the change in volume of the solid phase as

∆Ωm

Ωm
=

∆σmm
Km

= −∆p

Km
+

∆σeffm

(1− n)Km
= − 1

1− n

[
α− n
Km

∆p+ (α− 1)∆εv

]
(2.13)

The mass conservation of the liquid phase gives

∆Ωw

Ωw
= −∆p

Kw
(2.14)

Equations (2.13) and (2.14) can be now introduced back to Eq. (2.12) to get

∆εv = − 1

α

(
α− n
Km

+
n

Kw

)
∆p = − 1

αM
∆p (2.15)

where M is known as the Biot modulus.
To proceed we write the increment of virtual work done by internal forces, Eq. (17.2), in the form

δEi =

∫
V
δ∆εT (D∆ε− α3m∆p) dV (2.16)

which upon substitution for ∆p from Eq. (2.15) modifies Eq. (2.16) as

δEi =

∫
V
δ∆εT

(
D + α2M9mmT

)
∆εdV =

∫
V
δ∆εTDeff∆εdV (2.17)

where V is the volume of the analysis domain and Deff is effective stiffness matrix. With the applica-
tion of plastic models the elastic stiffness matrix D can be replaced by an elastoplastic (algorithmic)
tangent stiffness matrix D, recall Section 17.1.

Once ∆ε is known from the solution of the system of global equations of equilibrium the unknown
increment of excess pore pressure ∆p then readily follows from Eq. (2.15). Numerical experiments
suggest that reasonable predictions of excess pore pressure distributions are obtained providing the
Biot modulus is sufficiently large, say

M = (100÷ 1000)Ksk (2.18)

As evident from the above formulations the analysis employs effective stresses, effective stiffness
and effective shear strength parameters ceff , ϕeff in models where applicable. The total pore pressure
p = pss + pex, were pss, pex stand for the steady state and excess pore pressure, respectively.
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With this option:

• All material models formulated in the framework of standard plasticity can be adopted.

• Advanced models are expected to perform better in comparison to elastic-perfectly plastic models
such as the Mohr-Coulomb model.

• With simple elastic-perfectly plastic models it is desirable to check the generated undrained
shear-strength as this might be overestimated owing to an incorrectly predicted effective stress
path. The GEO5 FEM program provides a graphical representation of a numerically predicted
mobilized undrained shear strength Smu = J cos θ ≤ Su where Su is the actual undrained shear
strength and J and θ are the computed equivalent deviatoric stress and Lode ’s angle, respec-
tively.

• The dilatancy angle ψ (as well as the mobilized dilatancy angle ψm in the case of Hardening soil
model), if specified, is set to zero.

Type (2): Analysis in effective stresses (Su)

Only models of the Mohr-Coulomb type without compressive cap are permitted with this option.
Similarly to the previous option the analysis adopts the effective stiffness and generates the excess
pore pressure via Eq. (2.15). On the contrary, the effective shear strength parameters are replaced by
undrained shear strength Su, i.e., c→ Su, ϕ = 0. With this option:

• Mohr-Coulomb and Drucker-Prager models perform as the elastic-perfectly plastic Tresca and
Mises models, respectively.

• Modified Mohr-Coulomb model is assumed in the form of elastic-perfectly plastic model so that
its hardening-softening feature is turned off. The model performs as the Mises model.

• The dilatancy angle ψ, if specified, is set to zero .

• Unlike the previous option the undrained shear strength Su is not affected, as it is one of the
input parameters.

• Distinction is again made between the effective and total stresses via the total pore pressure
p = pss + pex. Note, however, that the pore pressures and thus the effective stresses might not
be predicted entirely correctly.

Type (3): Analysis in total stresses (Su)

Only models of the Mohr-Coulomb type without compressive cap are permitted with this option.
The analysis is performed in total stresses exploiting again the total shear strength Su. In addition,
this option requires inputting undrained Young’s modulus Eu and undrained Poisson’s ration νu =
(0.495− 0.499). Because standard elements are used, care must be taken when choosing the Poisson
ratio νu → 0.5 which may cause oscillation of the mean stresses and consequently yield convergence
problems. With this option:

• Mohr-Coulomb and Drucker-Prager models perform as the elastic-perfectly plastic Tresca and
Mises models, respectively.

• Modified Mohr-Coulomb model is assumed in the form of elastic-perfectly plastic model so that
its hardening-softening feature and the compressive cap are turned off. The model performs as
the elastic-perfectly plastic Mises model.

• No distinction is made between the effective and total stresses so that all stresses are treated as
the total stresses. The effective stresses are therefore assigned the values of the total stresses
prior to calculation phase. Both the steady state (pss) and excess (pex) pore pressures are set
equal to zero, so they are not reflected in the analysis.

• If undrained conditions are replaced by drained conditions in subsequent calculation stage, the
model behaves like undergoing dissipation of (unknown) excess pore pressure without altering
the current state of deformation. Such a modeling strategy should by approached with caution
in general it is not recommended.

• The value of K0 if used with the K0-procedure to generate initial stresses refers to total rather
then effective stresses.
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Chapter 3

Elastic models

The GEO5 FEM program offers two variants of elastic models, the basic lienear elastic model (elastic)
and the bilinear elastic model (elastic modified) in particular.

3.1 Linear elastic model (elastic)

Table 3.1 lists material parameters needed by the linear elastic model.

Table 3.1: Parameters of linear elastic constitutive model

Symbol Units Description

E [MPa] Modulus of elasticity
ν [-] Poisson’s ratio

α [1/◦C] Coefficient of thermal expantion

The linear elastic model is the basic model assuming proportional change in stress σ as a function
strain ε as plotted in Fig. 3.1 .
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Figure 3.1: Linear elastic Hooke’s law

When loading due to temperature change ∆θ is considered, the Hooke law is provided by

σ = D(ε− ε0) (3.1)

where D is the elastic stiffness matrix given by Eq. (1.45) and ε0 is the initial strain written as

ε0 = α∆θm (3.2)

where the operator m is given by Eq. (1.21).
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3.2 Bilinear elastic model (elastic modified)

Table 3.2 lists material parameters needed by the bilinear elastic model.

Table 3.2: Parameters of bilinear elastic constitutive model

Symbol Units Description

E [MPa] Modulus of elasticity
Eur [MPa] Modulus of elasticity in unloading/realoading
ν [-] Poisson’s ratio

α [1/◦C] Coefficient of thermal expantion

The bilinear elastic model represents an extention of the linear elastic model by assuming different
stiffness in primary loading represented by Young’s modulus E and in unloading/realoding given by
unloading/realoding modulus Eur as plotted in Fig. 3.2.
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Figure 3.2: Bilinear elastic Hooke’s law

The stress-strain relation is provided by Eq. (3.1) while properly accounting for a particular loading
path. Note that upon unloding the sudden change in stiffness may result in several iterations of global
equations equilibrium for a given load step.



Chapter 4

Drucker-Prager model

The Drucker-Prager (DP) model implemented in GEO5 FEM is assumed in the form of elastic-perfectly
plastic material. If omitting thermal effects such a material response is schematically plotted in
Fig. 4.1, σy identifies transition from an elastic into a plastic behavior in uniaxial tension.
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Figure 4.1: Elastic-perfectly plastic material law

In the DP model such a transition is controlled by the effective shear strength parameters, cohesion
ceff and angle of internal friction ϕeff . Because the undrained shear strength is denoted by Su we
shall drop the subscript (eff) and denote these parameters as c, ϕ henceforth. The list of material
parameters needed by the DP model is available in Table 4.1.

Table 4.1: Parameters of Drucker-Prager plasticity model

Symbol Units Description

E [MPa] Modulus of elasticity
Eur [MPa] Modulus of elasticity in unloading/realoading
ν [-] Poisson’s ratio
c [kPa] Effective cohesion
ϕ [◦] Effective angle of internal friction
ψ [◦] Angle of dilation

ein [-] Initial void ratio
emax [-] Maximum void ratio to terminate dilation
α [1/◦C] Coefficient of thermal expansion
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Figure 4.2: Drucker-Prager yield function: a) plot in effective principal stress space, b) plot in meridian
plane, c) plot in deviatoric plane

4.1 Formulation of Drucker-Prager failure criterion

When introduced in space of effective principal stresses the DP yield function plots as a cylindrical
cone, see Fig. 4.2(a). Projections into meridian and deviatoric plane are displayed in Figs. 4.2(b,c).
Following [65] the Drucker-Prager yield criterion then assumes the form

fDP = J + (σm − c cotϕ)Mϕ = 0 (4.1)

where J and σm are given by Eqs. (1.24) and (1.11), respectively. The slope Mϕ can be defined by
matching the Drucker-Prager and Mohr-Coulomb yield surfaces as illustrated in Fig. 4.2(c). Three
alternative Drucker-Prager circles are shown. Assuming that both surfaces match at θ = 300 (triaxial
compression we arrive at the Drucker-Prager circle circumscribed to the Mohr-Coulomb function (solid
circle in Fig. 4.2(c)). The corresponding value of Mϕ reads

M θ=+30◦
ϕ =

2
√

3 sinϕ

3− sinϕ
(4.2)

If we desire that the Drucker-Prager circle touches the Mohr-Coulomb hexagon at θ = −300 (triaxial
extension) we set the value of Mϕ to

M θ=−30◦
ϕ =

2
√

3 sinϕ

3 + sinϕ
(4.3)

Finally, the inscribed circle is found, see [65] for more details, when setting

M ins
ϕ =

sinϕ

cos θins − sin θins sinϕ√
3

(4.4)

with

θins = arctan
sinϕ√

3
(4.5)

Point out that in GEO5 FEM the 2nd option, fitting the DP model to the Mohr-Coulomb irregular
hexagon at triaxial extension, is implemented. The model is completed by adopting a plastic potential
function of the form

gDP = J + (σm − app)Mψ = 0 (4.6)

where app follows from Fig. 4.2(b) when matching fDP and gDP for the current value of stress σ (σcm).
This gives

− app = −σcm + (σcm − c cotϕ)
Mϕ

Mψ
(4.7)
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After substituting app into Eq. (4.6) the plastic potential can be written in the form

gDP = J +

(
σm − σcm + (σcm − c cotϕ)

Mϕ

Mψ

)
Mψ = 0 (4.8)

where Mψ is the slope of the plastic potential function in J−σm space (see Fig 4.2(b)). For associated
plasticity we set Mψ = Mϕ. The term Mψ can be expressed in terms of the angle ψ, by substituting
ψ for ϕ in Eqs. (4.2)–(4.4).

The above formulation suggests:

• The shear strength parameters c, ϕ remain constant throughout the analysis.

• The DP model is independent of the Lode angle θ.

4.2 Stress return mapping

When loading the material point beyond elasticity the constitutive law takes into account the evolution
of plastic strains as, recall Fig. 4.1. In light of nonlinear analysis we write this stress-strain relationship
in terms of stress and strain increments as

∆σ = D(∆ε−∆εpl) (4.9)

To derive the increment of plastic strain ∆εpl we invoke the plastic flow rule by assuming that the
components of plastic strain evolve in the direction normal to the plastic potential gDP . This gives

∆εplv = ∆λ
∂gDP

∂σm
= ∆λMψ (4.10)

∆epl = ∆λ
∂gDP

∂s
= ∆λ

Q−1s

2J
(4.11)

∆Epld = ∆λ
∂gDP

∂J
= ∆λ (4.12)

where ∆λ is the plastic strain increment. Recall also Chapter 1 for the definition of operator matrix
Q, volumetric strain εv, deviatoric stresses s, deviatoric strains e, and equivalent deviatoric strain
measure Ed.

To proceed, consider an equilibrium state at the end of the i-th load increment. Equations (4.10) -
(4.12) allow us to the corresponding stresses at the end of the (i+ 1) load increment as

σi+1
m = σtrm −KMψ∆λ (4.13)

si+1 = str − 2G∆λ
si+1

2J i+1
=

str

1 +
µ∆λ

J i+1

= str
(

1− µ∆λ

J tr

)
(4.14)

J i+1 = J tr −G∆λ, J tr =

√
1

2
(str)TQ−1str =

[
J i2 + 2G∆eTsi +G2∆E2

d

] 1
2

(4.15)

where K and G are the bulk modulus and shear modulus, respectively, and the trial stresses follow
from standard predictor step as, recall Eqs. (1.48) and (1.47),

σtrm = σim +K∆εv (4.16)

str = si + 2GQ∆e (4.17)

The required plastic strain increment is found by satisfying Eq. (4.1) at the end of (i + 1) load
increment. Because the present elastic-perfectly plastic DP model is linear in J − σm space we get

∆λ =
fDP (σtr)(

∂fDP (σtr)

∂σ

)T

D

(
∂gDP (σtr)

∂σ

) =
fDP (σtr)

nTDng
(4.18)
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4.3 Algorithmic tangent stiffness matrix

Given the volumetric-deviatoric split σ = 3mσm + s we may write the algorithmic tangent stiffness
matrix D at a given material point as

D =
dσi+1

dεi+1
= 3m

(
dσi+1

m

dεi+1

)T

+
dsi+1

dεi+1
(4.19)

where in light of Eqs. (4.13) - (4.17) it holds

dσm
dε

=
∂σm
∂ε

+
∂σm
∂∆λ

∂∆λ

∂ε
= a1m+ a2

∂∆λ

∂ε
(4.20)

ds

dε
=

∂s

∂ε
+

ds

d∆λ

(
∂∆λ

∂ε

)T

= E + q

(
∂∆λ

∂ε

)T

(4.21)

where we dropped the script (i+ 1) for the sake of clarity. The partial and total derivatives in above
equations are

∂σm
∂ε

= 3Km = a1m (4.22)

∂σm
∂∆λ

= −KMψ = a2 (4.23)

∂s

∂ε
=

[
∂s

∂∆e
+
∂s

∂J

(
∂J

∂∆e

)T
]
∂∆e

∂ε
= E (4.24)

∂s

∂∆e
=

2GQ

1 +
G∆λ

J

(4.25)

∂s

∂J
=

si + 2GQ∆e(
1 +

G∆λ

J

)2

G∆λs
J2

=
s

(−)

G∆λs
J2

(4.26)

∂J

∂∆e
=

∂J

∂J tr
∂J tr

∂∆e
= G

str

J tr
= G

s

J
(4.27)

∂∆e

∂ε
= PQ (4.28)

ds

d∆λ
=

∂s

∂∆λ
+
∂s

∂J

∂J

∂∆λ
= q (4.29)

∂s

∂∆λ
= − s

i + 2GQ∆e(
1 +

G∆λ

J

)2

G

J
= − s

(−)

G

J
(4.30)

∂J

∂∆λ
= −G (4.31)

It now remains to determine
∂∆λ

∂ε
from consistency condition as proposed, e.g., in [14]. The consistency

condition states that

dfDP

dε
=
∂fDP

∂J

dJ

dε
+
∂fDP

∂σm

dσm
dε

=

[
ds

dε

]T
j + a3

dσm
dε

= 0 (4.32)

where we found convenient to write

dJ

dε
=

[(
∂J

∂s

)T ds

dε

]T
=

[
ds

dε

]T ∂J
∂s

(4.33)

∂J

∂s
=

1

2J
Q−1s =

1

2J
Pσ = j (4.34)

∂fDP

∂σm
= Mϕ = a3 (4.35)



4.4. RETURN TO APEX 37

Substituting Eqs. (4.20), (4.21), and (4.33) gives the consistency condition (4.32)in the form

dfDP

dε
=

[
ds

dε

]T
j + a3

(
a1m+ a2

∂∆λ

∂ε

)
(4.36)

=

(
ET +

∂∆λ

∂ε
qT
)
j + a3

(
a1m+ a2

∂∆λ

∂ε

)
(4.37)

= ETj + a3a1m+
(
qTj + a3a2

) ∂∆λ

∂ε
= g + b

∂∆λ

∂ε
= 0 (4.38)

which provides
∂∆λ

∂ε
= −1

b
g (4.39)

Finally, introducing the vector
∂∆λ

∂ε
into Eqs. (4.20) and (4.21) provides Eq. (4.19) in the form

D = 3a1mm
T + E− 1

b
(3a2m+ q) gT (4.40)

4.4 Return to apex

The stress return algorithm described in Section 4.2 is applicable providing the trial stress when
brought back to the yield surface in the direction of the plastic strain rate vector (following inclination
of the boundary of Kε cone) is found on the boundary of cone Kσ representing the admissible stress
domain, Fig. 4.3(a) (note that the vector ng stores components of the normal to the plastic potential
surface, recall Eq. (4.18)). Such a condition is met for point 1 in Fig. 4.3(b) but violated when referring
to point 2. In the latter case the standard stress point return algorithm locates the stress point on the
boundary of dual cone (point 2” in Fig. 4.3(b)) thus violating the yield condition. Such a situation

σm

c cotgϕ
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σm− pl
, εv
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1
M

+

1

J, E
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tr
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cone

ϕ

fDP

(a) (b)

Figure 4.3: Apex problem: (a) Admissible regions for stresses and plastic strain rates, (b) Regular
and singular return.

can be referred to as an “apex problem”, since in this particular case the stress update is simply a
return mapping to the apex (point 2’ in Fig. 4.3(b)) so that

σi+1 = 3c cotϕm (4.41)

Note that the non-associated flow rule restricts the plastic strain increment to belong to the cone Kε,
see also [29]. The admissibility condition for plastic strain rates is therefore given by, recall Fig. 4.3(a),

ε̇v ≥MψĖ
pl
d (4.42)

In [29] the authors introduced a variational form of the flow rule to show through the concept of
bi-potentials that the vector of plastic strain increments for the apex problem is indeed provided by

∆εplv =
1

K

(
σtrm − c cotϕ

)
(4.43)
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under the condition

Mψ
J tr

G
− 1

K

(
σtrm − c cotϕ

)
< 0 (4.44)

Note that Eq. (4.44) is essentially a linearized form of Eq. (4.42) (recall Eqs. (4.12) and (4.15) and
note that J i+1 = 0 at the end of the return step).

Also point out that when returning to apex we get the algorithmic tangent stiffness matrix in the
form

D = 0 (4.45)

4.5 Undrained analysis in total stresses - Type (3)

When performing an undrained analysis in total stresses, type (3), the Drucker-Prager yield criterion
turns into the most simple von Mises yield criterion, which plots as an infinite cylinder opened along
the hydrostatic axis as shown in Fig. 4.4(a). This is because the undrained angle of internal friction
ϕu = 0. The undrained cohesion cu is replaced by the undrained shear strength Su. The corresponding
projections into deviatoric and meridian planes are shown in Fig. 4.4(b).

σ1=σ2=σ3

-σ2

-σ3

-σ1

σ2

σ1

−σm

J

3σ

θ

Tresca

Mises

f   = gM M

uS  /cos θ θ = − 30
0

θ = + 300

(a) (b)

Figure 4.4: von Mises yield function: a) plot in total principal stress space, b) plot in meridian and
deviatoric planes

Material parameters needed by the von Mises model are stored in Table 4.2.

Table 4.2: Parameters of von Mises plasticity model

Symbol Units Description

Eu [MPa] Undrained modulus of elasticity
Su [kPa] Undrained shear strength
νu [-] Poisson’s ratio assumed in the range of (0.49− 0.499)

α [1/K] Coefficient of thermal expansion

The von Mises yield criterion is then defined by

fM = J − Su
cos θ±30

(4.46)

where the Lode angle θ±30 = ±30◦ resulting into a yield surface circumscribed to the Tresca model,
see Fig. 4.4(b). As also evident from this figure the flow rule to derive increments of plastic strain is
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associated suggesting

∆εplv = 0 (4.47)

∆epl = ∆λ
∂fM

∂s
= ∆λ

Q−1s

2J
(4.48)

∆Epld = ∆λ
∂fM

∂J
= ∆λ (4.49)

so that

σi+1
m = σtrm = σim +K∆εv (4.50)

As indicated by Eqs. (4.48) and (4.49) the deviatoric stresses are updated with the help of Eqs. (4.14)
and (4.15). Finally, following the same steps as in Section (4.3) we arrive at the algorithmic tangent
stiffness matrix in the form, compare with Eq. (4.40) and note that a2 = a3 = 0,

D = 9KmmT +

(
I− qj

T

qTj

)
E (4.51)

4.6 Testing implementation with simple laboratory tests

A convenient approach verify the ability of a given constitutive model to represent the soil behavior
is to reproduce simple laboratory experiments numerically. Attention is then often limited to the
behavior under one dimensional compression and under triaxial stress conditions when modeling the
response in shear. Modeling such experiments is examined here mainly from educational perspectives.
The material properties used in all simulations are stored in Table 4.3.

Table 4.3: Material properties of selected soil

E = Eur [MPa] ν [-] c [kPa] ϕ [0] ψ [0] ein emax

10 0.3 10 30 0-30 0.5 1

4.6.1 Oedometer test

The behavior of soils under one dimensional compression is usually investigated in an oedometer.
Graphical representation of such a test from numerical stand point is displayed in Fig. 4.5. When
assuming an ideal oedometer test, the loading and constraint conditions evident from Fig. 4.5(a)
promote an evolution of uniform stresses and strains in the sample. Although a single quadrilateral
element would be sufficient to model this numerically, a more complex mathematical model shown in
Fig. 4.5(b) is considered, primarily in light of follow up simulations. As suggested, the analysis can
be performed both in force and displacement loading regime.

applied uniform pressure p

vv

FF

v

R

(a) (b)

Figure 4.5: Ideal oedometer test: (a) uniform one-dimensional compression, (b) mathematical model
Referring to the specific boundary conditions the specimen is essentially loaded in triaxial com-

pression resulting in a bilinear response plotted in Fig. 4.6. We identify to particular branches, the
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elastic one provided by

J =
3(1− 2ν)√

3(1 + ν)
(−σm + σinm ), σinm = −50 kPa in this example (4.52)

and the plastic one obtained from
∂fDP

∂σm
∂fDP

∂J

=
Mϕ

1
=

J

−σm
(4.53)

An exact match with true solution is evident.
The analysis assumed no dilation to occur by setting ψ = 0. Real soil behavior, however, often

deviates from such an assumption as evident from experimental measurements displayed in Fig. 4.7(a)
for a variety of soils. We note in advance that dilation described by the Mohr-Coulomb model with
constant dilation angle ψ may provide a reasonable estimate of such a behavior. This is visualized in
Fig. 4.7(b). Note that infinite dilation would be predicted if no action is taken. As the soil eventually
reaches the critical state with no volume changes with further shearing, it is advisable to introduce a
certain condition to terminate plastic dilation. A reasonable condition is suggested in [63] where the
maximum angle of dilation is linked to critical volume or the maximum voids ratio emax the soil can
experience, recall Table 4.1. Dilation cut-off can therefore be turned on when such a state is reached
as indicated in Fig. 4.7(b).
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Figure 4.7: Treating dilatancy: a) Experimental observation, b) idealized prediction by Mohr-Coulomb
model with dilation cut-off, c) direction of plastic strain increment comparing associated and non-
associated flow rule

To appreciate the effect of dilation in numerical simulations we consider two limiting values of
ψ = 0 (non-associated flow rule and critical state condition) and ψ = ϕ (associated flow rule). The
corresponding directions of the plastic strain increment is illustrated in Fig. 4.7(c). Note that for
sands the typical value of ψ can be assumed equal to ψ = ϕ− 300 while ψ = 0 is usually set for clays.

To receive more complex response the FEM model in Fig. 4.8(a) is adopted. The results are plotted
in Fig. 4.8(b,c). Variation of the total volumetric strain and its plastic component as a function of
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Figure 4.8: Comparing associated and non-associated flow rule: a) FEM model, b) evolution of
volumetric plastic strain, c) effect of dilation on prediction of collapse load

vertical strain is evident from Fig. 4.8(b). As expected, no dilation is predicted for ψ = 0, while
an excessive amount of dilation is predicted when assuming associated plasticity, ψ = ϕ. It is also
useful to point out a rather constrained plastic deformation due to dilation. Such a behavior is
further confirmed in Fig. 4.8(c) suggesting the collapse load being predicted only when keeping the
dilation angle equal to zero. The results derived for an elastic-perfectly plastic material and associated
plasticity are presented for further comparison.

4.6.2 Triaxial test

Drained or undrained triaxial compression tests are perhaps the most common experimental tests
performed in the laboratory, Fig. 4.9(a). The computational model plotted in Fig. 4.9(b) is assumed
here to simulate such an experiment. Again, drained conditions are assumed. In 2D environment,
such a test is conveniently modeled using axisymmetric elements.

Unlike an ideal oedometer test, the triaxial test can be considered as a statically determinate
problem with no additional constraints. Due to uniform stresses and strains developed inside the
specimen, the structural analysis thus essentially reduces to the analysis of a material point. Hence,
simple elastic rigid plastic material models must fail when loading the material beyond its elastic
limit. This is demonstrated in Fig. 4.10. In particular, the use of a tangent stiffness matrix in the
full Newton-Raphson method results in a singular stiffness matrix at a structural level as the yield
condition is violated in all elements at the same time, Fig. 4.10(c). On the other hand, employing an
elastic material stiffness matrix in the modified Newton-Raphson method gives a convergence error
evident from Fig. 4.10(c). To overcome this drawback the analysis can be driven by the prescribed
vertical displacements instead of tractions, recall Fig. 4.5(b), or by employing the Arc-length method
introduced in Section 17.2.6. The former method option is used herein.

To compare the results of numerical simulations with analytical solutions we consider for simplicity
a soil with zero cohesion as shown in 4.10(a). Other material parameters in Table 4.3 remain the same
with ψ = 0. As evident 4.10(a) the soil is first compressed isotropically to arrive at the chamber
pressure σ0

m = −50 kPa and than sheared in triaxial compression. The initial yield condition and the
loading path are given by

J + σmMϕ = 0, onset of yielding (4.54)

J +
√

3(50 + σm) = 0, loading path (4.55)

and therefore

σem =
50
√

3

Mϕ −
√

3
= −83.33 kPa, Je = 57.73 kPa, Eed =

J0

G
= 0.015 (4.56)

σ3 = −
√

3Je + σ1 = −150 kPa, σ1 = σ2 = −50 kPa (4.57)

As seen in 4.10(b) the analytical results are matched by simulations rather well. Point out that a
relatively small loading step was used to obtain such a smooth transition from an elastic to a plastic
response.
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Chapter 5

Mohr-Coulomb model

The Mohr-Coulomb (MC) failure criterion is perhaps the most well-known and understood soil failure
model in geotechnical engineering. The model is very simple and unites the concepts of Mohr’s circle
and Coulomb’s failure criterion. Unlike the models based on the J2 plasticity concept, e.g., the Drucker-
Prager model in Chapter 4, the formulation is presented in the principal stress space. Nevertheless,
the material parameters describing the MC model are identical to the DP model extended to take into
account the possibility of tension cut-off. Their summary is available in Table 5.1.

Table 5.1: Parameters of Mohr-Coulomb plasticity model

Symbol Units Description

E [MPa] Modulus of elasticity
Eur [MPa] Modulus of elasticity in unloading/reloading
ν [-] Poisson’s ratio
c [kPa] Effective cohesion
ϕ [◦] Effective angle of internal friction
ψ [◦] Angle of dilation

ein [-] Initial void ratio
emax [-] Maximum void ratio to terminate dilation
σt [kPa] Maximum allowable tensile strength

TsRF [-] Tensile strength reduction factor
α [1/◦C] Coefficient of thermal expansion

Similarly to DP model the MC model belongs to the category of elastic-perfectly plastic models,
recall Fig. 4.1. This is also illustrated in Fig. 5.1(c) showing the response in q−γs space for the case of
triaxial compression, remember definitions of the selected equivalent stress and strain measures given
in Section 1.4. In Section 4.6 this response was investigated numerically, see Fig. 4.10(b). Compare to
the smooth DP model the MC model plots in the effective principal stress space as an irregular cone
opened along the hydrostatic axis as evident in Fig. 5.1(a). Singularities observed along the edges,
see also the sharp corners in the deviatoric plane projection in Fig. 5.1(b), bring about some issues
associated with a numerical implementation. These are described in details in subsequent sections.

5.1 Formulation of Mohr-Coulomb failure criterion

Consider the results of a triaxial test being plotted as Mohr’s circles and the failure envelope drawn
as shown in Fig. 5. Numerically, this Coulomb’s failure criterion can be stated as

|τf | = c− σnf tanϕ (5.1)

Equation (5.1) defines a ‘failure envelope’ that is essentially a yield function, see Fig 5. It has exactly
the same properties and characteristics as a yield function. Stresses below the envelope lie in the

43
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elastic regime. On the envelope surface plastic failure occurs. A stress state in the soil above the yield
surface is not possible. Using the elementary trigonometric identity one can further state that

τf =
1

2
(σ1 − σ3) cosϕ (5.2)

σnf =
1

2
(σ1 + σ3) +

1

2
(σ1 − σ3) sinϕ (5.3)

which upon substitution into Eq. (5.1) gives the Mohr-Coulomb failure criterion, which in the present
model is adopted as the yield function

fMC(σ1, σ3) =
1

2
(σ1 − σ3) +

1

2
(σ1 + σ3) sinϕ− c cosϕ = 0 (5.4)

Plotting Mohr’s circles essentially gives us a graphical way to obtain the shear strength parameters
for the soil. They could equally be obtained from the numerical results of two triaxial tests. The
stress values for each test could be placed into Eq. (5.4) setting up two simultaneous equations which
would be solved for the shear strength parameters. Alternatively if one knows the shear strength
parameters and either the major or minor principal stress in the soil the other principal stress at the
failure condition can be calculated.

A limitation to using the Mohr-Coulomb failure criterion is that it is independent of the inter-
mediate principal stress. The same failure stress values are predicted for all values of intermediate
principal stress. In triaxial testing the intermediate principal stress is always equal to the minor prin-
cipal stress and the shear strength parameters are obtained for these values. In real world geotechnical
problems the magnitudes of the intermediate and the minor principal stresses may be different. Some
experimental evidence has shown that intermediate stress values can influence the failure condition
for soils and this should be appreciated every time an engineer uses any Mohr-Coulomb based models,
see e.g. [65, Chapter 4].
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It is evident from Fig. 5.1(b) that the six-fold symmetry arises from possible permutations of
principal stresses. It may therefore appear more convenient, if confining our attention to plane σ1 >
σ2 > σ3, to rewrite Eq. (5.4) in terms of stress invariants σm, J, θ, see Sections 1.3 and 1.4 for their
definition. Recall Section 1.7 to write the principal stresses terms of stress invariants as

σI = σm +
2√
3
J sin

[
θ − (I − 2)

2π

3

]
, I = 1, 2, 3 (5.5)

Note that the maximum shear stress τmax and the center of Mohr-Coulomb’s circle, Fig. 5, are then
provided by

1

2
(σ1 − σ3) = τmax = J cos θ (5.6)

1

2
(σ1 + σ3) = σm −

J√
3

sin θ (5.7)

Introducing these equations into Eq. (5.4) then yields

fMC(J, σm, θ) = J(cos θ +
1√
3

sin θ sinϕ) + σm sinϕ− c cosϕ = 0 (5.8)

Next define

g(θ) =
sinϕ

cos θ +
1√
3

sin θ sinϕ
(5.9)

to finally get upon introducing Eq. (5.9) into (5.8) and rearranging

fMC(J, σm, θ) = J + (σm − c cotϕ)g(θ, ϕ) = 0 (5.10)

Observe similarity of Eq. (5.10) with Eq. (4.1). In the former case, however, the projection of MC model
into the meridian plane (see, e.g., Fig. 4.2(b)) depends on Lode’s angle. Unfortunately, Eq. (5.10)
may no longer be applicable when moving along the triaxial compression or triaxial extension lines
as suggested in Fig. 5.1(b). In either case, at least two segments of the Mohr-Coulomb hexagon then
become active. Writing out the respective yield surfaces in terms of principal stresses then becomes
more convenient. In particular, the following three segments of the yield surface might be needed
when returning the stress point violating the yield criterion back to the yield surface

fMC
1 (σ1, σ3, c, ϕ) =

1

2
(σ1 − σ3) +

1

2
(σ1 + σ3) sinϕ− c cosϕ = 0, σ1 ≥ σ2 ≥ σ3 (5.11)

fMC
2 (σ2, σ3, c, ϕ) =

1

2
(σ2 − σ3) +

1

2
(σ2 + σ3) sinϕ− c cosϕ = 0, σ2 ≥ σ1 ≥ σ3 (5.12)

fMC
3 (σ1, σ2, c, ϕ) =

1

2
(σ1 − σ2) +

1

2
(σ1 + σ2) sinϕ− c cosϕ = 0, σ1 ≥ σ3 ≥ σ2 (5.13)

with corresponding plastic potential surfaces

gMC
1 (σ1, σ3, ψ) =

1

2
(σ1 − σ3) +

1

2
(σ1 + σ3) sinψ (5.14)

gMC
2 (σ2, σ3, ψ) =

1

2
(σ2 − σ3) +

1

2
(σ2 + σ3) sinψ (5.15)

gMC
3 (σ1, σ2, ψ) =

1

2
(σ1 − σ2) +

1

2
(σ1 + σ2) sinψ (5.16)

where ψ is the familiar dilation angle. Similarly to the DP model from Chapter 4 the formulation thus
assumes in general a non-associated plasticity with ψ 6= ϕ to allow for a better control of potential
dilation. When setting ψ = ϕ the concept of associated plasticity is recovered. Also notice that
compare to the DP model the formulation of the plastic potential surface (Eq. (4.6) for DP model)
was somewhat simplified taking advantage of the fact that the evolution of dilation is driven only by
the slope of gMC(gDP ) in the meridian plane.
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In view of the stress return algorithm presented next it becomes convenient to define vectors
normal to the yield (n) and plastic potential (ng) surfaces. These are derived as partial derivatives of
the yield and plastic potential surfaces with respect to principal stress components. Given the above
definitions of fMC and gMC they are constant independent of stresses and are given by

• segment σ1 ≥ σ2 ≥ σ3 (fMC
1 , gMC

1 )

n1 =
∂fMC

1

∂σ
=

1

2
{1 + sinϕ, 0,−1 + sinϕ}T (5.17)

n1
g =

∂gMC
1

∂σ
=

1

2
{1 + sinψ, 0,−1 + sinψ}T (5.18)

• segment σ2 ≥ σ1 ≥ σ3 (fMC
2 , gMC

2 )

n2 =
∂fMC

2

∂σ
=

1

2
{0, 1 + sinϕ,−1 + sinϕ}T (5.19)

n2
g =

∂gMC
2

∂σ
=

1

2
{0, 1 + sinψ,−1 + sinψ}T (5.20)

• segment σ1 ≥ σ3 ≥ σ2 (fMC
3 , gMC

3 )

n3 =
∂fMC

3

∂σ
=

1

2
{1 + sinϕ,−1 + sinϕ, 0}T (5.21)

n3
g =

∂gMC
3

∂σ
=

1

2
{1 + sinψ,−1 + sinψ, 0}T (5.22)

5.2 Stress return mapping

Consider first a “working sector” defined by a domain such that σ1 ≥ σ2 ≥ σ3, Fig. 5.1(b). A brief
comment on the concept of the working sector is appropriate as the implementation of the entire
model is centered around this idea. The loading that is applied to the soil is increased in increments
from the initial conditions. An “elastic prediction” is used to estimate the stress state in the material
at the end of each loading increment. However, when the material is no longer elastic the actual
magnitude of stress in the material after this plastic flow would be lower than that forecast by the
elastic prediction. As a result the elastic prediction corresponds to a stress point that violates the
yield surface. The stress return scheme is then implemented and the stress state gets returned back
to the yield surface, recall Section 17.2.9. The idea of the working sector originates from the order in
which the model calculates the relevant values. If plasticity is detected, the model makes the elastic
prediction in terms of the six components of the stress vector. After this the model then calculates
the magnitude and orientation of the principal stresses based on the elastic prediction stress values.
The elastic guess can then be plotted in principal stress space. The model calculates the principal
stresses such that σ1 ≥ σ2 ≥ σ3 and since the conversion from six dimensional stress space to three
dimensional principal stress space is based on the elastic prediction stress values, the elastic prediction
itself must lie in the sector where σ1 ≥ σ2 ≥ σ3. This is defined as the working sector and the elastic
prediction stress will always lie in this domain due to the orientation of the principal stress axes being
based on the values of the elastic prediction stress.

Upon bringing the elastic guess back to the yield surface the following two scenarios as plotted
in Fig. 5.3 may occur. First, refer to Figs. 5.3(a),(b) demonstrating a successful return back to the
“working sector” thus employing only a single yield function fMC

1 . The return algorithm, however,
failed in the example plotted in Fig. 5.3(c). Although bringing the initial elastic guess back to the
assumed active yield function fMC

1 , dashed line, the resulting stress state violates the yield function
fMC

2 . It is interesting to note that if reordering the principal stresses in the definition of Lode’s angle
such that σ2 ≥ σ1 ≥ σ3, the algorithm returns the stress back to function fMC

2 , dot-dashed line. This
particular situation suggests that more than one yield function may be active at the same time.
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Figure 5.3: a) Successful return to working sector ψ = ϕ, b) successful return to working sector ψ = 0,
c) failure to return to working sectorψ = 0, d) successful return to triaxial compression cone ψ = 0

To provide some explanation observe that where arbitrary two planes of the Mohr-Coulomb
hexagon intersect, the yield functions are not smoothly defined and a set of edges are formed. If
the stress state of the material is such that it lies on one of these vertices, two yield functions are
simultaneously active and have values equal to zero. The problem arises of determining the direction
and magnitude of the incremental plastic strains in this situation. As both yield functions are simulta-
neously active, the incremental plastic strains must be related to both the plastic potential functions of
the violated yield functions. Koiter [43] showed that for associated plasticity the incremental plastic
strains can be determined from the plastic flow rule as

εpl =

m∑
j=1

∆λj
∂fMC

j

∂σ
(5.23)

for m active yield functions fMC
j , where λj are the plastic multipliers and ∆εpl and σ are the incre-

mental plastic strain and accumulated stress vectors, respectively. Hence the total incremental plastic
strains are the summed contributions of the incremental plastic strains related to each of the active
yield surfaces.

Using the concept of multi-surface plasticity the plastic corrector algorithm then returns the stress
to the common intersection of the two active surfaces as plotted in Fig. 5.3(d). It should be noted,
however, that violating both yield functions at the elastic predictor stage does not necessarily imply
that both yield conditions are active as evident from Fig. 5.3(a). To determine whether a single or
multiple yield surfaces are active one may appreciate a set of singularity indicators developed, e.g.
in [60]. Here, a rather simplistic approach for identification of multi-surface plasticity return based on



48 CHAPTER 5. MOHR-COULOMB MATERIAL MODEL

the Lode angle stress invariant is employed. The Lode angle θ specifies the orientation of any stress
state on the deviatoric plane and can be stated in principal stresses as

θ = arctan

(
1√
3

(
2

(σ2 − σ3)

(σ1 − σ3)
− 1

))
(5.24)

The procedure starts from performing a single surface plasticity stress return from the elastic prediction
stress. The Lode angle is then calculated for the returned stress. If the value lies within the limits
−30◦ ≤ θ ≤ 30◦, then the stress return is successful. This situation is indicated in Fig. 5.3(b). If
another stress return is considered, this time when the element is placed under triaxial compression,
Fig. 5.3(c), upon calculating the Lode angle one will find that it lies outside the limits −30◦ ≤
θ ≤ 30◦. In this situation one can see that one yield function remains violated after the stress
return consequently indicating that a multi-surface plasticity stress return is required from the elastic
prediction stress. This is then performed and the stress path is that indicated by Fig. 5.3(d) returning
the stress state to the apex of the two yield functions as shown.

A special situation arises, see also [60], when returning the stress to the apex of the combined
Mohr-Coulomb yield surface. In such a case all six planes are active. Nevertheless, as discussed
in [60], the set of six equations corresponding to six yield functions Fig. 5.1(b) are linearly dependent
and rank deficient by three. Therefore, only three arbitrary yield functions, say fMC

1 , fMC
2 , fMC

3 in
Eqs. (5.11) - (5.13), are needed in the plastic corrector stage. A word of caution is required, however,
when applying the procedure with non-associated plasticity with the dilation angle ψ equal to zero.
The resulting system of equations is then singular. Fortunately, to avoid such a situation we may
always set ψ = ϕ to perform the apex return.

The single yield surface and multi-surface plasticity concepts will be now discussed separately.

5.2.1 Single yield surface plasticity

Consider again the “working sector” σ1 ≥ σ2 ≥ σ3 with the corresponding yield and plastic potential
functions fMC

1 and gMC
1 and normal vectors n1,n1

g represented by Eqs. (5.11), (5.14), (5.17), (5.18).
The consistency condition becomes, see [10] for a general definition,

∆fMC
1 =

(
∂fMC

1

∂σ

)T

∆σ = 0 (5.25)

∆σ = D∆ε−∆λDn1
g (5.26)

where D is the elastic 3×3 material stiffness matrix. Combining Eqs. (5.25) - (5.26) yields the desired
plastic multiplier in the form

∆λ =

(
n1
)T

D∆ε

(n1)T Dn1
g

=

(
n1
)T

∆σtr

(n1)T Dn1
g

(5.27)

where ∆σtr = D∆ε is the elastic trial stress increment, recall Fig. 17.11 and Eq. (17.82). Note that
condition (5.25) is identical to

(fMC
1 )n+1(σn+1) = 0 =

=0︷ ︸︸ ︷
(fMC

1 )n +

nT∆σtr︷ ︸︸ ︷
1

2

(
∆σtr1 −∆σtr3

)
+

1

2

(
∆σtr1 + ∆σtr3

)
sinϕ (5.28)

− ∆λ

[
1

2

(
D11n

1
g1 −D33n

1
g3

)
+

1

2

(
D11n

1
g1 +D33n

1
g3

)
sinϕ

]
︸ ︷︷ ︸

(n1)TDn1
g

which allows for evaluation of ∆λ. In Eq. (5.29) (fMC
1 )n and (fMC

1 )n+1 refer to the values of fMC
1

at the n-th and (n+ 1)-th load increments, respectively. Also note that a diagonal material stiffness
matrix was assumed for simplicity. Also note that

nT∆σtr = (fMC
1 )n+1(σtr)
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which confirms analogy with the cutting plane algorithm [59, 23] that offers the plastic strain increment
∆λ in the form

∆λ =
(fMC

1 )n+1(σtr)

(n1)T Dn1
g

(5.29)

Therefore, either of the three Eqs. (5.27) - (5.29) can be used in the plastic corrector stage.

5.2.2 Multi-yield surface plasticity

Although the procedure discussed henceforth can be generalized to any number of active yield surfaces,
the attention will be limited for the sake of clarity to only two arbitrary yield functions simultaneously
active with the notation adopted from [65, Section 8.4].

As an example consider the case of triaxial compression already examined in Figs. 5.3. One can
then show how the plastic multipliers are calculated to enable the determination of the incremental
plastic strains. The derivation is very similar to obtaining the plastic multipliers for single surface
plasticity except that in this case, to obtain both plastic multipliers, a pair of simultaneous equations
need to be solved. Initially, separate the incremental strains ∆ε into their elastic ∆εel and plastic
∆εpl components. The plastic strains are then sub-divided into the contributions from each violated
yield surface ∆εp1, ∆εp2 such that the total incremental plastic strain ∆ε is

∆ε = ∆εel + ∆εp1 + ∆εp2 (5.30)

The incremental stresses ∆σ are again related to the incremental elastic strains by the elastic consti-
tutive matrix D in the following way

∆σ = D∆εel (5.31)

Combining Eqs. (5.30) and (5.31) gives

∆σ = D(∆ε−∆εp1 −∆εp2) (5.32)

The flow rule is now written for each of the plastic potential functions

∆εp1 = ∆λ1
∂gMC

1

∂σ
(5.33)

∆εp2 = ∆λ2
∂gMC

2

∂σ
(5.34)

Substitution of Eqs. (5.33) and (5.34) into Eq. (5.32) provides

∆σ = D∆ε−∆λ1D
∂gMC

1

∂σ
−∆λ2D

∂gMC
2

∂σ
(5.35)

Before we proceed any further with the development of this derivation look at the structure of
Eq. (5.35) If one were to multiply through by D−1 and then rearrange you would obtain the following

−D−1∆σ + ∆ε = ∆εpl = ∆λ1
∂gMC

1

∂σ
+ ∆λ2

∂gMC
2

∂σ
. (5.36)

Observing Eq. (5.36) one can clearly see that Koiter’s generalization [43] can be extended for non-
associated plasticity behavior by replacing the yield functions with their respective plastic potential
functions. Thus Eq. (5.36) verifies

∆εpl =
m∑
j=1

∆λj
∂gMC

j

∂σ
=

m∑
j=1

∆λjn
j
g (5.37)

Hence one can use the flow rule to obtain the total incremental plastic strains when using multi-surface
plasticity if the contribution of each plastic potential function is summed. One still needs to calculate
the plastic multipliers. This is done by acknowledging that when both yield surfaces are active, the
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values of both of them is zero, and the consistency condition is satisfied. Using the chain rule on this
observation gives

∆fMC
1 =

(
∂fMC

1

∂σ

)T

∆σ =
(
n1
)T

∆σ = 0 (5.38)

∆fMC
2 =

(
∂fMC

2

∂σ

)T

∆σ =
(
n2
)T

∆σ = 0 (5.39)

Substitution of Eq. (5.35) into (5.38) and (5.39) yields

∆fMC
1 =

(
n1
)T

D∆ε−∆λ1

(
n1
)T

Dn1
g −∆λ2

(
n1
)T

Dn2
g = 0 (5.40)

∆fMC
2 =

(
n2
)T

D∆ε−∆λ1

(
n2
)T

Dn1
g −∆λ2

(
n2
)T

Dn2
g = 0 (5.41)

A set of simultaneous equations are now set in place and are solved for the plastic multipliers. Equa-
tions (5.40) and (5.41) can now be written in a simplified form as

∆λ1L11 + ∆λ2L12 = q1 (5.42)

∆λ1L21 + ∆λ2L22 = q2 (5.43)

where

L11 =
(
n1
)T

Dn1
g (5.44)

L22 =
(
n2
)T

Dn2
g (5.45)

L12 =
(
n1
)T

Dn2
g (5.46)

L21 =
(
n2
)T

Dn1
g (5.47)

q1 =
(
n1
)T

D∆ε (5.48)

q2 =
(
n2
)T

D∆ε. (5.49)

Thus the plastic multipliers are calculated as

∆λ1 = (L22q1 − L12q2) / (L11L22 − L12L21) (5.50)

∆λ2 = (L11q2 − L21q1) / (L11L22 − L12L21) (5.51)

These are then used in Eq. (5.36) or (5.37) to calculate the incremental plastic strains. This process
can be easily extended using the same concepts when one has more than two surface multi-surface
plasticity such as the apex problem or the Mohr-Coulomb yield surface combined with a tension cut-off
problem. This concept is outlined in Section 5.4.

5.3 Algorithmic tangent stiffness matrix

As for the algorithmic tangent stiffness matrix D its derivation may proceed along the same lines as
discussed in [10] for standard elastoplastic stiffness matrix Dep as these to matrices are identical owing
to the constant values of ng. To that end, we substitute from Eqs. (5.50) and (5.51) into Eq. (5.35)
to get after rearranging, see also [65],

D = D− D

Ω

[
n1
g (b1)T + n2

g (b2)T
]

D (5.52)

Ω = L11L22 − L12L21

b1 = L22n
1 − L12n

2

b2 = L11n
2 − L21n

1

A similar procedure can be applied when more than two yield surfaces are active. Recall, e.g.
the apex problem, where all three surfaces fMC

1 , fMC
2 , fMC

3 are simultaneously active. In fact, all six
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Figure 5.4: Transformation of coordinates for plane strain and axisymmetric problems

surfaces shown in Fig. 5.1(b) are active, but only three are needed to bring the stress to their common
point of intersection [60]. Such a situation will also arise in Section 5.4 that outlines tension cut-off
extension of the original Mohr-Coulomb formulation. While it is shown that four yield surfaces may
become active at the same time, again only three of them can be chosen in the multi-surface plasticity
stress update procedure if limiting attention to isotropic materials.

In every case, assuming perfect plasticity, the following generalization of Eqs. (5.38) - (5.52) applies.
Suppose that N yield surfaces are active. The increments of plastic multipliers then follow from

∆λ = Lq (5.53)

where the components of N ×N matrix L and N × 1 vector q are provided by

Lij =
(
ni
)T

Dnjg (5.54)

qi =
(
ni
)T

D∆ε (5.55)

The algorithmic tangent stiffness matrix then becomes

D = D−D

[
N∑
i=1

nig (bi)
T

]
D (5.56)

bi =

N∑
j=1

L−1
ij n

j

5.3.1 Algorithmic tangent stiffness matrix in the Cartesian coordinate system

The principal stress space was adopted throughout this section to develop the general framework for
the implementation of the Mohr-Coulomb constitutive model. On the other hand, the derivation of
the finite element stiffness matrices presented in Section 17.1 assumes a material point to be placed in
a certain global Cartesian coordinate system. The algorithmic tangent stiffness matrices that appear
in Eqs. (5.52) and (5.56) thus require some transformation as demonstrated in Fig. 5.4 For further
reference these matrices will be provided with subscript I while their cartesian counterparts will be
denoted by subscript g. The same notation is reserved also for respective stress and strain vectors.

The transformation law is usually found through equality of increments of work in both coordinate
spaces written as

(∆εg)
TDg∆εg = (∆εI)

TDI∆εI (5.57)

To continue, introduce a certain 3×6 transformation matrix Tε
I (note that the general six-dimensional

cartesian stress space is temporarily assumed)

Tε
I =

 n11n11 n12n12 n13n13 n12n13 n11n13 n11n12

n21n21 n22n22 n23n23 n22n23 n21n23 n21n22

n31n31 n32n32 n33n33 n32n33 n31n33 n31n32

 (5.58)
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where nij represent components of 3 × 3 orthogonal rotation matrix T giving the relation between
coordinates in individual spaces in the form

xI = Txg (5.59)

Limiting attention to plane-strain or axisymmetric analysis with the computational model sitting in
the xy-plane for illustration the matrix T arrives simply from the rotation about the z-axis as displayed
in Fig. 5.4

T =

 cosα sinα 0
− sinα cosα 0

0 0 1

 (5.60)

In general, individual rows in T correspond to principal directions of stresses σ1, σ2, σ3. The matrix
Tε
I then rotates the cartesian strain components into the principal stress space such that

∆εI = Tε
I∆εg (5.61)

Substitution of Eq. (5.61) into Eq. (5.57) yields

Dg = (Tε
I)

TDIT
ε
I (5.62)

Note that for plane strain and axisymmetric problems the general 6× 6 material stiffness matrix Dg

in Eq. (5.62) must be reduced into 4× 4 matrix and suitably augmented to comply with the notation
introduced in Section 17.1. Finally, it is perhaps interesting to point out the relation between stress
vectors

∆σg = Tσ
g∆σI (5.63)

where

Tσ
g = (Tε

I)
T (5.64)

5.4 Mohr-Coulomb model with tension cut-off

The standard Mohr-Coulomb model allows for certain amount of tension that is in general propor-
tional to the soil strength parameters c, ϕ such that its maximum value cannot exceed

√
3 c cotϕ, see

Fig. 5.5(a). In reality, however, the soil can sustain almost none or very small values of these stresses.
Also, the tension carrying capacity of soils is not commonly relied upon as it is typically extremely
variable and unpredictable in real soils. It is therefore desirable to either avoid tension completely
or to limit its magnitude by a specific value of the ultimate tensile stress σt the material can sustain
before plastic failure.

This can be achieved by introducing three additional tension cut-off yield surfaces of the Rankine
type Figs. 5.5(b)(c), in the form

fR1 (σ1, σt) = σ1 − σt = 0 (5.65)

fR2 (σ2, σt) = σ2 − σt = 0 (5.66)

fR3 (σ3, σt) = σ3 − σt = 0 (5.67)

The model assumes the material to have isotropic properties and hence the ultimate tensile strength σt
is the same in all orientations. Furthermore, an associated plastic flow rule is adopted in conjunction
with tension cut-off. The tensile yield surfaces plot as a regular triangular pyramid in principal stress
space, see Fig. 5.5(b).

The shear and tension yield surfaces intersect in the tensile domain of the principal stress space.
As a result, the tension yield surfaces “cut-off” the shear yield surfaces leading to the effect of the
material being able to ultimately sustain lower tensile stresses than those predicted as being possible
by the Mohr-Coulomb model alone, Fig. 5.5(d). Note that point B in Fig. 5.5(d) corresponds to a
point of intersection of the Mohr-Coulomb fMC and the tension cut-off fR yield surfaces. Should the
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Figure 5.5: Mohr-Coulomb model extended by tension cut-off: a) 3D plot of Mohr-Coulomb model in
principal stress space, b) 3D plot of tension cut-off yield surface in principal stress space, c) projection
of tension cut-off surface into deviatoric plane, d) projection of the combined Mohr-Coulomb and
tension cut-off yield surfaces into σ1 − σ3 stress space

line A-C represent an edge of two planes of the Mohr-Coulomb yield surfaces, then there would be at
least three simultaneously active yield surfaces.

If the material element were placed under triaxial tension then the stress path during the increase
in loading would follow the space diagonal towards the apex of the tension cut-off pyramid. As the
failure criterion would now map out as a regular triangular pyramid rather than an irregular hexagonal
pyramid the number of surfaces violated when the element reached the plastic state would be three
as in the case of the pure Mohr-Coulomb failure criterion.

5.4.1 Operation of the proposed model

Once the tension cut-off yield functions had been introduced to the model the use of the Lode angle
as a singularity indicator was no longer possible. A situation could arise whereby an elastic guess
causes one shear and one tensile yield surface to become active. Both surfaces would lie in the same
“working sector” where the Lode angle would lie in between the limits −30◦ ≤ θ ≤ 30◦. Hence the
Lode angle would not be useful in detecting the need for a multi-surface plasticity stress return when
the above mentioned condition arose. As a consequence a new singularity indicator or singularity
detection procedure needed to be developed. An important point to note is that if multiple yield
surfaces are active, the violation of a specific yield function at the elastic prediction stage does not
necessarily imply that the yield condition is active [60].

The structure of the proposed model allows for this observation by attempting first to find a
stress return using single surface plasticity, even if multiple yield surfaces are active after the elastic
prediction is calculated. After each attempted stress return, all yield functions are checked to see if
any are violated. If none are violated then the solution to the stress return is found. If one or more
are still found to be violated after the single surface plasticity stress return, another stress return is
attempted using the plastic potential function of one of the other yield surfaces that was violated
at the elastic prediction stage. Only when all of the yield surfaces that were violated at the elastic
prediction stage have been tested for a single surface plasticity return does the model move on to
attempting to use two surface multi-surface plasticity to find a successful stress return solution.
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If the model determines that multi-surface plasticity is required it will first attempt to find a
solution using two surface multi-surface plasticity. Similarly to the previous procedure, the model will
now test stress returns using combinations of pairs of yield functions that are violated at the elastic
prediction stage. The return scheme is based upon the idea of two surface multi-surface plasticity
and satisfies Koiter’s generalization [43]. Two plastic multipliers are determined and used in the
flow rule to direct the stress point back onto the intersection vertex of the two yield functions under
consideration. If the stress return is successful the solution is found. If unsuccessful the model tests a
different pair of yield functions that were violated by the elastic prediction. The process is repeated
until either a successful stress return is obtained or all different combinations of pairs of violated yield
functions have been tested. If the later is the case then three surface multi-surface plasticity is used
in the same way to obtain the correct stress return solution.

To accelerate the searching process and at the same time to ensure the selection of a proper pair
or a proper triplet of the violated yield surfaces a singularity indicator distinguishing the stress return
along either the triaxial compression or extension lines is added. In fact, it is sufficient to check
whether the argument in Eq. (5.24) receives, up on returning to the yield surface fMC

1 (the first yield
surface being checked), a positive value (return along the triaxial compression line) or a negative value
(return along the triaxial extension line). Moreover, when three surface multi-surface plasticity stress
return is suggested without having a specific apex singularity indicator at hand it is vital to proceed
first with the return towards the apex of the tension cut-off pyramid.

5.4.2 Testing implementation of Mohr-Coulomb model with tension cut-off

The testing consisted of checking that the model performed as expected for every possible combination
of one, two, three and four yield surface violations. As in Section 4.6 two simple models were used to
test all the above mentioned violations, see Fig 5.6.
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Figure 5.6: The two simple models used in testing and labeling of yield surfaces

One of the models used a plane strain assumption that allowed the testing of the working sector
shear and tension single yield surface violations as plotted in Fig. 5.7.

The remaining tests were carried out assuming the axisymmetric model, Figs. 5.8 - 5.9 where the
stress path followed one of the lines defining the edge of the working sector until the vertex of two
yield surfaces were met. This replicated the conditions of typical triaxial compression and extension
tests, Fig. 5.8.

Testing of the combination of the working sector shear and tension yield surface violation was then
performed by applying tensile forces. To ensure that the three or four surface violation occurred, the
magnitude of the maximum tensile strength σt was varied, thus moving the the tension cut-off yield
surface to the desired position that caused the violation as displayed in Fig. 5.9(a)(b).

The apex violations of both the tension cut-off pyramid and the shear yield surface pyramid were
tested using an axisymmetric model that placed the soil into triaxial tension. Note that if the ultimate
tensile strength of the soil was larger than the c cotϕ value then the governing apex is defined by the
six shear yield surface intersection. During the testing, both apex violations were checked. The two
different cases were produced by varying the ultimate tensile strength parameter so that it was above
and below the c cotϕ value for the separate tests. Whilst it is appreciated that the shear yield function
violation is in fact of six yield surfaces, the violation of the three shear surfaces F1, F2 and F3 would
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Figure 5.7: Summary of the simple element models used to test single yield surface violations: (a)
return to fMC

1 yield surface, (b) return to fR1 yield surface

also indicate that the stress point was in the space where an apex return is necessary. This procedure
has previously been implemented by Pankaj and Bićanić [60] in their ‘inverted apex pyramid’. The
testing of the shear yield surface apex caused problems when assuming a non-associated flow rule with
a dilation angle ψ = 0 rendering the matrix L in Eq. (5.53) singular. Note, however, that the actual
value of ψ is not important when solving the apex problem. Thus setting ψ = ϕ appears as a natural
choice to arrive at a successful apex return.

During all the tests the computer code was incrementally stepped through with all the local
variables observed at each step. The code was checked to see that it identified the correct violation
case and then that the stress return scheme did in fact take the stress back to the yield surface(s).

Multi-surface plasticity

The assumptions inherent to the model were found to imply that even though a case could arise where
four yield functions were violated by the elastic prediction, only a three surface multi-surface plasticity
stress return was required to obtain a successful solution. Whilst there were problems implementing
this with the shear yield surface apex, this procedure was found to be true for the violation where two
tension and two shear yield surfaces became active. The observation can be explained by the particular
way in which the yield surfaces intersect. A specific point is defined at the location where four yield
surfaces intersect and would be the position that the stress state would return to if a four surface
multi-surface plasticity stress return was used. However, the point is still defined by the intersection
of just three of the yield function planes. Therefore using three surface multi-surface plasticity returns
the stress state to exactly the same point as a four surface return would. Hence the model which
tests firstly single surface, then two and finally three surface multi-surface plasticity stress returns
finds a solution to the above mentioned situations without using a four surface multi-surface plasticity
return. The reason for this behavior is that the forth plane intersects the other three at the same point
(defined by the three surfaces intersection). A similar observation has been documented by Pankaj
and Bićanić [60] where in their proposed “inverted apex pyramid” six yield surfaces simultaneously
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Figure 5.8: Summary of the simple element models used to test two surface violations: (a) return
to fMC
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along the triaxial extension line

intersect. They found that a three surface return was always adequate in returning to the apex of the
pyramid.

It should also be stated that any combination of three out of the four yield surfaces in these locations
can be used for the stress return; the stress state will always return to the same point. This has been
verified for the two shear, two tensile surface violation when the model was tested. If anisotropic
tensile behavior was assumed then four surface multi-surface plasticity would need to be incorporated
into the model as there would be no defined points where four yield surfaces simultaneously intersect.

Effect of varying the size of the elastic prediction

During development of the model it was hypothesized that by varying the magnitude of the elastic
guess, one could obtain different successful stress return routines. When traveling along the same stress
path, situations arise where different sizes of elastic guess result in different stress return routines being
the appropriate course of action to obtain a successful solution. Consider an element being loaded
nearly in triaxial compression as shown is Figure. 5.10.

Principal stress space is plotted with the six shear yield surfaces. The thicker dashed lines represent
the “singularity cone” where if the elastic predicted stress lies in the domain between these lines a
multi-surface plasticity stress return is required. The stress state at the end of the previous loading
increment is denoted by point A. This point lies inside the elastic domain. The elastic prediction
moves the stress point in the direction of the arrows shown towards points B and C. Consider using
a relatively small elastic guess where the elastic predicted stress is point B. The correct stress return
for this situation would be a single surface plasticity return to the fMC

1 yield surface, see Fig. 5.7 for
labeling of the yield surfaces. If a larger elastic guess had been used, (still along the same loading
path direction) and the elastic predicted stress was that corresponding to point C, one would use a
two surface multi-surface plasticity stress return to come back to the corner where the yield surfaces
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Figure 5.9: Summary of the simple element models used to test two, three or four surface violations
including the apex problem: (a) return to fMC

1 fMC
2 , fR1 f

R
2 yield surfaces along the triaxial compression

line or to a point intercept of the four yield surfaces fMC
1 fMC

2 fR1 f
R
2 , (b) return to fR1 yield surface

or fMC
1 fMC

3 yield surfaces along the triaxial extension line or to a point intercept of the three yield
surfaces fMC

1 fMC
3 fR1 , (c) return to the apex of either Mohr-Coulomb or tension cut-off yield surfaces

fMC
1 and fMC

2 intersect. Therefore in this simple case one obtains two different values for the stress
state of the element at the end of the loading increment by using different sizes of elastic prediction.
As the magnitude of the elastic guess is increased the probability of a multi-surface stress return
being required rises. If one takes the view that the correct stress return is related to where the
elastic prediction stress path crosses the yield surface(s) then unless the element is in pure triaxial
compression or extension (neglecting tension yield surfaces for this argument) then a single surface
plasticity return would always be appropriate. If elastic guesses were infinitesimally small the stress
state would only enter the singularity cone when the element was in pure triaxial compression or
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extension. Thus by increasing the size of the elastic guess one increases the likelihood of obtaining a
multi-surface plasticity solution and hence a different stress state at the end of the loading increment.

Nevertheless, for various reasons one can propose that these potential inaccuracies are negligible in
real world finite element code implementation. In reality the number of occasions when a multi-surface
plasticity solution is used is relatively low. Near or pure triaxial compression or extension conditions
typically do not arise very commonly in real world problems and hence when considering the stress
field of the entire problem domain the small inaccuracies would have a negligible effect. The same
phenomenon could happen around the intersection of the shear and tension yield surfaces. The same
reasoning as mentioned above could justify neglecting the effects in this case.

Whilst generally negligible in real world problems these observations should be appreciated from
an academic perspective and were successfully observed when the model was tested. By varying the
magnitude of the elastic prediction different stress return routines and different stress fields were seen
to occur.

Proposed singularity indicator for triaxial conditions where two tension yield surfaces
become simultaneously active

Whilst the overall efficiency of the new model in terms of computing resources is not expected to be
a problem, the model could be adapted to use singularity indicators that would immediately identify
which stress return procedure was required for any given elastic prediction. Pankaj and Bićanić
[60] have identified singularity indicators for the two surface multi-surface plasticity occurrences in
the Mohr-Coulomb model in the form of inequalities that are functions of the elastic prediction in
terms of principal stresses. These singularity indicators assume that the shear yield functions of the
Mohr-Coulomb model have associated plasticity and hence would need to be adjusted to account for
non-associated plasticity to be incorporated into the new model. However, with the addition of the
tension cut-off yield surfaces in the new model, a number of new single, two, three and four yield
surface violation combinations arise for which singularity indicators would need to be developed. It
is hypothesized that if one were able to create singularity indicators for all the combinations of single
and two surface violations, then the three and four surface violations could be detected by using the
singularity indicators in combination with one another.

Hereafter, a singularity indicator is proposed to detect when the triaxial two tension yield surface
violation occurs by manipulating the ideas presented in [60]. Firstly plot the shear and tension yield
surfaces in principal stress space, see Fig. 5.11.

A singular region is defined in the working sector as the area where an elastic prediction would
violate both the fR1 and fR2 tension yield surfaces and a two surface stress return would be required.
Incidentally, two other singular regions are defined where two shear yield surfaces are violated. Sin-
gularity indicators for these areas are documented in [60] for associated plasticity.

The proposed singularity indicator works on the following simple principle. If a single surface
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stress return using the fR1 yield surface places the returned stress outside the working sector then the
trial stress must have been inside the singularity area. Therefore the singularity indicator is formed
by representing the final stress values after a single surface fR1 stress return in terms of the elastic
trial stress values. If these final returned stresses lie outside the working sector then a multi-surface
plasticity solution is needed. To develop the singularity indicator for the fR1 −fR2 yield surface violation
case one first needs to develop a few relationships. Noting that for the tensile yield surfaces associated
plasticity is assumed, the normal to the fR1 yield function is

∂fR1
∂σ

= {1, 0, 0}T (5.68)

For a linearly elastic material the elastic matrix is defined as

D = B

 1− ν ν ν
ν 1− ν ν
ν ν 1− ν

 (5.69)

where

B =
E

(1 + ν)(1− 2ν)
(5.70)

with a familiar notation for ν and E being Poisson’s ratio and Young’s modulus, respectively. Using
the cutting plane algorithm one obtains an expression for the incremental plastic multiplier

∆λ =
fR1 (σtr1 )(

∂fR1
∂σ

)T

D
∂fR1
∂σ

(5.71)

where (tr) denotes again that the value is with respect to the elastic prediction trial stress. Again,
an elastic rigid-plastic material response in tension is adopted for simplicity. Upon substitution of
Eq. (5.68) into Eq. (5.71) one obtains

∆λ =
fR1 (σtr1 )

B(1− ν)
(5.72)

Using Koiter’s generalization [43] one can obtain the incremental plastic strains as

∆εpl = ∆λ
∂fR1
∂σ

=
fR1 (σtr1 )

B(1− ν)


1
0
0

 (5.73)

Now the final corrected stress σF , once the single surface return has been performed, will take the
form

σF = σtr −D∆εpl (5.74)
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Hence the final principal stresses can be written as
σF1
σF2
σF3

 =


σtr1
σtr2
σtr3

− fR1 (σtr1 )

(1− ν)


1− ν
ν
ν

 (5.75)

Eq. (5.75) gives the final principal stresses if a single surface plasticity stress return was attempted
using the fR1 yield surface. If the elastic prediction stress lies in the singularity area then the single
surface stress return would place the stress point outside the working sector. In this case the stress
point would satisfy σF1 > σF2 > σF3 and thus σF1 −σF2 > 0. Using this relationship with Eq. (5.75) one
can obtain the singularity indicator

σtr1 − σtr2 +
fR1 (σtr1 )(2ν − 1)

(1− ν)
> 0 (5.76)

If Eq. (5.76) is satisfied then the elastic prediction stress is in the singular area and a two surface
multi-surface plasticity stress return is required.

5.5 Undrained analysis in total stresses - Type (3)

Performing the analysis in total stresses, type (3) approach, was already elaborated in Section 4.5 in
conjunction with the Drucker-Prager plasticity model. Considering the same material parameters as
stored in Table 4.2 with the Mohr-Coulomb model we arrive at the Tresca model seen in Fig. 4.4(b).
The model is implemented in GEO5 FEM to solve this particular task by suitably adjusting the
Mohr-Coulomb model. As with the DP model the undrained stiffness (Eu, νu ∈ (0.49 − 0.499)) and
undrained shear strength parameters (cu = Su, ϕu = 0) are used.

5.6 Comparing performance of Mohr-Coulomb model against real
soil behavior

Implementation of a given material model is usually verified by comparing numerical predictions
with experimental measurements. However, the laboratory measurements may also serve to expose
potential deficiencies of the model. This exercise is examined here by plotting the Mohr-Coulomb
predictions against data measured for three different sandy soils.

Table 5.2: Material parameters of selected sandy soils

Eoed Peak Residual
Soil USCS classification [MPa] c [kPa] ϕ [◦] c [kPa] ϕ [◦]

Štvanice SM 16.2 10 40 0 35
Hrušovany SW 24.9 12 43 0 36.5
Jablonec SM 18.8 8 44 0 41

Table 5.2 stores the values of oedometric modulus Eoed and shear strength parameters, cohesion c
and angle of internal friction ϕ. For illustration, the results from the associated laboratory tests are
plotted for the Hrušovany soil in Fig. 5.12(a,b). While a standard oedometric test was adopted to
estimate the soil stiffness, the shear strength parameters were acquired from a triaxial test considering
three chamber pressures σ0

m = −(50, 100, 200) kPa, in particular. The resulting stress strain curves
for σ0

m = −50 kPa are displayed in Fig. 5.13. To appreciate the effect of initial stress we also plot the
evolution of dilation at two different chamber pressures for all soils in Fig. 5.12(c).

When assuming standard triaxial compression with Lode’s angle θ = 30◦ we may derive the
Mohr-Coulomb predictions analytically. First recall Fig. 5.1(b) to see that in this particular case the
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Figure 5.12: a) Oedometer test (Hrušovany soil), b) Estimated shear strength parameters (Hrušovany
soil), c) Evolution of dilation for selected soils

fMC
1 and fMC

2 yield surfaces become active. The corresponding plastic strains are obtained from
Eqs. (5.23), (5.18), and (5.20) as

∆εpl = ∆λ1
∂gMC

1

∂σ
+ ∆λ2

∂gMC
2

∂σ
= ∆λ (ng,1 + ng,2) (5.77)

nT
g,1 =

1

2
[1 + sinψ, 0,−1 + sinψ] (5.78)

nT
g,2 =

1

2
[0, 1 + sinψ,−1 + sinψ] (5.79)

Employing the values of individual components of the plastic strain increment

∆εpl1 = ∆εpl2 =
∆λ

2
(1 + sinψ) (5.80)

∆εpl3 = ∆λ(−1 + sinψ) (5.81)

provides the volumetric and deviatoric plastic strain measures in the form

∆εplv = ∆εpl1 + ∆εpl3 + ∆εpl3 = 2∆λ sinψ (5.82)

∆Epld =
2√
3

(∆εpl1 −∆εpl2 ) =
∆λ√

3
(3− sinψ)

∆εplv

∆Epld
=

2
√

3 sinψ

3− sinψ
(5.83)

∆εpls =
1√
3

∆Epld =
∆λ

3
(3− sinψ) −→ ∆εplv

∆εpls
=

6 sinψ

3− sinψ
, (JEd = qεs) (5.84)

Linear elastic Hooke’s, Eq. (1.39), together with Eqs. (5.81) and (5.82) give the slopes of lines in
Fig. 4.7(b) as

εelv
εel3

= 1− 2ν (5.85)

εplv

εpl3
=

4 sinψ

−1 + sinψ
(5.86)

to address the evolution of volumetic strains both in elastic and plastic response. Finally we recall
the failure condition in Eq. (5.10) together with the elastic response associated with the triaxial
compression loading path given by Eq. (1.66) to write

q = −Eε3 Elastic branch for triaxial compression
J + (σm − c cotϕ) g(ϕ, θ = 30◦)= 0 Failure condition, see also Fig. 5.1(c)

J +
√

3(50 + σm) = 0 Loading path assuming chamber pressure σ0
m = −50 kPa√

3J = σ1 − σ3 = q, σ1 = −50kPa

The values at the onset of yielding satisfying the failure condition are stored in Table 5.3. Recall
that arriving at this condition numerically in stress control loading regime would terminate the analysis
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Table 5.3: Stress values at failure

Peak Residual
Soil σem [kPa] Je [kPa] σe3 [kPa] σem [kPa] Je [kPa] σe3 [kPa]

Štvanice -124.3 128.7 -272.9 -94.8 77.6 -184.4
Hrušovany -139.9 155.7 -319.7 -98.9 84.7 -196.7
Jablonec -138.4 153.1 -315.2 -113.6 110.2 -240.9

because of singularity of the algorithmic tangent stiffness matrix. To continue shearing beyond this
point requires exploiting the displacement control simulation as used already in Section 4.6, recall
Fig. 4.10(b). Graphically, the failure condition is plotted for individual soils in Fig. 5.13 showing also
the effect of Poisson’s ratio which was used to calculate Young’s modulus E from oedometric modulus
Eoed according to Eq. (1.69).
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Figure 5.13: Application of Mohr-Coulomb model to predict failure in triaxial compression for chamber
pressure σ0

m = −50 kPa: a) Štvanice, b) Hrušovany, c) Jablonec

Figure 5.14 finally compares evolution of dilation for two values of dilation angle ψ = 5◦, 20◦,
in particular. The slopes corresponding to elastic and plastic branches are derived from Eqs. (5.85)
and (5.86), respectively.
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Figure 5.14: Application of Mohr-Coulomb model to predict dilation: a) Štvanice, b) Hrušovany, c)
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5.7 Mohr-Coulomb model in undrained analysis



Chapter 6

Hoek-Brown model

Similarly to the Mohr-Coulomb (MC) model the Hoek-Brown (HB) model falls into the category
of elastic-perfectly plastic material models. At present the HB model is the most commonly used
failure criterion to describe the strength of rock masses. It is purely empirical and the original
formulation [30] was expected to address the behavior of an intact rock. To extend its applicability
the authors in [31] and later in [32] provided a generalized version capable of describing rock masses
of a variable quality. The list of model parameters is available in Table 6.1. The essential parameters
are the Geological strength index GSI, which quantifies the quality of the rock mass structure and
the amount of discontinuities (the value of GSI=100 corresponds to an intact rock and decreases to
zero with worsening of the rock quality) and the disturbance factor D, which takes into account prior
underground activities including mining and excavation (the value of D=0 corresponds to an intact
rock and the maximum degree of damage is represented by the value of D=1). The strength of an
intact rock is represented by the uniaxial compressive strength σci and by the Hoek-Brown constant
mi both determined from a triaxial test. Figure 6.1 illustrates their influence on the shape of the HB

Table 6.1: Parameters of Hoek-Brown plasticity model

Symbol Units Description

Erm [MPa] Modulus of elasticity of rock mass
ν [-] Poisson’s ratio
σci [MPa] Uniaxial compressive strength
mi [-] Hoek-Brown constant
GSI [-] Geological strength index
D [-] Disturbance factor
ψ0 [◦] Initial angle of dilation

mb [-] Reduced Hoek-Brown constant
s, a [-] Material constants
σt [kPa] Maximum allowable tensile strength

TsRF [-] Tensile strength reduction factor
σψ [kPa] Threshold value of confining stress for application of dilatancy

failure criterion as well as location of the apex i.e., the physically acceptable maximum value of the
prescribed tensile strength σt ≤ σt given by

σt =
sσci
mb

(6.1)

where the reduced Hoek-Brown constant is written in terms of GSI and D as

mb = mi exp
GSI− 100

28− 14D
(6.2)

Note that for an intact rock we get mb = mi.

63
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Figure 6.2: Hoek-Brown yield function: a) plot in effective principal stress space, b) plot in plane of
maximum and minimum principal stress, c) plot in deviatoric plane

These basic parameters can also be exploited to estimate the rock mass stiffness represented by
the modulus of elasticity Erm. As an example we provide one particular formulation presented in [32],
see also [33] for other options,

Erm [GPa] =

(
1− D

2

)√
σci
100

10(GSI−10)/40, σci ≤ 100 MPa (6.3)

Erm [GPa] =

(
1− D

2

)
10(GSI−10)/40, σci > 100 MPa (6.4)

Similarly to the Mohr-Coulomb model, the Hoek-Brown model plots as an irregular hexagonal
pyramid in the principal stress space, see Fig. 6.2(a). While the edges of the MC surface are linear,
the HB model experiences curvature along both edges and surfaces, see also projection into σ1 − σ3

plane displayed in Fig. 6.2(b). Although not evident from Fig. 6.2(c), individual sectors of the HB
failure criterion are also slightly curved when projected into a deviatoric plane.

6.1 Formulation of Hoek-Brown failure criterion

In analogy with the Mohr-Coulomb model described in Chapter 5 we start from the assumption that
the response at failure is independent of the intermediate principal stress. The three main sectors
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representing the yield surface, recall Fig. 5.1(b), now receive the form

fHB1 (σ1, σ3) = σ1 − σ3 − σci
(
s−mb

σ1

σci

)a
, σ1 ≥ σ2 ≥ σ3 (6.5)

fHB2 (σ2, σ3) = σ2 − σ3 − σci
(
s−mb

σ2

σci

)a
, σ2 ≥ σ1 ≥ σ3 (6.6)

fHB3 (σ1, σ2) = σ1 − σ2 − σci
(
s−mb

σ1

σci

)a
, σ1 ≥ σ3 ≥ σ2 (6.7)

where parameters s, a follow from empirical relations

s = exp
GSI− 100

9− 3D
, (6.8)

a =
1

2
+

1

6

(
exp
−GSI

15
− exp

−20

3

)
(6.9)

so that for an intact rock we see that s = 1, a = 0.5. The stress return mapping is driven by a non-
associated flow rule with the plastic potential functions associated with the three potentially active
sectors written as

gHB1 (σ1, σ3) = σ1
1 + sinψm
1− sinψm

− σ3 (6.10)

gHB2 (σ2, σ3) = σ2
1 + sinψm
1− sinψm

− σ3 (6.11)

gHB3 (σ1, σ2) = σ1
1 + sinψm
1− sinψm

− σ2 (6.12)

where ψm is the mobilized angle of dilation. Grounding on experimental evidence, see also [52], the
dilation angle is expected to evolve according to Fig. 6.3 where σψ is a certain threshold value of the

-σ1

ψmob 

-σψσt 0

ψ0 

Figure 6.3: Graphical representation of the adopted dilatancy rule

confining pressure σ1 beyond which the dilation can be neglected. In the space of positive tensile
stresses the dilation angle is assumed constant. This simple bilinear variation is mathematically
expressed as

ψm(0 ≤ σ1 ≤ σt) = ψ0 (6.13)

ψm(σψ < σ1 < 0) =
σψ + σ1

σψ
ψ0 (6.14)

ψm(σ1 ≤ σψ) = 0 (6.15)

where ψ0 is the initial value which is also allowed to remain constant regardless of Eq. (6.14) in
dependence on the analysis setting in GEO5 FEM.

6.2 Hoek-Brown model with tension cut-off

Equation (6.1) introduced a physically acceptable value of a biaxial tensile strength σt obtained by
setting σ3 = σ1 = σt in Eq. (6.5). Note that deriving a uniaxial tensile strength would require an
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iterative procedure. This promotes application of a limiting tensile stress σt < σt. From a physical
point view this might be supported by a very low tensile strength of weak rock masses. But what ap-
pears even more crucial is the application of limiting tensile strength in the return mapping procedure.
To see this recall definition of the Hoek-Brown yield function via Eq. (6.5). Because the exponent a
ranges from 0.5 to 0.666 (corresponds to GSI=0), setting σ1 > σt generates a negative value within
parentheses of Eqs. (6.5) - (6.5) of a given yield function and hence the corresponding failure criterion
cannot be evaluated for trial principle stresses falling beyond the apex. A remedy is provided by
introducing a tension cut-off failure criterion which allows us to move from this inadmissible stress
space as described in Section 6.3.1. To this end, the Rankine failure criterion introduced already in
Section 5.4 is adopted. For the sake of completeness we recall the three yield functions representing
projections of the Rankine failure criterion in the deviatoric plane, see Figs. 5.5(b,c),

fR1 (σ1, σt) = σ1 − σt = 0 (6.16)

fR2 (σ2, σt) = σ2 − σt = 0 (6.17)

fR3 (σ3, σt) = σ3 − σt = 0 (6.18)

An associated flow rule is again exploited to receive directions of plastic strain increments in the form

n1
t =

∂fR1
∂σ

= {1, 0, 0} T (6.19)

n2
t =

∂fR2
∂σ

= {0, 1, 0} T (6.20)

n3
t =

∂fR3
∂σ

= {0, 0, 1} T (6.21)

6.3 Stress return mapping

Stress return mapping is based on the same concept of working sectors as in the case of MC model.
Typically, the elastic trial stress violating the HB failure criterion is brought back to the main sector
where σ1 > σ2 > σ3. Nevertheless, situations may arise, e.g., the case of triaxial compression or
extension, which calls for application of a multi-surface return mapping since more than one yield
surface become simultaneously active as outlined in Section 6.3.2. See also Section 5.2.2 for more
details. As already pointed out, a particular attention deserves the case where an inadmissible trial
stress does not allow for evaluation of the HB yield function. This issue is treated next in Section 6.3.1
addressing a two-step return approach to the HB yield surface over the Rankine yield surface. Because
we may identify a close similarity with the Mohr-Coulomb model, we limit our discussion to most
essential topics pertinent to the HB model and refer the interested reader to Section 5.2 and [83] for
further reading.

6.3.1 Single yield surface plasticity

Unlike the MC model the HB yield surface is nonlinear which requires adopting the Newton-Raphson
(NR) iterative method within the return mapping algorithm to give the searched increment of the
plastic strain multiplier ∆λ allowing in turn for the evaluation of plastic strain increment as

∆εpl = ∆λ
∂gHB1

∂σ
= ∆λn1

g (6.22)

where the normal to the plastic potential function n1
g reads

(n1
g)

T =

{
1 + sinψm
1− sinψm

, 0,−1

}
(6.23)

The stress at the end of the (i+ 1) load increment is then provided by

σi+1 = σtr − (∆λ)k+1Dn1
g (6.24)
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where σtr = σi + D∆ε is the trial stress and D is the 3× 3 elastic stiffness matrix, recall Eq. (5.69).
Clearly, the above equations represent the case of a successful return to the main sector for which the
iterative NR scheme reads

(∆λ)k+1 = (∆λ)k − (fHB1 )k(
dfHB1

)k (6.25)

where dfHB1 is the derivative of the yield function evaluated at the and the (i + 1) load increment
with respect to ∆λ. Note that ψm is considered to remain constant during the return mapping and
is updated at the end of the stress update for the converged stress state. This makes ∆λ the only
variable in the local iteration scheme (6.25). Writing the direction of principal plastic corrector as

Deln1
g = σpl =

{
σpl1 , σ

pl
2 , σ

pl
3

}
T (6.26)

gives

σ1(∆λ) = σtr1 −∆λσpl1 (6.27)

σ2(∆λ) = σtr2 −∆λσpl2 (6.28)

σ3(∆λ) = σtr3 −∆λσpl3 (6.29)

Substituting Eqs. (6.27)-(6.29) into Eq. (6.5) gives the yield function fHB1 in Eq. (6.25) in the form

fHB1 (∆λk) = (σtr1 − σtr3 )−∆λk(σpl1 − σ
pl
3 )− σci

[
s− mb

σci

(
σtr1 −∆λkσpl1

)]a
(6.30)

and the corresponding derivative with respect to ∆λ as

dfHB1 (∆λk) = σpl3 − σ
pl
1 − ambσ

pl
1

[
s− mb

σci

(
σtr1 −∆λkσpl1

)]a−1

(6.31)

To initiate the iterative scheme we simply set ∆λ0 = 0 → σ0 = σtr. The iteration process is
terminated when fHB1 < ε, where ε is an acceptable convergence error.

Return to Rankine yield surface

Return to the Rankine yield surface fR1 follows the same minimization procedure. The tensile yield
surface defined in terms of the plastic multiplier is given by

fR1 = σtr1 −∆λσpl1 − σt (6.32)

and the derivative with respect to ∆λ is therefore

dfR1 = −σpl1 (6.33)

Returning from the trial stress space violating the Rankine failure criterion considers two scenarios:

• Correct return to the HB yield surface is expected: This is a two-step return where bringing an
inadmissible stress back to the Rankine yield surface is performed first assuming the direction
of plastic corrector given by the HB model, i.e., σpl = Deln1

g (non-associated flow rule). The
procedure then continues with the second step bringing the stresses back onto the HB yield
surface along the same direction, see Fig. 6.4. The total plastic strain increment is then the sum
of plastic strain increments generated by both steps

ε = (∆λR + ∆λHB)n1
g (6.34)

where ∆λR,∆λHB correspond to the two consecutive return steps, i.e., return to the Rankine
and HB yield surfaces, respectively.
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• Correct return to the Rankine yield surface is expected: This is a one-step return along the
direction given by σpl = Deln1

t (associated flow rule) so that

ε = ∆λRn
1
t (6.35)

As the two vectors, n1
g and n1

t , are constant within the stress return, the correct increment of the
plastic strain is found in one iteration step for both cases using

∆λR = − fR1
dfR1

(6.36)
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Figure 6.4: Non-associated return to the HB surface from trial stress violating fR1 in two consecutive
steps (plotted for ψ0 = 0): first - from trial stress (red point) onto the Rankine yield surface (orange
point), second - from Rankine surface to HB surface (green point) plotted in the deviatoric plane
(left), σm − J plane (middle), σ1 − σ3 plane (right).

6.3.2 Multi-surface plasticity stress return

Two active sectors of the HB yield surface apply both to the state of triaxial compression (fHB1 and
fHB2 ) and triaxial extension (fHB1 and fHB3 ). Therefore, two additional directions of plastic yielding
are required in accordance with active plastic potential functions (6.11) and (6.12) written as

n2
g =

∂gHB2

∂σ
=

{
0,

1 + sinψm
1− sinψm

,−1

}
T (6.37)

n3
g =

∂gHB3

∂σ
=

{
1 + sinψm
1− sinψm

,−1, 0

}
T (6.38)

Next, consider a triaxial stress state in compression which gives the NR iterative scheme in the form{
∆λ1

∆λ2

}k+1

=

{
∆λ1

∆λ2

}k
− (H−1)k

{
fHB1

fHB2

}k
(6.39)

where the Jacobian matrix H is composed of partial derivatives of the yield functions with respect to
two plastic multipliers ∆λ1 and ∆λ2. Therefore

H =


dfHB1

d(∆λ1)

dfHB1

d(∆λ2)

dfHB2

d(∆λ1)

dfHB2

d(∆λ2)

 (6.40)

The vector of updated principle stresses for the current iterative step is given by

σi+1 = σtr − (∆λ1)k+1Deln1
g − (∆λ2)k+1Deln2

g (6.41)
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Vectors providing the direction of the plastic corrector are defined as

σpl1 = Deln1
g =

{
σpl1,1, σ

pl
1,2, σ

pl
1,3

}T

(6.42)

σpl2 = Deln2
g =

{
σpl2,1, σ

pl
2,2, σ

pl
2,3

}T

(6.43)

and individual components of the stress vector for j = 1, 2, 3

σj(∆λ1,∆λ2) = σtrj −∆λ1σ
pl
1,j −∆λ2σ

pl
2,j (6.44)

Writing, e.g., the yield function fHB1 in terms of two plastic multipliers yields

fHB1 (∆λk1,∆λ
k
2) =(σtr1 − σtr3 )−∆λ1(σpl1,1 − σ

pl
1,3)−∆λk2(σpl2,1 − σ

pl
2,3)−

− σci
[
s− mb

σci

(
σtr1 −∆λk1σ

pl
1,1 −∆λk2σ

pl
2,1

)]a
(6.45)

The corresponding partial derivatives become

H11 = σpl1,3 − σ
pl
1,1 − ambσ

pl
1,1

[
s− mb

σci

(
σtr1 −∆λk1σ

pl
1,1 −∆λk2σ

pl
2,1

)]a−1

(6.46)

H12 = σpl2,3 − σ
pl
2,1 − ambσ

pl
2,1

[
s− mb

σci

(
σtr1 −∆λk1σ

pl
1,1 −∆λk2σ

pl
2,1

)]a−1

(6.47)

The second yield function fHB2 and components H2,1,H2,2 of the Jacobian matrix H are derived
similarly. The same approach is applied when addressing the state of triaxial extension with sectors
fHB1 and fHB3 being simultaneously active.

Attention should be also paid to the triaxial corner of the tensile yield surface. In this case, the
proposed approach is adopted for the intersection of the yield functions fR1 and fR2 . Similarly to a
single surface plasticity return only one iteration is needed to perform this step. Again, both non-
associated and associated plasticity is considered in return mapping scheme depending on whether
the stress is expected to be brought back to HB model or directly to the Rankine yield surface, recall
the last paragraph in the previous section. A graphical representation is provided in Fig. 6.5. For a
general framework comprising all potential stress return options we refer the reader to [83].

Apex return

When returning to apex, three sectors of the yield surface are simultaneously active. In the framework
of the proposed tension cut-off, these three functions correspond to the linear Rankine criterion. Hence
the solution does not require an iterative procedure. Equations (6.16) - (6.18) must be satisfied at the
end of the stress update procedure and the associated flow rule applies. Return to apex is carried out
only providing all other tested cases of return mapping fail.

6.4 Algorithmic tangent stiffness matrix

A robust implementation of the HB model into finite element method requires formulation of the tan-
gent operator consistent with the stress update procedure. In analogy with Section 4.3 an algorithmic
tangent operator can be defined as

D =
dσi+1

dεi+1
(6.48)

where σ represents implicit functions of the updated principle stress. Before proceeding it becomes
useful to introduce the elastic stiffness matrix with reference to Eq. (5.69) in the form

D =

 d1 d2 d2

d2 d1 d2

d2 d2 d1

 (6.49)
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stress violating tensile yield condition (ψ0 = 0 is assumed): σtr violates fR1 condition (TC corner),
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′
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and the direction of plastic yielding with reference to Eq. (6.23) as

n1
g = {Ψ, 0,−1} T (6.50)

This allows us to write the trial principal stresses σtr = σi + D∆ε as

σtr1 = σi1 + d1∆ε1 + d2(∆ε2 + ∆ε3) (6.51)

σtr2 = σi2 + d1∆ε2 + d2(∆ε1 + ∆ε3) (6.52)

σtr3 = σi3 + d1∆ε3 + d2(∆ε1 + ∆ε2) (6.53)

and when substituted into Eq. (6.24) to provide the implicit stress functions for a single surface
plasticity in the form

σi+1
1 = σtr1 −∆λ(d1Ψ− d2) = σi1 + d1∆ε1 + d2(∆ε2 + ∆ε3)−∆λ(d1Ψ− d2) (6.54)

σi+1
3 = σtr3 −∆λ(d2Ψ− d1) = σi3 + d1∆ε3 + d2(∆ε1 + ∆ε2)−∆λ(d2Ψ− d1) (6.55)

The yield function fHB1 associated with the main sector of the HB surface then becomes

(fHB1 )i+1 = σi1 − σi3 + (∆ε1 −∆ε3)(d1 − d2)−∆λ(d1 − d2)(Ψ + 1)− σcif̃1(∆ε,∆λ) (6.56)

where

f̃1(∆ε,∆λ) =

{
s− mb

σci

[
σi1 + d1∆ε1 + d2(∆ε2 + ∆ε3)−∆λ(d1Ψ− d2)

]}a
(6.57)

Because the direction of plastic corrector is independent of the strain increment ∆ε and since εi+1 =
εi + ∆ε, we may expand Eq. (6.48) as (index i+ 1 was dropped for the sake of simplicity)

D = D− ∂∆λ

∂ε
Dn1

g (6.58)

where the derivative of plastic strain increment follows from consistency condition written as

dfHB1

dε
=
∂fHB1

∂ε
+
∂fHB1

∂∆λ

∂∆λ

∂ε
= 0 (6.59)
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to get

∂∆λ

∂ε
= −

(
∂fHB1

∂ε

)(
∂fHB1

∂∆λ

)−1

(6.60)

= −


(d1 − d2) + ambd1(f̃1)a−1

ambd2(f̃1)a−1

(d2 − d1) + ambd2(f̃1)a−1

[(d2 − d1)(Ψ + 1)−mba(d1Ψ− d2)(f̃1)a−1
]

(6.61)

Equation (6.61) can be now substituted back to Eq. (6.58) to finally get the searched algorithmic
tangent stiffness matrix D.

It can also be shown that
∂∆λ

∂ε
=

nT
1 D

nT
1 Dn1

g

(6.62)

where the normal n1 to the yield surface fHB1 is provided by, see Eq. (6.5),

n1 =
∂fHB1 (σ1, σ3)

∂σ
(6.63)

which renders the matrix D as

D = D−
Dn1

gn
T
1 D

nT
1 Dn1

g

(6.64)

It is worth mentioning that Eq. (6.64) is consistent with the formulation of standard elasto-plastic
tangent stiffness matrix Dep, see, e.g., [10] Eq. (1.66). This suggests that the derivation of algorithmic
tangent stiffness matrix for the case of a multi-surface plasticity return may proceed along the same
lines as presented in Section 5.3 including the transformation from a principal stress space to a general
cartesian stress space as outlined in Section 5.3.1.

6.5 Analogy with Mohr-Coulomb model

The similarity of HB and MC models has already been mentioned. Application of the MC model is
common when addressing for example the slope stability analysis, which typically provides the factor
of safety defined in terms of effective shear strength parameters, cohesion c and angle of internal
friction ϕ. To identify equivalency between the two models in practical engineering thus appears
useful. This issue was examined by Hoek et al. in [31, 32] in order to derive the equivalent shear
strength parameters controlling the MC failure criterion defined in the form

σ3 = −σcm + kσ1, (6.65)

where σcm is the uniaxial compressive strength of the rock mass and k is the slope of the MC line
plotted in the σ3 and σ1 stress space, see Fig. 6.6.

The values of effective shear strength parameters c, ϕ are then given by

c =
σcm

2
√
k
, sinϕ =

k − 1

k + 1
(6.66)

Comparing Eq. (6.65) and the HB criterion written as

σ3 = σ1 − σci
(
s−mb

σ1

σci

)a
(6.67)

it is seen that no mathematical relationship between the two models can be determined. To that end,
an iterative approach balancing the area above and below the MC model, see Fig. 6.6, was developed
in [32] to get

c =
σci[(1 + 2a)s+ (1− a)mbσ1n](s+mbσ1n)a−1

A
√

1 + (6amb(s+mbσ1n)a−1)/A
(6.68)

A = (1 + a)(2 + a)

sinϕ =

[
6amb(s+mbσ1n)a−1

2(1 + a)(2 + a) + 6amb(s+mbσ1n)a−1

]
(6.69)
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Figure 6.6: Comparison of nonlinear Hoek-Brown criterion and equivalent Mohr-Coulomb model in
σ1 − σ3 plane

for the range of confining stress of σt > σ1 > σ1,max, where σ1n = |σ1,max|/σci depends on the upper
limit σ1,max seen in Fig. 6.6.

Application of the MC model in slope stability analysis requires setting the value of σ1,max to
estimate the shear strength parameters. By performing a large parametric study on a variety of slope
geometries and rock mass properties using Bishop’s limit state analysis, Hoek et al. [32] proposed the
following relationship for σ1,max

|σ1max| = 0.72σcm

(
σcm
γH

)−0.91

(6.70)

where H is the height of the slope, γ is the unit weight of the rock mass and σcm is the rock mass
strength defined by Eq. (6.66)

σcm =
2c cosϕ

1− sinϕ
(6.71)

The rock mass strength expressed using parameters of the Hoek-Brown model is then given by sub-
stituting Eqs. (6.68) and (6.69) into Eq. (6.71). It holds

σcm = σci
(mb + 4s− a(mb − 8s))(mb/4 + s)a−1

2(1 + a)(2 + a)
(6.72)

Reliability of the proposed approach strongly depends on a suitable choice of range of confining
pressure, see [64] and also Section 6.7.2 for further details. As the determined pair of equivalent shear
strength parameters is independent of the current stress state, the accuracy of equivalency differs at
each integration point. Therefore, the method addressed in the next section proves more appropriate.

6.6 Application of Hoek-Brown model in slope stability analysis

The factor of safety is defined as the ratio of the current shear strength parameter, e.g. cohesion, to
the minimum one for which the convergence of the nonlinear problem still exists. This approach is
thus not directly applicable to the HB model. However, the authors in [8] introduced an elegant way
to overcome this obstacle. So the method of solving the slope stability employing directly of the HB
model in GEO5 FEM proceeds in their footsteps.

The approach outlined in [8] builds upon a gradual reduction of the strength of a rock mass by
modifying the yield function as

f(σ1, σ3) = σ1 − σ3 −
σci
η

(
s−mb

σ1

σci

)a
(6.73)
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where η is the reduction factor. A different reduction factor is introduced to reduce the shear strength
parameters ϕ, c as

tanϕd =
tanϕc
γ

, cd =
cc
γ

(6.74)

where ϕ and c are the actual strength parameters of the subsoil material and γ is the reduction factor
common to both strength parameters. The objective now is to determine the relationship between the
two reduction factors η and γ.

This is achieved by constructing a tangent to the Hoek-Brown yield function at the current state
of stress sitting on the yield function and comparing this slope to the slope of the MC yield surface
to get

η =
1

2

γ (2− f̃ ′
)√√√√√√1 +

(
1
γ2
− 1
)(
−f̃ ′

)2

(
2− f̃ ′

)2 + f̃
′

 (6.75)

where

f̃
′

=
∂f̃(σ1)

∂σ1
= −mba

(
s−mb

σ1

σci

)a−1

(6.76)

Notice that η is a function of the current stress state and must be evaluated for every integration
point in the the finite element mesh in every iteration step of the global NR method separately. For
complete derivation of Eq. (6.75) we refer the interested reader to [8].

6.7 Testing implementation with simple laboratory tests

The basic laboratory tests mentioned already in Section 1.10 are used again to test numerical imple-
mentation of the Hoek-Brown model. Attention is also accorded to a possible replacement of the HB
model with the MC model as outlined in Section 6.5. All simulations adopt the material data listed
in Table 6.2. Recall that parameters Erm,mb, s, a are back calculated employing Eq. (6.3), (6.2) (6.8)
and (6.9).

Table 6.2: Parameters of Hoek-Brown plasticity model taken from [31]

Symbol Units Magnitude

Erm [MPa] 1414.20
ν [-] 0.3
σci [MPa] 20.0
mi [-] 8.0
GSI [-] 30
D [-] 0.0
ψ [◦] 0

mb [-] 0.656680
s [-] 0.000419
a [-] 0.52234

As suggested in [31] to receive a reasonable approximation of the Hoek-Brown model by the
Mohr-Coulomb failure criterion a set of triaxial tests with the minor principal stress ranging in the
interval of (0, 0.25σci) should be carried out. Considering the maximum value of the minor principal
stress σ1,max = −5 MPa we get the parameter σ1n = |σ1,max|/σci = 0.25 which, when substituted in
Eqs. (6.68) and (6.69), gives the equivalent Mohr-Coulomb strength parameters c, ϕ as

c = 649 kPa, ϕ = 22.8◦
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6.7.1 Triaxial loading conditions

With reference to Section 1.10 a two dimensional axisymmetric computational model consisting of two
constant strain triangular elements is constructed, see Fig. 6.8(a), to predict the sample response both
in triaxial compression and extension. A schematic representation of these stress states is displayed in
Fig. 6.7. Following the initial isotropic consolidation phase, Fig. 6.8(a), the corresponding kinematic
boundary conditions appear in Fig. 6.8(b) and Fig. 6.8(c), respectively. The displacement control
loading regime is chosen on purpose to avoid termination of the analysis when exceeding the failure
criterion, recall specific discussion on this subject in Section 4.6.2 with reference to a triaxial test.

σ1 = σ2 ≥ σ3

σ3

σ1 = σ2

σ1

σ2 = σ3

σ1 ≥ σ2 = σ3

(a) (b)

Figure 6.7: a) Triaxial compression, b) Triaxial extension

σ1 = σ2 = σ3 σ1 = σ2 ≥ σ3

w w

σ1 ≥ σ2 = σ3

w
w

(a) (b) (c)

Figure 6.8: Numerical model of triaxial assuming axisymmetric stress state: a) initial isotropic com-
pression, b) loading in triaxial compression, c) loading in triaxial extension

Figure 6.9 shows plots of the HB and MC yield surfaces (solid lines) in the meridian plane for
the case of triaxial compression (θ = +30◦) and triaxial extension (θ = −30◦), respectively. The
corresponding loading path is also displayed for the sake of convenience. It is seen that the numerically
derived stress states at the onset of failure (stars) match the yield surfaces for all selected chamber
pressures ((σ0

m)i, i = 1, . . . , 8) well. One particular value of (σ0
m)8 = −5 MPa which yields the stress

state at failure marked as 8 is shown for illustration.
Remember that the parameter σn1 which identifies the range of applicability of the MC failure

criterion was calculated for the largest expected value of the minimum principal stress (the chamber
pressure) σ1,max = −5 MPa. It is seen that the degree of sameness depends on the actual stress state
and because of constant values of shear strength parameters (c = 649 kPa, ϕ = 22.8◦) assumed for
this particular stress range and it is not the same for all considered chamber pressures.

Two particular stress states marked as 6 and 8 are examined in more details in Fig. 6.10. The
analytically derived stress states at failure corresponding to these to points are stored in Table 6.3
and replotted in Figs. 6.10(a) and 6.11(a). These figures show a gradual evolution of chamber pres-
sure during the initial stage of isotropic consolidation followed by triaxial compression loading stage.
Because of elastic-perfectly plastic character of both the HB and MC models the mean stress σm as
well as the equivalent deviatoric stress J do not evolve further once arriving at the corresponding yield
surface. Also recall the dilation angle ψ = 0 which suggests no evolution of volumetric strains with
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Figure 6.9: Analytical representation of Hoek-Brown and Mohr-Coulomb plasticity models and nu-
merical predictions of failure stresses for triaxial compression (θ = +30◦) and extension (θ = −30◦)

Table 6.3: Analytically derived stress values at failure for two selected chamber pressures, points 6
and 8 in Fig. 6.9

Chamber pressure σ0
m = −3.57 MPa (6) σ0

m = −5 MPa (8)
Model σem [MPa] Je [MPa] σem [MPa] Je [MPa]

Hoek-Brown -5.73 3.75 -7.77 4.79
Mohr-Coulomb -5.75 3.78 -7.60 4.45

further shearing. Thus only the J − Ed stress-strain law is plotted in Figs. 6.10(b) and 6.11(b) fur-
ther confirming the assumption of elastic-perfectly plastic material model. We also see the difference
between the HB and MC predictions for the two selected points evident already in Fig. 6.9.

Before proceeding it is perhaps worth reminding a well known shortcoming of the FULL Newton-
Raphson iteration scheme when combined with the elastic-perfectly plastic material and traction
control loading regime in triaxial setting. Figures 6.10(b) and 6.11(b) suggest a zero stiffness at the
onset of failure which yields singularity of the FULL Newton-Raphson method as demonstrated in
Fig. 4.9(c). A potential remedy, if not using the kinematic boundary conditions, is provided via
application of the Arc-length method. This solution strategy is examined in Section 11.5.2 and the
interested reader is referred therein.

Testing multi-surface plasticity return

A thorough investigation of multi-surface plasticity return has been carried out in Section 5.4.2 with
application to the Mohr-Coulomb failure criterion. Herein, attention is limited to triaxial compression
for which the return to intersection of sectors represented by fHB1 and fHB2 yield surfaces has already
been put forward in Fig. 5.8(a), recall also Section 6.3.2. The loading scenario appears in Fig. 6.12
suggesting again the triaxial compression loading stage being analyzed with the help of kinematic
boundary conditions.

Following the initial isotropic compression calculation stage, see Fig. 6.12(a), the triaxial compres-
sion stage is examined for a single load step caused by the prescribed vertical displacement w = 1 cm,
see Fig. 6.12(b) which amounts to major principal stress σ3 ≈ −15 MPa. A graphical representation
of the return mapping procedure is displayed in Figs. 6.14 and 6.14.

The implemented algorithm, similarly to the Mohr-Coulomb model, starts from testing the main
sector σ1 ≥ σ2 ≥ σ3 (recall Fig. 5.1(b)) for violating the yield conditions, i.e., fHB1 > 0. In such a case it
attempts to bring the stress point back to the yields surface to satisfy fHB1 ≤ ε. This step is visualized
in Figs. 6.14(a,c,e), where Fig. 6.14(a) also shows linearization within individual steps of the Newton-
Raphson iteration scheme, recall Section 6.3.1 and Eq. (6.36) in particular. Figure 6.14 displays in
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Figure 6.10: Comparing Hoek-Brown and Mohr-Coulomb prediction of failure assuming triaxial com-
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Figure 6.12: Numerical model to test stress return mapping algorithm: a) initial isotropic compression
stage, b) triaxial compression stage

turn the course of return mapping in the σ2−σ3 space. Note that the value of an intermediate stress σ2

does not change and when completing the iteration process we observe violation of the yield condition
for sector σ2 ≥ σ1 ≥ σ3 (recall Fig. 5.1(b)), i.e., fHB2 > 0, see also Fig. 6.13(a). Owing to the assumed
value of the dilation angle ψ = 0 the mean stress σm does not change during the return process. This
is apparent in Fig. 6.14(c) showing the stress return along the J-axis when plotting individual steps
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Figure 6.13: Visualization of stress return mapping algorithm in principal stress space: a) considering
the main sector fHB1 only, b) return to singularity edge represented by intersection of fHB1 and fHB2

sectors

of the return mapping algorithm in the meridian plane.
Returning into an inadmissible stress space in the first attempt invites application of a multi-surface

plasticity return described in Section 6.3.2 to enforce satisfying the two yield conditions fHB1 ≤ ε
and fHB2 ≤ ε simultaneously. The mathematical formulation of this process given by Eqs. (6.39)
is corresponds graphically to return along the triaxial compression line as shown in Fig. 6.13(b).
Individual steps of this process are plotted in Figs. 6.14(b,d,f). The linearization within the Newton-
Raphson method is evident in Fig. 6.14(b). Because of solving a set of two equations the return
direction obviously differs from the previous case owing to the evolution of all three principal stresses
as documented in Figs.6.14(b,d). Figure 6.14(f) further confirms a successful return both yield surfaces
when visualized in the meridian plane again with no change in the mean stress σm due to ψ = 0.

6.7.2 Oedometer test

The main objective is to further investigate the relevance of simulating the response of a rock mass
with the Mohr-Coulomb failure criterion. Recall that the equivalent shear strength properties strongly
depend on the expected stress range. While in a triaxial test the stress state is prescribed, the de-
termination of parameter σn1 = |σ1,max|/σci is not so straightforward and it can be ordained only
approximately. For simplicity, the plane strain state of stress will be considered henceforth. The cor-
responding numerical model in Fig. 6.15, now consisting of two 3-node plane strain triangles, is used
in all simulations. Because of lateral constraints, no difficulties should be encountered with the appli-
cation of FULL Newton-Raphson method even combined with elastic-perfectly plastic material, recall
Section 4.6.1. Therefore, both traction and displacement control loading conditions in Figs. 6.15(a,b)
can be adopted without any restrictions.

Assuming elasticity the stress state in oedometer is given by

σ1 = σ2 =
v

1− ν
σ3 (6.77)

where −σ3 is the applied vertical stress in Fig. 6.15(a). Substituting Eq. (6.77) into the yield crite-
rion (6.5) allows us to determine the maximum vertical stress at the onset of failure. In particular,

ν

1− ν
σ3 − σ3 − σci

(
s−mb

σ1

σci

)a
= 0 (6.78)

which for the assumed parameters in Table 6.2 gives σ3 = −16.165 MPa. If loading beyond this
stress level considering, e.g., the loading scenario in Fig. 6.15(c) the stress point moves up the yield
surface with continuously increasing values of lateral stresses σ1, σ2, thus also the mean and equivalent
deviatoric stress measures σm and J . This supports already mentioned difficulty is estimating a
“correct” value of σn1.



78 CHAPTER 6. HOEK-BROWN MATERIAL MODEL

-σ
3 

(M
Pa

)

-σ1 (MPa)

-σ
3
 (

M
Pa

)

-σ1 (MPa)
(a) (b)

-σ2 (MPa)

-σ
3 

(M
Pa

)

-σ
3
 (

M
Pa

)

-σ2 (MPa)
(c) (d)

-σm (MPa)

J 
(M

Pa
)

J 
(M

Pa
)

-σm (MPa)
(e) (f)

Figure 6.14: Graphical representation of stress return mapping algorithm: (a,c,e) - considering the
main sector fHB1 only, (b,d,f) return to singularity edge represented by intersection of fHB1 and fHB2

sectors

σ1 = σ2 ≥ σ3

w w

σ1 = σ2 ≥ σ3 30 MPa

(a) (b) (c)

Figure 6.15: Numerical model of oedometer assuming plane strain state of stress: a) loading driven
by prescribed tractions, b) loading driven by prescribed displacement, c) loading driven by prescribed
tractions generating inadmissible stress state
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To examine a consequence of an improperly chosen stress range in estimating the equivalent shear
strength parameters c, ϕ of the MC model we consider two particular cases:

1. The value of σn1 is set the same as in the triaxial test, i.e., σn1 = 0.25.

2. The maximum value of the minimum principal stress σ1,max is derived numerically at end of
simulation for the suggested maximum applied tractions, see Fig. 6.15(c), while using the HB
model. For the selected σ3 = −30 MPa we obtained σ1,max = σ2,max = −15.975 MPa which
subsequently gives σn1 = |σ1,max|/σci = 0.79. Point out that the corresponding maximum mean
stress σm,max = −20.53 MPa.

The results appear in Fig. 6.16. Figure 6.16(a) examines the first case suggesting an improperly
selected range of expected stresses. In other words, the assumed σ1,max = −5 MPa is too low thus
largely overestimating the onset of failure provided by the Mohr-Coulomb, see the failure point on the
dashed red line. Clearly, as confirmed in Fig. 6.16(a), the MC model predicts elastic behavior over
the entire range of the expected stress range, say in the interval of σm ∈ (0, σm,max = −20.53) MPa.
On the contrary, inspecting the results for the second case in Figs. 6.16(b,d) the intentionally selected
stress range accompanied by a reasonable value of σn1 might support applicability of the MC model
in place of more complex, at least from the implementation point view, HB model. Although for
specific classes of problems such as slope stability or ground excavation the authors in [32] recommend
a way of setting a suitable value of σn1, see also Section 6.5, the decision of accepting the MC model
should be approached with caution as the actual stress state, being considerably affected by plastic
deformation, is generally not known.
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Figure 6.16: Comparing Hoek-Brown and Mohr-Coulomb prediction of failure assuming oedometric
compression and variable parameter σn1 to estimate shear strength parameter of Mohr-Coulomb model:
(a,c) σn1 = 0.25, (b,d) σn1 = 0.79
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Chapter 7

Modified Hoek-Brown model

This model is under current development. The theoretical formulation grounds on the work of [85].
Unlike the standard Hoek-Brown failure criterion the Modified Hoek-Brown yield surface is presented
in an invariant stress space thus taking into account the effect of an intermediate principal stress. In
the deviatoric plane the model takes the form of the Matsuoka-Nakai yield surface. Tension cutoff
is introduced in the framework of the I3-generalization of the Galileo-Rankine tension criterion [49].
The model is expected to appear in the fall release of 2025.
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Chapter 8

Hardening soil model

The Hardening soil model (HS) was first introduced by Schanz et al. [70] and ever since it has been
implemented in a number of commercial geotechnical software including PLAXIS [63, 1] and ZSoil [52,
58]. The present formulation, implemented in GEO5 FEM, proceeds in the footsteps of Benz [9] and
introduces several modifications mainly in the definition of yield surface and stress dependent stiffness.
This is also why the predictions provided by the PLAXIS and GEO5 FEM programs for the same
set of material parameters may not fully match. While a simple tool integrated in the ExCalibre
software [25] is provided to convert the values of some of the material parameters from PLAXIS to
GEO5 FEM, we strongly recommend the user to calibrate the GEO5 version of HS model based on
her/his own laboratory measurements with the help of ExCalibre.

The essential difference between PLAXIS and GEO5 FEM is seen in the formulation of the yield
surface. Unlike PLAXIS where the formulation is presented in the principal stress space, the formula-
tion in GEO5 the three basic invariant stress measures J, σm, θ, recall Chapter 1. Thus the projection
of the yield surface into a deviatoric plane moves from that of the Mohr-Coulomb type (irregular
hexagon) to a smooth variant formulated here in light of the Matsuoka-Nakai yield surface as plotted
in Fig. 8.1(a). Figure 8.1(b) then shows the projection of the failure criterion into a meridian plane
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Figure 8.1: Yield surface: a) plot in deviatoric plane, b) plot in meridian plane, c) plot in principal
stress space (GEO5 FEM), d) plot in principal stress space (PLAXIS)
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clearly identifying two yield surfaces. The evolution of hardening shear yield surface fHSs is presented
as a function of the accumulated equivalent deviatoric plastic shear strain κ. This evolution is bounded
by the Matsuoka-Nakai limit yield surface fMN

s defined in terms of the peak values of cohesion c and
angle of internal friction ϕ. The cap yield surface fHSc is introduced to control the volumetric plastic
mechanism in the spirit of the critical state models described in Chapters 11 and 12. Its evolution,
similar to the Modified Cam-clay model in Chapter 11, is controlled by the current value of the pre-
consolidation pressure pc. Introducing the cap yield surface allows for representing a gradual evolution
of stiffness in compression for normally consolidated and lightly overconsolidated soils. For further
details on this subject we refer the reader to Section 11.1. Both shear and cap yield functions are
smoothed and their plot in principal stress space is displayed in Fig. 8.1(c). The three-dimensional
plot of failure criterion implemented in PLAXIS is showed in Fig. 8.1(d) for illustration. The list of
material parameters entering the formulation of HS model is available in Table 8.1.

Table 8.1: Parameters of Hardening soil plasticity model

Symbol Units Description

Ep,ref
i [MPa] Secant modulus of elasticity

Ep,ref
ur [MPa] Modulus of elasticity in unloading/reloading
νur [-] Poisson’s ratio
σref
m [kPa] Reference mean stress
mp [-] Exponent for power law
σL
m [kPa] Limiting mean value of mean stress to avoid zero stiffness

Rf [-] Failure ratio
c [kPa] Effective peak cohesion
ϕ [◦] Effective peak angle of internal friction
ψ [◦] Angle of dilation

KNC
0 [-] Coefficient of lateral earth pressure for normal consolidation

Eref
oed [MPa] Tangent oedometric modulus

σref
oed [kPa] Reference vertical stress to specify Eref

oed

ein [-] Initial void ratio
emax [-] Maximum void ratio to terminate dilation
OCR [-] Overconsolidation ratio
POP [kPa] Preoverburden pressure
α [1/◦C] Coefficient of thermal expansion

Ks/Kc [-] Bulk stiffness ratio
M [-] Model parameter to define shape of cap yield function, inputted or calculated

Hp,ref [kPa] Hardening modulus, inputted or calculated
pc [kPa] Preconsolidation pressure (pminc = 1kPa), calculated

8.1 Shear yield surface of GEO5 HS model

Formulation of the shear hardening yield function is founded on the assumed hyperbolic approximation
of the soil response in drained triaxial compression plotted in q−ε3 space1 in Fig. 8.2, where q = σ1−σ3

is the deviatoric stress, recall Eq. (1.56), and ε3 is the vertical compressive strain. Note that in the
formulation of the shear failure criterion the asymptotic value of the deviatoric stress qa is replaced
by a certain limit value qf = Rfqa(Rf ∈ (0, 1〉), where qf is associated with the limit failure criterion.
With reference to Mohr-Coulomb failure criterion given by Eq. (5.4) we may express qf in terms of
minor principal stress σ1 and shear strength parameters c, ϕ by first setting qf = σ1 − σ3 which upon
substituting in Eq. (5.4) provides

qf =
2 sinϕ

1− sinϕ
(−σ1 + c cotϕ) (8.1)

1Remember that standard elasticity sign convention is used throughout this text so σ1 = σ2 < 0 represent the
confining pressure and σ3 ≤ σ1(|σ3| ≥ |σ1|) is the vertical compressive stress.
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The secant Young modulus E50, which corresponds to 50% of the value of qa, differs from the unload-
ing/reloading modulus Eur ≈ 3E50, which in turn governs the elastic response. To see how the secant
modulus E50 enters the formulation of HS model we start from the hyperbolic equation written as

q =
ε3

bε3 − a
(8.2)

Following [44] the parameters a and b are given by a =
1

2E50
, b =

1

qa
which gives

− ε3 =
qa

2E50

q

qa − q
(8.3)

As described in [70] the elastic-plastic split of ε3 can be written as

ε3 = εel3 + εpl3 = − q

Eur
+ εpl3 =

qa
2E50

q

qa − q
(8.4)

To identify the plastic strain εpl3 Schanz et al. [70] proposed a yield function while introducing a plastic
strain hardening parameter γps. Considering triaxial compression this parameter is written as

γps = 2εpl1 − ε
pl
3 (8.5)

Assuming incompressibility of the plastic volumetric strain in the contractancy domain (2εpl1 +εpl3 = 0)
gives

γps = −2εpl3 (8.6)

Combining Eqs. (8.4) and (8.4) renders the shear hardening yield function in the form

fHSs (q, γps) =
qa
E50

q

qa − q
− 2q

Eur
− γps = 0 (8.7)

Note that for triaxial compression the equivalent strain measures γpls , recall Eq. (1.31), receives the
form

γpss = εpl1 − ε
pl
3 = −3

2
εpl3 (8.8)

where the aforementioned incompressibility condition was taken into account. Comparison with
Eq. (8.6) readily provides

γpss =
3

4
γps (8.9)

With reference to Eq. (8.1) we may write the current deviatoric stress q in terms of the mobilized
angle of internal friction ϕm associated with a given yield loci in Fig. 8.1(b) as

q =
2 sinϕm

1− sinϕm
(−σ1 + c cotϕ) (8.10)
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Because qf = Rqa we get

q

qa
=
Rfq

qf
= Rf

(
1− sinϕ

sinϕ

)(
sinϕm

1− sinϕm

)
=

b

a
(8.11)

Introducing Eq. (8.11) into (8.7) together with Eq. (8.9) yields

fHSs =
3

2

q

2E50

a

a− b
− 3

2

q

Eur
− γpss (8.12)

To avoid singularity at a→ b it was proposed in [19] to rewrite this equation as

fHSs =
3

2

q

2E50
− a− b

a

(
3

2

q

Eur
+ γpss

)
(8.13)

Figure 8.3 compares evolution of function fHSs provided by Eqs. (8.12) and (8.13) assuming the follow-

ing set of parameters: c = 0, ϕ = 30◦, Ep,ref
50 = 30 [MPa], Ep,ref

ur = 90 [MPa], σref
m = −100 [kPa], Rf =

0.9,mp = 0.55, γpss = 0.0005 [-]. It should be mentioned that stiffness 2E50 = Ei and Eur evolve in
accordance with Eqs. (8.16) and (8.17).
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Figure 8.3: Evolution of yield function fHSs in triaxial compression for fixed σm: a) identifying common
point of interaction at fHSs = 0, b) identifying singularity

Note that function the above function is not defined along the hydrostatic axis for which q =
0, sinϕm = 0. To this end we introduce an additional modification which gives the shear harden-
ing yield surface as

fHSs =
3

2

q

2E50
− (1− bã)

(
3

2

q

Eur
+ γpss

)
(8.14)

b = Rf
1− sinϕ

sinϕ
, ã =

sinϕm
1− sinϕm

To be consistent with formulations presented in other chapters we finally rewrite this function as,
recall Eqs. (1.25) and (1.31),

fHSs = J − (1− bã)

(
Ep,ref
i

Ep,ref
ur

J +
Ei
3
κs

)
(8.15)

where the transition from 2E50 to Ei was proposed in [9]. The reference moduli Ep,ref are introduced in
the next section whereas the hardening parameter κs, which replaces γs, is defined later in Section 8.3.

8.1.1 Stiffness evolution in GEO5 HS model

In GEO5 FEM the Janbu [40] stiffness power law, originally written in terms of the minor principal
stress which remains constant in plastic shearing in triaxial compression, is rephrased in terms of the
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mean effective stress σm as

Ei(σm) = Ep,ref
i

(
σ̂m
σ̂ref
m

)mp
(8.16)

Eur(σm) = Ep,ref
ur

(
σ̂m
σ̂ref
m

)mp
(8.17)

σ̂m = σ∗m − c cotϕ (8.18)

σ̂ref
m = σref

m − c cotϕ (8.19)

σ∗m = max (σm, σ
L
m) for c = 0, σL

m < 0

σL
m − Limiting mean stress to avoid zero stiffness

By default σL
m = −10 kPa in GEO5 FEM

Such a formulation avoids spurious oscillations of stiffness moduli as mentioned in [58]. On the con-
trary, the stiffnesses Ei and Eur are not directly identifiable from triaxial compression test as the
mean effective stress σm varies. It is worth mentioning that in PLAXIS the stiffness evolution is con-
trolled by the minor principal stress which precludes a direct translation of model parameters between
PLAXIS and GEO5 FEM. To this end, as has already been mentioned, the user may either exploit
the calibration software ExCalibre [25] or adopt a simple conversion tool integrated in ExCalibre to
adjust the model parameters mp, E

p,ref : m → mp, E
ref → Ep,ref . Note that the ExCalibre software

provides the model parameters such as to match the experimental curves computationally. In triaxial
compression this match is strongly controlled by the reference stiffness Ep,ref

i . A reasonable point of
departure is provided by

Ep,ref
i =

2Ep,ref
50

2−Rf
(8.20)

A significant deviation can be expected for smaller Poisson ratios. Point out that the minor stress
(σ1) dependence assumes the form

E = Eref

(
σ1 − c cotϕ

σref
1 − c cotϕ

)m
(8.21)

Limiting attention to elasticity and triaxial compression while taking into account the elasticity sign
convention we get

σm =
(1 + 2K0)σ3

3
σ1 = K0σ3 K0 =

ν

1− ν
ν = 0.2→ σm = 0.50σ3, σ1 = 0.25σ3

ν = 0.4→ σm = 0.78σ3, σ1 = 0.67σ3

8.1.2 Matsuoka-Nakai limit yield function and mobilized angle of internal friction

As described, for example, in [5] the Matsuoka-Nakai yield surface can be written in terms of three
basic stress invariants, recall Eqs. (1.32) - (1.34), as

fMN (I1σ, I2σ, I3σ, c, ϕ) = I1σI2σ − η(ϕ)I3σ = 0, η(ϕ) =
9− sin2 ϕ

1− sin2 ϕ
(8.22)

or upon rearranging in the form

fMN (I1σ, I2σ, I3σ, c, ϕ) = Iσ − sin2 ϕ = 0 (8.23)
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where

Iσ =
9− I1σI2σ

I3σ

1− I1σI2σ

I3σ

=
9I3σ − I1σI2σ

I3σ − I1σI2σ
(8.24)

I1σ = 3σ̂m (8.25)

I2σ = 3σ̂2
m − J2 = 3σ̂2

m − J2 (8.26)

I3σ = σ̂3
m − σ̂mJ2 + I3s = σ̂3

m − σ̂mJ2 + I3s (8.27)

σ̂m = σm − c cotϕ (8.28)

and c, ϕ are the peak shear strength parameters. The other stress invariants, σn, J2, I3s in particular,
are defined in Section 1.3. Point out that such a formulation of the yield surface introduces the
dependence on the 3rd stress invariant θ in the deviatoric plane, recall Fig. 8.1(a). To see this we limit
our attention, without loss of generality, the case of zero cohesion. Then, substituting Eqs. (8.25) -
(8.27), while dropping the “bar” notation, into Eq. (8.22) gives

(9− η)σ3
m + (η − 3)σmJ

2 − ηI3s = 0 (8.29)

Next, multiply the above equation by
3
√

3

2

1

J3
to get after some manipulation

(σm
J

)3
−
(
η − 3

η − 9

)(σm
J

)
− 2
√

3

3

η

η − 9
sin 3θ = 0 (8.30)

Finally, multiply this equation by

(
J

σm

)3

to obtain

− 2
√

3

9
η sin 3θ

(
J

σm

)3

− (η − 3)

(
J

σm

)2

− (η − 9) = 0 (8.31)

Note that Eq. (8.31) complies with standard elasticity sign convention, i.e., σm < 0 in compression.
In the spirit of Drucker-Prager model we may now rewrite the Matsuoka-Nakai yield surface, while

still keeping c = 0, as

fMN (J, σm, θ, ϕ) = J + σmg(θ, ϕ) = 0 (8.32)

g(θ, ϕ) = χ(θϕ)MTC
ϕ (ϕ), MTC

ϕ =
2
√

3 sinϕ

3− sinϕ
(8.33)

Note that setting χ = 1 recovers the Drucker-Prager fit to the Mohr-Coulomb yield surface in triaxial

compression (TC), recall Eqs. (4.1) and (4.3). To solve for function g(θ, ϕ) = − J

σm
from Eq. (8.30)

we proceed along steps presented in [85] and set
1

g(θ, ϕ)
= a = r sinβ. Equation (8.30) now becomes

sin3 β − 1

r2

η − 3

η − 9
sinβ − 1

r3

2
√

3

9

η

η − 9
sin 3θ = 0 (8.34)

which resembles similarity with the following trigonometric function

sin3 β − 3

4
sinβ − 1

4
sin 3β = 0 (8.35)

Comparing the above two equations suggests

r =
2√
3

√
η − 3

η − 9
(8.36)

sin 3β = −η
√

η − 9

(η − 3)3 sin 3θ = B sin 3θ (8.37)

β =
1

3
sin−1(B sin 3θ) (8.38)
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The three roots of Eq. (8.30) are then provided by

a1 = r sinβ =
2√
3

√
η − 3

η − 9
sin(

1

3
sin−1 (B sin 3θ)) (8.39)

a2 = r sin

(
β +

2π

3

)
=

2√
3

√
η − 3

η − 9
sin

(
1

3
sin−1 (B sin 3θ) +

2π

3

)
(8.40)

a3 = r sin

(
β − 2π

3

)
=

2√
3

√
η − 3

η − 9
sin

(
1

3
sin−1 (B sin 3θ)− 2π

3

)
(8.41)

Keeping in mind the standard elasticity sign convention we notice that only the 3rd root represents

the true solution as
σm
J

= a3 < 0.

Since used later in the definition of cap yield surface in Section 8.2 it becomes useful to compare
the previous formulation with Lode angle θ dependent representation of function χ(θ, ϕ) in Eq. (8.33)
known as LMN dependence. This function is presented in [5]. The variant that complies with the
adopted elasticity sign convention reads

χ(θ, ϕ) =

√
3β

2
√
β2 − β + 1

1

cosϑ
(8.42)

β =
3− sinϕ

3 + sinϕ
(8.43)

α =
1

6
arccos

(
−1 +

27β2(1− β)2

2(β2 − β + 1)3
sin2(3θ)

)
(8.44)

ϑ = α(θ), for θ ≤ 0 (8.45)

ϑ =
π

3
− α(θ), for θ > 0 (8.46)

For illustration we compare the solution of cubic equation (8.30) with function χ(θ, ϕ). To this end we

first scale function g(θ, ϕ =
1

a3
, recall Eq. (8.41), with the solution pertinent to triaxial compression

identified with θ = 30◦. This yields

gc(ϕ, θ) =
a3(θ = 300)

a3
=

sin
(

1
3 sin−1 (B)− 2π

3

)
sin
(

1
3 sin−1 (B sin 3θ)− 2π

3

) (8.47)

As evident from Fig. 8.4(a) the two functions perfectly match. The Matsuoka-Nakai and the Mohr-
Coulomb projections into the deviatoric plane are finally compared for the sake of completeness.
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Figure 8.4: a) Comparing functions χ(ϕ, θ) and gc(ϕ, θ) b) Mohr-Coulomb (MC) and Matsuoka-Nakai
(MN) yield surfaces in deviatoric plane

It remains to determine the mobilized friction angle ϕm. This can be easily accomplished by
replacing the peak friction angle in Eq. (8.23) by the mobilized friction angle ϕm to obtain

sinϕm =
√
Iσ (8.48)
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8.1.3 Rowe’s dilatancy theory

To introduce the subject we first present the flow in the form presented already for the Mohr-Coulomb
yield criterion in Section 5.1. To this end, consider the case of triaxial compression and recall the
plastic potential functions given by Eqs. (5.14) and (5.15)

g1(σ1, σ3, ψ) =
1

2
(σ1 − σ3) +

1

2
(σ1 + σ3) sinψm (8.49)

g2(σ2, σ3, ψ) =
1

2
(σ2 − σ3) +

1

2
(σ2 + σ3) sinψm (8.50)

where ψm is the mobilized dilation angle. The plastic strain increments follow from the flow rule,
Eq. (5.36) (∆εpl = ∆εp1 + ∆εp1), as

n1
g =

∂g1

∂σ
=

{
1

2
(1− sinψm) , 0,

1

2
(−1− sinψm)

}T

(8.51)

n2
g =

∂g2

∂σ
=

{
1

2
(1− sinψm) ,

1

2
(−1− sinψm) , 0

}T

(8.52)

∆εplv = ∆εpl1 + ∆εpl2 + ∆εpl3 = −2∆λ sinψm (8.53)

∆γpls = ∆εpl1 −∆εpl3 = ∆λ (8.54)

where nig represents the normal to a given plastic potential surface and ∆εplv and ∆γs are the increments
of plastic volumetric strain and plastic equivalent shear strain, respectively, written in terms of plastic
multiplier ∆λ. Hence

∆εplv = −2∆γpls sinψm (8.55)

Evolution of the mobilized dilation angle ψm is described by the Rowe [69] dilatancy theory

sinψm = 0, for ϕm < ϕcs (8.56)

sinψm =
sinϕm − sinϕcs

1− sinϕm sinϕcs
, for ϕm > ϕcs (8.57)

sinψm = 0, for e ≥ emax (8.58)

where ϕcs is the angle of internal friction at critical state provided by

sinϕcs =
sinϕ− sinψ

1− sinϕ sinψ
(8.59)

At critical state the increment of volumetric plastic strain becomes zero (plastic incompressibility,
sinψm = 0) and ϕm = ϕcs. Within the context of Mohr-Coulomb failure criterion the mobilized
friction angle ϕm, recall also Eq. (8.48), reads (remember the adopted elasticity sign convention)

sinϕm =
σ1 − σ3

−(σ1 + σ3) + 2c cotϕ
(8.60)

It is seen from Eq. (8.56) that in contractancy domain, see Fig. 8.5(a) [58], no volumetric plastic strain
is allowed to occur, which provides a partial remedy of the original formulation [9]. The ultimate
dilation angle ψ follows from the maximum slope in the ε1 − εv curve, see Fig. 8.5(b)2, as

dεplv

dεpl1
= − 4 sinψ

1− sinψ
(8.61)

Additional cut-off criterion given by Eq. (8.58) is introduced to avoid an excessive dilation for large
shear strains once at critical state. Therein, e and emax are the current and the maximum void ratio
to terminate dilatation, respectively, recall Eq. (1.78).

2Strictly speaking, Fig. 8.5(b) applies to formulations which assume constant dilation angle, such as the Drucker-
Prager and Mohr-Coulomb failure criteria.
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Figure 8.5: Rowe’s dilatancy theory: a) graphical explanation of mobilized dilation angle ψm (adopted
from [58]), b) strain curve for standard triaxial drained compression test with the dilatancy cut-off

8.2 Cap yield surface in GEO5 HS model

The present formulation follows closely the one developed in Benz [9] to give the cap yield function as

fHSc =
3J2

χ2(θ, ϕ)M2
+ σ2

m − p2
c (8.62)

where the LMN function χ is introduced Section 8.1.2 via Eq. (8.42), M is the model parameter to
define the shape of the yield surface, and pc is the hardening parameter termed the preconsolidation
pressure, recall Fig. 8.1(b).

In the spirit of Cam clay model described in Chapter 11 the increment of plastic volumetric strain
∆εplv is provided by, see the derivation of Eq. (11.14) in Section 11.1.1 where also the meaning of
parameters κ∗ and λ∗ is explained in detail,

ε̇plv = −(λ∗ − κ∗) ṗc
pc

= −
(
λ∗

pc
− κ∗

pc

)
ṗc = −

(
1

Kc
− 1

Ks

)
ṗc = −

(
Ks −Kc

KcKs

)
ṗc

= −

Ks

Kc
− 1

Ks
ṗc = − 1

H
ṗc (8.63)

or in incremental form

∆εplv = ∆κc = − 1

H
∆pc (8.64)

where H is the hardening modulus. Point out that the bulk moduli ratio
Ks

Kc
is

Ks

Kc
=
Kref
s

Kref
c

=
Kp,ref
s

Kp,ref
c

(8.65)

where the swelling bulk modulus in unloading/reloading Kref
s (Kp,ref

s ) is related to Eref
ur (Ep,ref

ur ), νur
through standard elasticity relation for isotropic materials as

Kref
s =

Eref
ur

3(1− 2νur)
, Kp,ref

s =
Ep,ref
ur

3(1− 2νur)
(8.66)

To provide an approximation to Eq. (8.65) we consider a primary loading in oedometer and approxi-
mate the elasto-plastic bulk modulus3 as

Kref
c ≈

σ̇m
ε̇v
|σm=σref

m
=

1

3
(1 + 2KNC

0 )
σ̇3

ε̇3
|σ3=σref

3
=

1

3
(1 + 2KNC

0 )Eref
oed (8.67)

3Note that Kc is considered for a normally consolidated soil in isotropic compression



92 CHAPTER 8. HARDENING SOIL MATERIAL MODEL

When substituting from Eqs. (8.66) and (8.67) back into Eq. (8.65) we obtain

Ks

Kc
≈ Eref

ur

Eref
oed

1

(1 + 2KNC
0 )(1− 2νur)

(8.68)

The relationship to Eref
oed allows us to consider the bulk moduli ratio in Eq. (8.65) as internal parameters.

Similarly we treat the model parameter M , which can be related to KNC
0 . Determination of cap model

parameters M,H is described in detail in Section 8.5.3.

8.3 Stress return mapping

We begin with the summary of yield surfaces presented in the previous section accompanied by the
corresponding plastic potentials to provide increments of plastic strains.

• Shear hardening yield surface fHSs

The implemented shear hardening yield is provided by Eq. (8.15)

fHSs (σ, c, ϕ, ϕcs, κs) = J − (1− bã)

(
Ep,ref
i

Ep,ref
ur

J +
Ei
3
κs

)
(8.69)

The plastic potential attains the form of the Drucker-Prager model. Therefore, the dilation angle
ψm(σ) = ψ̃m(σ) is assumed constant when deriving the direction of the plastic strain increments,
i.e., there is no derivative of Mψ with respect to σ. Considering triaxial compression gives

gHSs (σ, ψ̃m) = J + σ̂mMψ(ψ̃m), Mψ =
2
√

3 sin ψ̃m

3− sin ψ̃m
(8.70)

• Matsuoka-Nakai yield surface fHSs

As suggested by Eq. (8.23) the Matsuoka-Nakai yield surface is fixed in stress based assuming
elastic perfectly plastic material

fMN
s = Iσ(σ, c, ϕ)− sin2 ϕ (8.71)

The plastic potential is taken the same as in the case of hardening shear yield surface, Eq. (8.70)

gMN
s = gHSs (σ, ψ̃m) (8.72)

• Cap yield surface fHSc

The extended version of the cap yield surface, Eq. (8.62), reads

fHSc (σ, ϕ, pc) =
3J2

χ2(θ, ϕ)M2
+ σ2

m − p2
c =

3

2

sTQ−1s

χ2(θ, ϕ)M2
+ σ2

m − p2
c (8.73)

Referring to Benz [9] the plastic potential is assumed in the form

gHSc (σ, θ̃) =
3J2

χ̃2(θ̃, ϕ)M2
+ σ2

m − p2
c =

3

2

sTQ−1s

χ̃2(θtr, ϕ)M2
+ σ2

m − p2
c (8.74)

keeping χ̃(θ̃, ϕ) constant in the local stress update, where θ̃ = θtr is evaluated based on the
trial stresses, recall Eq. (17.82). This allows for keeping the mean stress as the only stress-based
primary variable.

In general, both the hardening shear (or Matsuoka-Nakai) and cap yield surface can be simulta-
neously active. To this end, the concept of multi-yield surface plasticity described in Section 5.2.2
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can be exploited to give the increments of plastic strains in terms of stresses evaluated at (i+ 1) load
increment as

∆εpl = ∆epl +m∆εplv (8.75)

∆εplv = ∆λs
∂gHSs
∂σm

+ ∆λc
∂gHSc
∂σm

= ∆λsMψ(ψ̃(σi+1)) + 2∆λcσ
i+1
m (8.76)

∆epl = ∆λs
∂gHSs
∂s

+ ∆λc
∂gHSc
∂s

= ∆λQ−1si+1 = ∆λPσi+1 (8.77)

∆λ =
∆λs

2J i+1
+

3∆λc
χ̃2M2

, s = PQσ = QPσ (8.78)

where e and s are the deviatoric strains and stresses defined in Section 1.3.
The hardening parameter κs in Eq. (8.69) is defined in terms of the equivalent deviatoric plastic

strain ∆Epld,s linked to the hardening shear yield surface as

∆κs = ∆Epld,s = ∆λs −→ κs =
∑

∆λs (8.79)

where

∆Epld,s =

√
2(∆εpls )TQPQ∆εpls =

√
2(∆epls )TQ∆epls = ∆λs, ∆epls = ∆λs

∂gHSs
∂s

(8.80)

Similarly, the hardening parameter κc in Eq. (8.64) is evaluated as a function of the volumetric plastic
strain associated with the cap yield surface as

∆κc = ∆εplv,c = ∆λc
∂gHSc
∂σm

= 2∆λcσ
i+1
m = − 1

H
∆pc → ∆pc = −2H∆λcσ

i+1
m (8.81)

Recall also Eq. (8.63) to give the hardening modulus H in the form

H =
Ks

Ks

Kc
− 1

=
Kp,ref
ur

Ks

Kc
− 1

(
σ̂m
σ̂ref
m

)mp
= Hp,ref

(
σ̂m
σ̂ref
m

)mp
(8.82)

As described already in Section 4.2 for the Drucker-Prager model the return mapping algorithm
assumes the standard volumetric-deviatoric split. Point out that the plastic potential functions are
formulated such that the deviatoric stress s can be explicitly written in terms of the mean stress σm
and increments of plastic strains ∆λs and ∆λc. This provides the stresses and associated equivalent
stress measures at the end of the (i+ 1) load increment in the form

• Mean stress σi+1
m

σi+1
m = σim +Kur(σ̂m)(∆εv −∆λsMψ(σi+1)− 2∆λcσ

i+1
m ) (8.83)

Rearrange the above equation to get

σi+1
m =

σim +Kur(σ̂m)(∆εv −∆λsMψ(σi+1))

1 + 2Kur(σ̂m)∆λc
= σm(σi+1

m ,∆λs,∆λc) (8.84)

• Deviatoric stress si+1

si+1 = si + 2Gur(σ̂m)Q

(
∆e−

(
∆λs

2J i+1
+

3∆λc
χ̃2M2

)
Q−1si+1

)
(8.85)

Rearrange the above equation to get

si+1 =
si + 2Gur(σ̂m)Q∆e

1 +Gur(σ̂m)

(
∆λs
J i+1

+
6∆λc
χ̃2M2

) (8.86)
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Similarly we derive the equivalent deviatoric stress J i+1 as

J i+1 =
J tr −Gur(σ̂m)∆λs

1 +
6Gur(σ̂m)∆λc

χ̃2M2

(8.87)

J tr =
[
J i2 + 2Gur(σ̂m)∆eTsi + (Gur(σ̂m))2∆E2

d

] 1
2

(8.88)

As indicated in Section 8.1.1 the stiffness depends on the value of effective mean stress. While the
initial modulus Ei(σ

i+1
m ) is expected to depend on the stress σi+1

m at the end of the (i + 1) load
increment, the nonlinear elastic behavior in the absence of plasticity is proposed in the form

σi+1 = σi + Del(
σim + σi+1

m

2
)∆ε = σi + Del(σ̂m)∆ε (8.89)

where the elastic stiffness matrix for isotropic material Del = Del(Eur(σ̂m), νur) is a function of
unloading/reloading modulus Eur(σ̂m), or Kur(σ̂m) and Gur(σ̂m) entering Eqs. (8.84) - (8.88), and
corresponding Poisson ration νur. The selected definition of σ̂m is in accord with PLAXIS and promotes
evolution of stresses independent of the magnitude of load increment. Unlike PLAXIS, however, this
stress dependency is also employed for plastic loading. Some particular observations are presented
in Section 8.6. Therein, the implemented formulation will also be compared to a secant formulation
(backward Euler) written as

σi+1 = Del(σi+1
m )(εi + ∆ε) (8.90)

The two computational tasks, the nonlinear elastic step and the plastic step, will be now treated
separately. But before proceeding, we mention the following notation adopted in subsequent formula-
tions, compare also with Eqs. (8.16) - (8.19).

σ̂m = σi+1
m − c cotϕ (8.91)

σ̂m =
σim + σi+1

m

2
− c cotϕ (8.92)

Ei = Ep,ref
i

(
σ̂m
σ̂ref
m

)mp
= Ep,ref

i fE (8.93)

Eur = Ep,ref
ur

(
σ̂m
σ̂ref
m

)mp
= Ep,ref

ur f̂E , Gur = Gp,ref
ur f̂E , Kur = Kp,ref

ur f̂E (8.94)

∆pc = −2Hp,ref f̂E∆λcσ
i+1
m (8.95)

8.3.1 Nonlinear elastic step

Apart from cases when the stress point is found inside the current yield envelope, this calculation step
is performed at the beginning of each plastic step to provide trial stresses that satisfy Eq. (8.84) for
zero plastic strain increments, i.e., σi+1

m = σm while ∆λs = ∆λc = 0. To this end, we introduce the
first residuum

r1 = σi+1
m − σm(σi+1

m ) (8.96)

to be brought to zero via local Newton-Raphson iteration scheme

(σi+1
m )j+1 = (σi+1

m )j −
(r1)j
d(r1)j

d(σi+1
m )j

(8.97)

with the following initial conditions

(σi+1
m )0 = σim (8.98)

(r1)0 = σim − (σim +Kur(σ
i
m)∆εv) −→ (r1)0 = −Kur(σ

i
m)∆εv (8.99)
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8.3.2 Plastic step

Because the hardening shear yield surface and the cap yield surface can be simultaneously active we
revisit the concept of multi-yield surface plasticity and write the vector of residuals to be minimized
as

r =


σi+1
m − σm

fHSs (Ei+1
i ,σi+1, κi+1

s ) or fMN
s (σi+1)

fHSc (σi+1, pi+1
c )

 = r(a(ε), ε) (8.100)

The vector of primary variables reads

aT =
{
σi+1
m ,∆λs,∆λc

}
(8.101)

Similarly to the nonlinear elastic step the above system of implicit equations is solved by the Newton-
Raphson method which now receives a more complex form

ai+1
j+1 = ai+1

j −H−1
j rj (8.102)

where the Jacobian matrix H is given by

H =
∂r

∂a
+
∂r

∂s

∂s

∂a
=



dr1

dσm

dr1

d∆λs

dr1

d∆λc
dr2

dσm

dr2

d∆λs

dr2

d∆λc
dr3

dσm

dr3

d∆λs

dr3

d∆λc


(8.103)

Taking into account the solution of nonlinear elastic step that always precedes the plastic calculation
step gives the initial values of a and r in the form

aT0 =
{
σtrm, 0, 0

}
(8.104)

rT0 =
{

0, fHSs (str, σtrm, κ
i
s) or fMN

s (str, σtrm), fHSc (str, σtrm, p
i
c)
}

(8.105)

where

σtrm = σim +Kur(σ̂
tr
m)∆εv (8.106)

str = si + 2Gur(σ̂
tr
m)Q∆e (8.107)

remembering that σtrm satisfies Eq. (8.96).
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The components of matrix H are provided in the form of the following chain rules as

• H1i

dr1

dσm
=

∂r1

∂σm
+

∂r1

∂Kur

∂Kur

∂Eur

∂Eur
∂σm

+
∂r1

∂Mψ

∂Mψ

∂ sinψm

∂ sinψm
∂ sinϕm

d sinϕm
dσm

(8.108)

dr1

d∆λs
=

∂r1

∂∆λs
+

∂r1

∂Mψ

∂Mψ

∂ sinψm

∂ sinψm
∂ sinϕm

d sinϕm
d∆λs

(8.109)

dr1

d∆λc
=

∂r1

∂∆λc
+

∂r1

∂Mψ

∂Mψ

∂ sinψm

∂ sinψm
∂ sinϕm

d sinϕm
d∆λc

(8.110)

• H2i

Hardening shear yield function

dr2

dσm
=

∂r2

∂J

∂J

∂σm
+
∂r2

∂Ei

∂Ei
∂σm

+
∂r2

∂ sinϕm

d sinϕm
dσm

(8.111)

dr2

d∆λs
=

∂r2

∂J

∂J

∂∆λs
+
∂r2

∂κs

∂κs
∂∆λs

+
∂r2

∂ sinϕm

d sinϕm
d∆λs

(8.112)

dr2

d∆λc
=

∂r2

∂J

∂J

∂∆λc
+

∂r2

∂ sinϕm

d sinϕm
d∆λc

Matsuoka-Nakai yield function

dr2

dσm
=

dIσ
dσm

(8.113)

dr2

d∆λs
=

dIσ
d∆λs

(8.114)

dr2

d∆λc
=

dIσ
d∆λc

(8.115)

• H3i

dr3

dσm
=

∂r3

∂σm
+
∂r3

∂J

∂J

∂σm
+

+
∂r3

∂χ

∂χ

∂ϑ

∂ϑ

∂ sin 3θ

(
∂ sin 3θ

∂J

∂J

∂σm
+
∂ sin 3θ

∂I3s

dI3s

dσm

)
+
∂r3

∂pc

dpc
dσm

(8.116)

dr3

d∆λs
=

∂r3

∂J

∂J

∂∆λs
+
∂r3

∂χ

∂χ

∂ϑ

∂ϑ

∂ sin 3θ

(
∂ sin 3θ

∂J

∂J

∂∆λs
+
∂ sin 3θ

∂I3s

dI3s

d∆λs

)
(8.117)

dr3

d∆λc
=

∂r3

∂J

∂J

∂∆λc
+
∂r3

∂χ

∂χ

∂ϑ

∂ϑ

∂ sin 3θ

(
∂ sin 3θ

∂J

∂J

∂∆λc
+
∂ sin 3θ

∂I3s

dI3s

d∆λc

)
+
∂r3

∂pc

∂pc
∂∆λc

(8.118)
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where the total derivatives
d sinϕm

dσm
,

d sinϕm
d∆λs

,
d sinϕm

d∆λc
,

dI3s

dσm
,

dI3s

d∆λs
,

dI3s

d∆λc
,

ds

dσm
,

ds

d∆λs
,

ds

d∆λc
are

provided by

d sinϕm
dσm

=
1

2
√
Iσ

dIσ
dσm

=
1

2
√
Iσ

[
∂Iσ
∂I1σ

∂I1σ

∂σm
+

∂Iσ
∂I2σ

(
∂I2σ

∂σm
+
∂I2σ

∂J

∂J

∂σm

)
+

+
∂Iσ
∂I3σ

(
∂I3σ

∂σm
+
∂I3σ

∂J

∂J

∂σm
+
∂I3σ

∂I3s

dI3s

dσm

)]
(8.119)

=
∂ sinϕm
∂σm

+
∂ sinϕm
∂J

(
∂J

∂s

)T ds

dσm︸ ︷︷ ︸
∂J
∂σm

+
∂ sinϕm
∂I3s

(
∂I3s

∂s

)T ds

dσm︸ ︷︷ ︸
∂I3s
∂σm

(8.120)

d sinϕm
d∆λs

=
1

2
√
Iσ

dIσ
d∆λs

=

=
1

2
√
Iσ

[
∂Iσ
∂I2σ

∂I2σ

∂J

∂J

∂∆λs
+

∂Iσ
∂I3σ

(
∂I3σ

∂J

∂J

∂∆λs
+
∂I3σ

∂I3s

dI3s

d∆λs

)]
(8.121)

d sinϕm
d∆λc

=
1

2
√
Iσ

dIσ
d∆λc

=

=
1

2
√
Iσ

[
∂Iσ
∂I2σ

∂I2σ

∂J

∂J

∂∆λc
+

∂Iσ
∂I3σ

(
∂I3σ

∂J

∂J

∂∆λc
+
∂I3σ

∂I3s

dI3s

d∆λc

)]
(8.122)

dI3s

dσm
=

(
∂I3s

∂s

)T ds

dσm
(8.123)

dI3s

d∆λs
=

(
∂I3s

∂s

)T ds

d∆λs
(8.124)

dI3s

d∆λc
=

(
∂I3s

∂s

)T ds

d∆λc
(8.125)

ds

dσm
=

∂s

∂σm
+
∂s

∂J

∂J

∂σm
(8.126)

ds

d∆λs
=

∂s

∂∆λs
+
∂s

∂J

∂J

∂∆λs
(8.127)

ds

d∆λc
=

∂s

∂∆λc
+
∂s

∂J

∂J

∂∆λc
(8.128)

Note that all derivatives are taken with respect to variables evaluated at the end of the (i + 1) load
increment. But this index was dropped from all expressions for the sake of clarity. So if not otherwise
stated it holds σm = σi+1

m , s = si+1, J = J i+1, I3s = Ii+1
3s . Similar simplification is adopted for elastic

moduli where we consider Eur = Eur(σ̂m),Kur = Kur(σ̂m), Gur = Gur(σ̂m).
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With this simplified notation the partial derivatives
∂s

∂J
,
∂s

∂∆λs
,
∂s

∂∆λc
,
∂s

∂σm
,
∂J

∂∆λs
,
∂J

∂∆λc
,
∂J

∂σm
,
∂I3s

∂s
and ∂Iσ in Eqs. (8.111) - (8.128) become

∂s

∂J
=

si + 2GurQ∆e[
1 +Gur

(
∆λs
J

+
6∆λc
χ̃2M2

)]2

Gur∆λs
J2

=
s

[−]

Gur∆λs
J2

(8.129)

∂s

∂∆λs
= − si + 2GurQ∆e[

1 +Gur

(
∆λs
J

+
6∆λc
χ̃2M2

)]2

Gur
J

= − s

[−]

Gur
J

(8.130)

∂s

∂∆λc
= − si + 2GurQ∆e[

1 +Gur

(
∆λs
J

+
6∆λc
χ̃2M2

)]2

6Gur
χ̃2M2

= − s

[−]

6Gur
χ̃2M2

(8.131)

∂s

∂σm
=

∂s

∂Gur

∂Gur
∂Eur

Ep,ref
ur df̂E (8.132)

∂s

∂Gur
=

2Q∆e−
(

∆λs
J

+
6∆λc
χ̃2M2

)
si[

1 +Gur

(
∆λs
J

+
6∆λc
χ̃2M2

)]2 =

2Q∆e−
(

∆λs
J

+
6∆λc
χ̃2M2

)
s

1 +Gur

(
∆λs
J

+
6∆λc
χ̃2M2

) (8.133)

∂Gur
∂Eur

=
1

2(1 + νur)
(8.134)

∂J

∂∆λs
= − Gur

1 +
6Gur∆λc
χ̃2M2

(8.135)

∂J

∂∆λc
= − J tr −Gur∆λs(

1 +
6Gur∆λc
χ̃2M2

)2

6Gur
χ̃2M2

= − J

1 +
6Gur∆λc
χ̃2M2

6Gur
χ̃2M2

(8.136)

∂J

∂σm
=

∂J

∂Gur

∂Gur
∂Eur

Ep,ref
ur df̂E (8.137)

∂J

∂Gur
=

∂J tr

∂Gur

(
1 +

6Gur∆λc
χ̃2M2

)
− J tr 6∆λc

χ̃2M2
−∆λs(

1 +
6Gur∆λc
χ̃2M2

)2 (8.138)

∂J tr

∂Gur
=

1

J tr

(
∆eTsi +Gur∆E

2
d

)
(8.139)

∂I3s

∂s
=



sysz − τ2
yz

sxsz − τ2
xz

sxsy − τ2
xy

2(τxyτxz − sxτyz)
2(τxyτyz − syτxz)
2(τxzτyz − szτxy)


3D

∂I3s

∂s
=


sysz
sxsz
−2szτxy
sxsy − τ2

xy

 PStrain (8.140)
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The derivatives ∂Iσ are

∂Iσ
∂I1σ

=
8I2σI3σ

(I3σ − I1σI2σ)2
(8.141)

∂Iσ
∂I2σ

=
8I1σI3σ

(I3σ − I1σI2σ)2
(8.142)

∂Iσ
∂I3σ

= − 8I1σI2σ

(I3σ − I1σI2σ)2
(8.143)

∂I1σ

∂σm
= 3 (8.144)

∂I2σ

∂σm
= 6σ̂m (8.145)

∂I2σ

∂J
= −2J (8.146)

∂I3σ

∂σm
= 3σ̂2

m − J2 (8.147)

∂I3σ

∂J
= −2σ̂mJ (8.148)

∂I3σ

∂I3s
= 1 (8.149)

The remaining partial derivatives that appear in Eqs. (8.108) - (8.118) are now presented in a sequel

for individual residua
∂ri
∂aj

• Partial derivatives
∂r1

∂aj
,
∂r1

∂Kur
,
∂r1

∂Mψ
,
∂Kur

∂Eur
,
∂Eur
∂σm

,
∂Mψ

∂ sinψm
,
∂ sinψm
∂ sinϕm

∂r1

∂σm
= 1 (8.150)

∂r1

∂λs
=

KurMψ

1 + 2Kur∆λc
(8.151)

∂r1

∂λc
=

(σim +Kur(∆εv −∆λsMψ))2Kur

(1 + 2Kur∆λc)
2 =

2Kurσm
1 + 2Kur∆λc

(8.152)

∂r1

∂Kur
=
−∆εv +Mψ∆λs + 2σim∆λc

(1 + 2Kur∆λc)
2 (8.153)

∂r1

∂Mψ
=

Kur∆λs
1 + 2Kur∆λc

(8.154)

∂Kur

∂Eur
=

1

3(1− 2νur)
(8.155)

∂Eur
∂σm

= Ep,ref
ur df̂E , df̂E =

∂f̂E
∂σm

=
1

2

mp

σ̂ref
m

(
σ̂m
σ̂ref
m

)mp−1

(8.156)

∂Mψ

∂ sinψm
=

6
√

3

(3− sinψm)2
(8.157)

∂ sinψm
∂ sinϕm

=
1− sin2 ϕcs

(1− sinϕm sinϕcs)2
(8.158)
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• Partial derivatives
∂r2

∂J
,
∂r2

∂Ei
,
∂r2

∂κs
,

∂r2

∂ sinϕm
,
∂Ei
∂σm

,
∂κs
∂∆λs

∂r2

∂J
= 1− (1− bã)

Ep,ref
i

Ep,ref
ur

(8.159)

∂r2

∂Ei
= − (1− bã)

κs
3

(8.160)

∂r2

∂κs
= − (1− bã)

Ei
3

(8.161)

∂r2

∂ sinϕm
= b

(
Ep,ref
i

Ep,ref
ur

J +
Ei
3
κs

)
1

(1− sinϕm)2
(8.162)

∂Ei
∂σm

= Ep,ref
i df̂E (8.163)

∂κs
∂∆λs

= 1 (8.164)

• Partial derivatives
∂r3

∂σm
,
∂r3

∂J
,
∂r3

∂χ
,
∂r3

∂pc
,
∂χ

∂ϑ
,

∂ϑ

∂ sin 3θ
,
∂ sin 3θ

∂J
,
∂ sin 3θ

∂I3s
,
∂pc
∂∆λs

,
∂pc
∂∆λc

∂r3

∂σm
= 2σm (8.165)

∂r3

∂J
=

6J

χ2M2
(8.166)

∂r3

∂χ
= − 6J2

χ3M2
(8.167)

∂r3

∂pc
= −2pc (8.168)

∂χ

∂ϑ
=

√
3β

2
√
β2 − β + 1

sinϑ

cos2 ϑ
(8.169)

∂ϑ

∂ sin 3θ
= ±1

3

z sin 3θ√
1− (−1 + z sin2 3θ)2

, z =
27β2(1− β)2

2(β2 − β + 1)3

= −1

3

√
z√

2− z sin2 3θ
, for θ ≤ 0 (8.170)

= +
1

3

√
z√

2− z sin2 3θ
, for θ > 0 (8.171)

∂ sin 3θ

∂J
=

9
√

3

2

I3s

J4
(8.172)

∂ sin 3θ

∂I3s
= −3

√
3

2J3
(8.173)

dpc
dσm

=
∂pc
∂σm

+
∂pc

∂f̂E

∂f̂E
∂σm

= −2Hp,ref∆λc(f̂E + df̂Eσm) (8.174)

∂pc
∂∆λc

= −2Hp,ref f̂Eσm (8.175)

• Partial derivatives
∂J

∂s
,
∂r3

∂s

∂J

∂s
=

1

2J
Q−1s =

1

2J
Pσ (8.176)

∂r3

∂s
=

3

χ2M2
Q−1s =

3

χ2M2
Pσ (8.177)
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It can also be shown that the following relationships hold

∂J

∂σm
=

(
∂J

∂s

)T ds

dσm
=

(
∂J

∂s

)T ∂s

∂σm

1−
(
∂J

∂s

)T ∂s

∂J

(8.178)

∂J

∂∆λs
=

(
∂J

∂s

)T ds

d∆λs
=

(
∂J

∂s

)T ∂s

∂∆λs

1−
(
∂J

∂s

)T ∂s

∂J

(8.179)

∂J

∂∆λc
=

(
∂J

∂s

)T ds

d∆λc
=

(
∂J

∂s

)T ∂s

∂∆λc

1−
(
∂J

∂s

)T ∂s

∂J

(8.180)

∂r3

∂J

∂J

∂σm
=

(
∂r3

∂s

)T ds

dσm
=

∂r3

∂J

(
∂J

∂s

)T ds

dσm
=

3

χ2M2
σTP

ds

dσm
(8.181)

∂r3

∂J

∂J

∂∆λs
=

(
∂r3

∂s

)T ds

d∆λs
=

∂r3

∂J

(
∂J

∂s

)T ds

d∆λs
=

3

χ2M2
σTP

ds

d∆λs
(8.182)

∂r3

∂J

∂J

∂∆λc
=

(
∂r3

∂s

)T ds

d∆λc
=

∂r3

∂J

(
∂J

∂s

)T ds

d∆λc
=

3

χ2M2
σTP

ds

d∆λs
(8.183)

8.4 Algorithmic tangent stiffness matrix

The point of departure in the derivation of algorithmic tangent stiffness matrix is Eq. (4.19). This
formulation takes into account the volumetric-deviatoric split exploited already in the previous section
and gives the algorithmic tangent stiffness matrix D in the form

D =
dσi+1

dεi+1
= 3m

(
dσi+1

m

dεi+1

)T

+
dsi+1

dεi+1
(8.184)

Equation (8.184) suggests that the derivatives are evaluated at the end of the (i+1) load increment. To
simplify notation, however, we drop the superscript (i+1) and consider all stress and strain quantities,
if not otherwise stated, to correspond to the end of the (i + 1) load increment. We shall also adopt
the following notation

∆εv = 3mT∆ε = 3mT
(
εi+1 − εi

)
⇒ ∂∆εv

∂ε
= 3m (8.185)

∆e = PQ∆ε = PQ
(
εi+1 − εi

)
⇒ ∂∆e

∂ε
= PQ (8.186)

and consider the following stress and strain dependencies

σi+1
m = f(Kur(σ

i+1
m ),Mψ(sinψi+1

m ),∆λs(ε),∆λc(ε),∆εv(ε)) (8.187)

sinψi+1
m = f(σi+1

m , J i+1(si+1), Ii+1
3s (si+1)) (8.188)

si+1 = f(Gur(σ
i+1
m ), J i+1,∆λs(ε),∆λc(ε),∆e(ε)) (8.189)

J i+1 = f(J tr, Gur(σ
i+1
m ),∆λs(ε),∆λc(ε)) (8.190)

J tr = f(Gur(σ
i+1
m ),∆e(ε)) (8.191)

It is also worth mentioning that the hardening soil model is in general a multi-yield surface plasticity
model which will have some impact in the derivation of D.
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Observing Eqs. (8.189) - (8.191) we start from writing the second term on the right hand side of
Eq. (8.184) as

ds

dε
=

∂s

∂ε
+

ds

dχ̃

(
dχ̃

dε

)T

+
ds

dσm

(
dσm
dε

)T

+
ds

d∆λs

(
∂∆λs
∂ε

)T

+
ds

d∆λc

(
∂∆λc
∂ε

)T

(8.192)

= E1 + E2 + s1

(
dσm
dε

)T

+ s2

(
∂∆λs
∂ε

)T

+ s3

(
∂∆λc
∂ε

)T

(8.193)

where the derivatives
ds

dσm
= s1,

ds

d∆λs
= s2,

ds

d∆λc
= s3 are provided by (8.126), (8.127), (8.128)

and the matrices E1 and E2

E1 =
∂s

∂ε
=

[
∂s

∂∆e
+
∂s

∂J

(
∂J

∂∆e

)T
]
∂∆e

∂ε
(8.194)

E2 =
ds

dχ̃

(
dχ̃

dε

)T

(8.195)

Definition of both matrices deserves a considerable attention. We begin with the derivatives in
Eq. (8.194) given by

∂s

∂∆e
=

2GurQ

1 +Gur

(
∆λs
J

+
6∆λc
χ̃2M2

) , ∂∆e

∂ε
= PQ (8.196)

∂J

∂∆e
=

∂J

∂J tr
∂J tr

∂∆e

=
Gur(s

i + 2GurQ∆e)(
1 +

6Gur∆λc
χ̃2M2

)
J tr

=
Gur

1 +
6Gur∆λc
χ̃2M2

str

J tr
=

Gur

1 +
6Gur∆λc
χ̃2M2

s

J
(8.197)

When addressing the derivatives in Eq. (8.194) we first notice that
χ̃ = χ̃(J̃(∆e, G̃ur(σ̃m(∆εv))), Ĩ3s(s̃(∆e, G̃ur(σ̃m(∆εv))))) depends on stresses at the end of the non-
linear elastic step written as

σ̃m = σim + K̃ur(σ̃m)∆εv (8.198)

s̃ = si + 2G̃ur(σ̃m)Q∆e (8.199)

J̃ =
[
J i2 + 2G̃ur(σ̃m)∆eTsi + (G̃ur(σ̃m))2∆E2

d

] 1
2

(8.200)

To expand Eq. (8.195) requires evaluating the total derivatives
ds̃

dε
and

dσ̃m
dε

which attain the the

following forms

ds̃

dε
=

∂s̃

∂ε
+

ds̃

dσ̃m

(
dσ̃m
dε

)T

(8.201)

dσ̃m
dε

=
∂σ̃m
∂ε

+
∂σ̃m

∂K̃ur

∂K̃ur

∂Ẽur

∂Ẽur
∂σ̃m

dσ̃m
dε

(8.202)

Equation (8.202) can be further rearranged to get

dσ̃m
dε

=
1

1− ∂σ̃m

∂K̃ur

∂K̃ur

∂Ẽur

∂Ẽur
∂σ̃m

∂σ̃m
∂ε

=
ã1

1− ã2
(8.203)

where

ã1 =
∂σ̃m
∂ε

= 3mK̃ur (8.204)

ã2 =
∂σ̃m

∂K̃ur

∂K̃ur

∂Ẽur

∂Ẽur
∂σ̃m

= ∆εv
1

3(1− 2νur)
Ep,ref
ur d

˜̂
fE (8.205)
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The derivatives in Eq. (8.195) thus become

ds

dχ̃
=

∂s

∂χ̃
+
∂s

∂J

∂J

∂χ̃
(8.206)

dχ̃

dε
=

[
ds̃

dε

]T ∂χ̃
∂s̃
, (note similar definitions used in Eqs. (8.222), (8.223)) (8.207)

ds̃

dε
=

∂s̃

∂∆e

∂∆e

∂ε
+

∂s̃

∂G̃ur

∂G̃ur
∂σ̃m

(
dσ̃m
dε

)T

, recall Eqs. (8.201), (8.203) (8.208)

∂χ̃

∂s̃
=

∂χ̃

∂ϑ

∂ϑ

∂ sin 3θ̃

(
∂ sin 3θ̃

∂J̃

∂J̃

∂s̃
+
∂ sin 3θ̃

∂Ĩ3s

∂Ĩ3s

∂s̃

)
(8.209)

∂s

∂χ̃
=

si + 2GurQ∆e[
1 +Gur

(
∆λs
J

+
6∆λc
χ̃2M2

)]2

12Gur∆λc
χ̃3M2

=
s

1 +Gur

(
∆λs
J

+
6∆λc
χ̃2M2

) 12Gur∆λc
χ̃3M2

(8.210)

∂J

∂χ̃
=

J tr −Gur∆λs(
1 +

6Gur∆λc
χ̃2M2

)2

12Gur∆λc
χ̃3M2

=
J

1 +
6Gur∆λc
χ̃2M2

12Gur∆λc
χ̃3M2

(8.211)

∂s̃

∂∆e
= 2G̃urQ (8.212)

∂s̃

∂G̃ur
= 2Q∆e,

∂G̃ur
∂σ̃m

= Gp,ref
ur d

˜̂
fE (8.213)

to give the matrix E2 in the form

E2 =
ds

dχ̃

(
∂χ̃

∂s̃

)T
[
∂s̃

∂∆e

∂∆e

∂ε
+

∂s̃

∂G̃ur

∂G̃ur
∂σ̃m

(
dσ̃m
dε

)T
]

= E21 + E22 (8.214)

E21 =
ds

dχ̃

(
∂χ̃

∂s̃

)T ∂s̃

∂∆e

∂∆e

∂ε
(8.215)

E22 =
ds

dχ̃

(
∂χ̃

∂s̃

)T ∂s̃

∂G̃ur

∂G̃ur
∂σ̃m

(
dσ̃m
dε

)T

(8.216)

With reference to Eqs. (8.187) and (8.188) the first total derivative on the right hand side of
Eq. (8.184) becomes

dσm
dε

=
∂σm
∂ε

+
∂σm
∂Kur

∂Kur

∂Eur

∂Eur
∂σm

dσm
dε

+
∂σm
∂Mψ

∂Mψ

∂ sinψm

∂ sinψm
∂ sinϕm

d sinϕm
dε

+

+
∂σm
∂∆λs

∂∆λs
∂ε

+
∂σm
∂∆λc

∂∆λc
∂ε

(8.217)

where the term
d sinϕm

dε
expands as

d sinϕm
dε

=
∂ sinϕm
∂σm

dσm
dε

+
∂ sinϕm
∂J

dJ

dε
+
∂ sinϕm
∂I3s

dI3s

dε
(8.218)

∂ sinϕm
∂σm

=
1

2
√
Iσ

[
∂Iσ
∂I1σ

∂I1σ

∂σm
+

∂Iσ
∂I2σ

∂I2σ

∂σm
+

∂Iσ
∂I3σ

∂I3σ

∂σm

]
=

1

2
√
Iσ

∂Iσ
∂σm

(8.219)

∂ sinϕm
∂J

=
1

2
√
Iσ

[
∂Iσ
∂I2σ

∂I2σ

∂J
+

∂Iσ
∂I3σ

∂I3σ

∂J

]
=

1

2
√
Iσ

∂Iσ
∂J

(8.220)

∂ sinϕm
∂I3s

=
1

2
√
Iσ

∂Iσ
∂I3σ

∂I3σ

∂I3s
=

1

2
√
Iσ

∂Iσ
∂I3s

(8.221)
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It will prove useful to write the terms
dJ

dε
and

dI3s

dε
as

dJ

dε
=

[(
∂J

∂s

)T ds

dε

]T
=

[
ds

dε

]T ∂J
∂s

(8.222)

dI3s

dε
=

[
ds

dε

]T ∂I3s

∂s
(8.223)

With the help of Eqs. (8.218), (8.222), (8.223) and (8.193), recall also Eq. (8.120), we rewrite Eq. (8.217)
after some lengthy manipulation as

dσm
dε

= b1 + b2s
∂∆λs
∂ε

+ b2c
∂∆λc
∂ε

, b1 =
a1

1− a2
, b2s =

a3s

1− a2
, b2c =

a3c

1− a2
(8.224)

a1 =
∂σm
∂ε

+
∂σm
∂Mψ

∂Mψ

∂ sinψm

∂ sinψm
∂ sinϕm

ET

(
∂ sinϕm
∂J

∂J

∂s
+
∂ sinϕm
∂I3s

∂I3s

∂s

)
a2 =

∂σm
∂Kur

∂Kur

∂Eur

∂Eur
∂σm

+
∂σm
∂Mψ

∂Mψ

∂ sinψm

∂ sinψm
∂ sinϕm

d sinϕm
dσm

= 1− dr1

dσm

a3s =
∂σm
∂∆λs

+
∂σm
∂Mψ

∂Mψ

∂ sinψm

∂ sinψm
∂ sinϕm

(
∂ sinϕm
∂J

(
∂J

∂s

)T

+
∂ sinϕm
∂I3s

(
∂I3s

∂s

)T
)
s2

a3c =
∂σm
∂∆λc

+
∂σm
∂Mψ

∂Mψ

∂ sinψm

∂ sinψm
∂ sinϕm

(
∂ sinϕm
∂J

(
∂J

∂s

)T

+
∂ sinϕm
∂I3s

(
∂I3s

∂s

)T
)
s3

∂σm
∂ε

=
∂σm
∂∆εv

∂∆εv
∂ε

=
Kur(σ̂m)

1 + 2Kur(σ̂m)∆λc
3m (8.225)

where E = E1 + E2.

As evident from Eqs. (8.193) and (8.224) one still needs to determine the terms
∂∆λs
∂ε

and
∂∆λc
∂ε

.

Because both the shear and cap yield functions are equal to zero at the end of the local stress update
and the consistency condition is satisfied, see also [14], we may write

dri
dε

= 0 (8.226)

r2 = fHSs or fMN
s , r3 = fHSc (8.227)

Starting from the hardening shear yield surface fHSs we get

dr2

dε
=

∂r2

∂J

dJ

dε
+
∂r2

∂Ei

∂Ei
∂σm

dσm
dε

+
∂r2

∂ sinϕm

d sinϕm
dε

+
∂r2

∂κs

∂κs
∂∆λs

∂∆λs
∂ε

= 0 (8.228)

which upon substituting Eqs. (8.218), (8.222) and (8.223) rewrites as

dr2

dε
=

(
∂r2

∂Ei

∂Ei
∂σm

+
∂r2

∂ sinϕm

∂ sinϕm
∂σm

)
dσm
dε

+

+

(
∂r2

∂J
+

∂r2

∂ sinϕm

∂ sinϕm
∂J

)[
ds

dε

]T ∂J
∂s

+
∂r2

∂ sinϕm

∂ sinϕm
∂I3s

[
ds

dε

]T ∂I3s

∂s
+

+
∂r2

∂κs

∂κs
∂∆λs

∂∆λs
∂ε

(8.229)

= c1
dσm
dε

+ c2

[
ds

dε

]T
j1 + c3

[
ds

dε

]T
j2 + c4

∂∆λs
∂ε

= 0 (8.230)
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When the Matsuoka-Nakai yield surface is active we write Eq.(8.226) as

dr2

dε
=

∂Iσ
∂σm

dσm
dε

+
∂Iσ
∂J

dJ

dε
+
∂Iσ
∂I3s

dI3s

dε
(8.231)

=
∂Iσ
∂σm

dσm
dε

+
∂Iσ
∂J

[
ds

dε

]T ∂J
∂s

+
∂Iσ
∂I3s

[
ds

dε

]T ∂I3s

∂s
(8.232)

= c1
dσm
dε

+ c2

[
ds

dε

]T
j1 + c3

[
ds

dε

]T
j2 + c4(= 0)

∂∆λs
∂ε

(8.233)

= g1 + (c1b2s + c4(= 0) + d1)
∂∆λs
∂ε

+ (c1b2c + d2)
∂∆λc
∂ε

= 0 (8.234)

where the derivatives
∂Iσ
∂σm

,
∂Iσ
∂J

,
∂Iσ
∂I3s

were introduced in Eqs. (8.219), (8.220), (8.221). Finally, intro-

ducing Eqs. (8.193) and (8.224) into either Eq. (8.230) or Eq. (8.234) gives

dr2

dε
= g1 + h11

∂∆λs
∂ε

+ h12
∂∆λc
∂ε

= 0 (8.235)

g1 = c1b1 +
(

ET + b1s1
T
)

(c2j1 + c3j2)

h11 = c1b2s + c4 + d1

h12 = c1b2c + d2

d1 = (b2ss1
T + s2

T)(c2j1 + c3j2)

d2 = (b2cs1
T + s3

T)(c2j1 + c3j2)

The second equation derives from the consistency condition pertinent to the cap yield surface
provided by

dr3

dε
=

∂r3

∂J

dJ

dε
+
∂r3

∂χ

∂χ

∂ϑ

∂ϑ

∂ sin 3θ

d sin 3θ

dε
+

∂r3

∂σm

dσm
dε

+
∂r3

∂pc

dpc
dε

= 0 (8.236)

where the terms
d sin 3θ

dε
and

dpc
dε

read

d sin 3θ

dε
=

∂ sin 3θ

∂J

dJ

dε
+
∂ sin 3θ

∂I3s

dI3s

dε
(8.237)

dpc
dε

=
dpc
dσm

dσm
dε

+
∂pc
∂∆λc

∂∆λc
∂ε

(8.238)

In analogy with the previous steps we first substitute from Eqs. (8.237) and (8.238) into Eq. (8.236)
while taking into account Eqs. (8.222) and (8.223) to get

dr3

dε
=

(
∂r3

∂σm
+
∂r3

∂pc

dpc
dσm

)
dσm
dε

+

+

(
∂r3

∂J
+
∂r3

∂χ

∂χ

∂ϑ

∂ϑ

∂ sin 3θ

∂ sin 3θ

∂J

)[
ds

dε

]T ∂J
∂s

+
∂r3

∂χ

∂χ

∂ϑ

∂ϑ

∂ sin 3θ

∂ sin 3θ

∂I3s

[
ds

dε

]T ∂I3s

∂s
+

+
∂r3

∂pc

∂pc
∂∆λc

∂∆λc
∂ε

(8.239)

= c5
dσm
dε

+ c6

[
ds

dε

]T
j1 + c7

[
ds

dε

]T
j2 + c8

∂∆λc
∂ε

= 0 (8.240)

The final step again represents substitution Eqs. (8.193) and (8.224) into Eq. (8.240) to arrive at

dr3

dε
= g2 + h21

∂∆λs
∂ε

+ h22
∂∆λc
∂ε

= 0 (8.241)

g2 = c5b1 +
(

ET + b1s1
T
)

(c6j1 + c7j2)

h21 = c5b2s + d3

h22 = c5b2c + c8 + d4

d3 = (b2ss1
T + s2

T)(c6j1 + c7j2)

d4 = (b2cs1
T + s3

T)(c6j1 + c7j2)
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Several scenarios may now occur:

• Both the shear and cap yield surfaces are simultaneously active
In such a case Eqs. (8.193) and (8.224) yield the system of equations

[
h11 h12

h21 h22

]
(
∂∆λs
∂ε

)T

(
∂∆λc
∂ε

)T

 =

{
−gT1
−gT2

}
(8.242)

to be solved for
∂∆λs
∂ε

and
∂∆λc
∂ε

as

∂∆λs
∂ε

= q1 =
1

h11h22 − h12h21
(−h22g1 + h12g2) (8.243)

∂∆λc
∂ε

= q2 =
1

h11h22 − h12h21
(h21g1 − h11g2) (8.244)

Introducing the vectors q1 and q2 into Eqs. (8.193) and (8.224) then gives the algorithmic tangent
stiffness matrix D, Eq. (8.184), in the form

D = E + A + B + C (8.245)

where

A = (3m+ s1)b1
T (8.246)

B = [(3m+ s1)b2s + s2)]qT1 (8.247)

C = [(3m+ s1)b2c + s3)]qT2 (8.248)

• Only the hardening shear yield surface or the Matsuoka-Nakai yield surface is active

We then start from Eq. (8.235) while setting
∂∆λc
∂ε

= 0 to get

dr2

dε
= g1 + h11

∂∆λs
∂ε

= 0 −→ ∂∆λs
∂ε

= − 1

h11
g1 = q1 (8.249)

Substituting the vector q1 back into Eqs. (8.193) and (8.224) gives Eq. (8.184) in the form

D = E + A + B (8.250)

where

A = (3m+ s1)b1
T (8.251)

B = [(3m+ s1)b2s + s2)]qT1 (8.252)

• Only the cap yield surface is active

This is the case when
∂∆λs
∂ε

= 0 so Eq. (8.241) yields

dr3

dε
= g2 + h22

∂∆λc
∂ε

= 0 −→ ∂∆λc
∂ε

= − 1

h22
g2 = q2 (8.253)

Substituting the vector q2 back into Eqs. (8.193) and (8.224) gives Eq. (8.184) in the form

D = E + A + C (8.254)

where

A = (3m+ s1)b1
T (8.255)

C = [(3m+ s1)b2c + s3)]qT2 (8.256)
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• Nonlinear elasticity

Adopting Eqs. (8.193) and (8.224) while setting
∂∆λs
∂ε

=
∂∆λc
∂ε

= 0 together with

a1 = 3Kur(σ̂m)m (8.257)

a2 =
∂σm
∂Kur

∂Kur

∂Eur

∂Eur
∂σm

(8.258)

(8.259)

gives Eq. (8.184) in the form

D = E +
9Kur(σ̂m)

1− a2
mmT (8.260)

E = 2Gur(σ̂m)QPQ (8.261)

Note that when setting Kur(σ̂m) = Kp,ref
ur and Gur(σ̂m) = Gp,ref

ur gives standard linear elastic
stiffness matrix in the form

[D] = E + 9Kp,ref
ur mmT (8.262)

E = 2Gp,ref
ur QPQ (8.263)

8.5 Note on numerical implementation

8.5.1 Initializing hardening parameters κs and pc

In GEO5 FEM the initial values of hardening parameters κins and pinc are calculated on the basis of a
given stress observed in the computational model at the time the Hardening soil model is introduced
into the calculation step. There are several options which may potentially occur with the GEO5 FEM
program, see also the discussion in Section 11.4:

1. Hardening parameters are set based on the geostatic stress provided by K0 procedure, see
Section 1.14. The hardening soil model can be introduced even in the 2nd calculation stage
when replacing another material model considered in the K0 procedure as therein the type of
material model is irrelevant. When using the K0 procedure the vertical σ3, horizontal σ1 = σ2

and mean effective σm stresses together with the deviatoric stress measure J and the Lode angle
θ are computed as

σ3 = −γh, σ1 = σ2 = KNC
0 σ3 (8.264)

σm =
1

3

(
1 + 2KNC

0

)
σ3 (8.265)

J =
1√
3

(σ1 − σ3) (8.266)

θ = tan−1

[
1√
3

(
2
σ2 − σ3

σ1 − σ3
− 1

)]
(8.267)

where γ is the bulk unit weight, h is the actual depth of a stress point in the soil profile, and KNC
0

is the coefficient of lateral earth pressure at rest for normally consolidated soils. These stresses
then allow us to define the hardening parameters κins and pinc such that both the hardening shear
and cap yield criteria are satisfied, i.e., fHSs = 0 and fHSc = 0, recall Eqs. (8.15) and (8.62),
respectively. This gives

κins =
3J

Ei

(
1

1− bã
−
Ep,ref
i

Ep,ref
ur

)
(8.268)

pinc =

√
3J2

χ2(θ, ϕ)M2
+ σ2

m (8.269)

How to account for overconsolidation is described in Section 1.13.
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2. Hardening parameters are set based on the geostatic stress derived by standard stress analysis
while considering the linearly elastic material model in place of the Hardening soil model.
The hardening soil model is introduced in the 2nd calculation stage and replaces the elastic
material model adopted in the 1st calculation stage. The initial hardening parameters κins and
pinc then from Eqs. (8.268) and (8.269). Also, with reference to Sections 1.13 and 1.14, the
overconsolidation parameters OCR = 1 and POP = 0 are considered so the soil is assumed to
be normally consolidated. To introduce overconsolidation a loading/unloading sequence would
have to be introduced.

3. There is zero initial stress when introducing the hardening soil model into the analysis. In such
a case the shear hardening parameter κins = 0 and the initial value of preconsolidation pressure
pinc = 1 kPa are considered. The initial values of moduli Ei and Eur follow from Eqs. (8.16)
and (8.17), i.e., based on the values of cohesion c and angle of internal friction ϕ or the limiting
value σL. The subsequent analysis evolution of κs and pc derives from the standard plastic
calculation step. Similarly to the previous item the overconsolidation parameters OCR = 1
and POP = 0 are considered so the soil is assumed to be normally consolidated. To introduce
overconsolidation a loading/unloading sequence would have to be introduced.

Owing to the formulation of the Hardening soil model one may also encounter an inadmissible stress
state that requires solving the apex problem. Because the plastic potential function is essentially the
same as in the case of the Drucker-Prager model, compare Eqs. (4.6) with app = 0 and (8.70), the
procedure described in Section 4.4 is readily available. An indicator that promotes the solution of the
apex problem is now given by

Mψ(σtrm)
J tr

G(σ̂
tr
m)
− 1

K(σ̂
tr
m)

(σtrm − c cotϕ) < 0 (8.270)

where σtrm is the mean stress at the end of the nonlinear elastic step.

8.5.2 Parameter migration between minor and mean stress stiffness formulations

Because of a long history of Hardening soil model and differences in the formulation of stiffness
evolution based either on the minor principal stress σ1 (PLAXIS) and the mean effective stress σm
(GEO5 FEM) it appears useful to provide a certain conversion tool that transforms the stiffness
parameters Eref ,m (PLAXIS) to Ep,ref ,mp (GEO5 FEM). Following [58] such a tool could be designed
as follows:

1. Migration of Eref
ur and m

Perform a simple linear regression to adjust Ep,ref
ur and mp by matching Eur provided by the

σ1−formulation, Eq. (8.21), and σm-formulations, Eq. (8.17), respectively. This is mathemati-
cally written as

min E1 =
∑
i

Eref
ur

(
σi1 − c cotϕ

σref − c cotϕ

)m
︸ ︷︷ ︸

yi

−Ep,ref
ur

 σim − c cotϕ

σref
m − c cotϕ︸ ︷︷ ︸

xi


mp

2

(8.271)

using the least square method. To proceed, we first rewrite Eq. (8.271) as

min E2 =
∑
i

log yi︸ ︷︷ ︸
Yi

− logEp,ref
ur︸ ︷︷ ︸
q

−mp log xi︸ ︷︷ ︸
Xi


2

(8.272)
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Application of the least square method boils down to the solution of the following two algebraic
equations

∂E2

∂q
=

N∑
i=1

(Yi − q −mpXi) = 0 (8.273)

∂E2

∂mp
=

N∑
i=1

(Yi − q −mpXi)Xi = 0 (8.274)

so that

D = −
N∑
i=1

Xi

N∑
i=1

Xi +N
N∑
i=1

X2
i (8.275)

mp =
1

D

(
−

N∑
i=1

Xi

N∑
i=1

Yi +N
N∑
i=1

XiYi

)
(8.276)

q =
1

D

(
N∑
i=1

X2
i

N∑
i=1

Yi −
N∑
i=1

Xi

N∑
i=1

XiYi

)
−→ Ep,ref

ur = 10q (8.277)

where N is the number of sampling points and σi1 and σim follow from Eqs. (8.264) and (8.265)
for a given value of the prescribed vertical stress σi3. Figure 8.6 compares evolution of unload-
ing/reloading stiffness Eur provided by the σ1− and σm−formulations for three different values
of KNC

0 while assuming σref = σref
m . Point out that mp = m for cohesion c = 0.
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Figure 8.6: Determination of σm dependency of unloading/reloading stiffness Eur from linear regression

2. Migration of Eref
50

The stiffness parameter Ep,ref
50 (Ep,ref

i ) is determined subsequently by matching predictions pro-
vided by the σ1− and σm−formulations for the triaxial compression test while taking into account
already derived parameters Ep,ref

ur and mp. This also requires the knowledge of Hp,ref . It can be

estimated from Eq. (8.82) based on the provided ratio
Ks

Kc
and the value of Ep,ref

ur . With this

step the value of Rf can also be potentially adjusted as suggested in [58].

3. Fine tuning of migrated parameters used in σm− formulation
One may perform an extra optimization step if starting from the data derived via first two steps
and attempt to simultaneously match all three basic laboratory tests, i.e., isotropic compression,
one-dimensional compression (oedometer), and triaxial compression, generated by the σ1− and
σm− formulations.
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Clearly, steps 2 and 3 require having both formulations at hand.

8.5.3 Determining cap model parameters M,Hp,ref on basis of KNC
0 , Eref

oed

The two model parameters can be either considered directly as input parameters or generated on the
basis of the specified values of KNC

0 and Eref
oed determined at primary loading. The latter approach

requires optimization which involves a numerical analysis of an oedometric test. The optimization
process is terminated once, see [58],

• The value of KNC
0 derived numerically as KNC

0 =
σh
σv
|σv=σref

oed
matches the one specified by the

user, where σref
oed represents the reference pressure at which the tangent oedometric modulus Eref

oed

is found experimentally, see Fig. 8.7(a), and σh = σx, σv = σy are the horizontal and vertical
stress components, respectively.

• The value of Eoed equals the value of Eref
oed specified by the user.

The numerical experiment is performed in the displacement control regime by gradually increasing
the vertical strain through small strain increments ∆ε3 until arriving at stress σv = σrefoed at which

the oedometric tangent modulus is calculated as Eoed =
∆σ3

∆ε3
. The initial value of Hp,ref might be

estimated from Eqs. (8.82) and (8.68), while the initial value of M = 1 could be assumed. The
numerically calculated stress invariants σ∗m and J∗ at the end of optimization process should therefore
satisfy

σ∗m =
1

3
(1 + 2KNC

0 )σrefoed (8.278)

J∗ = − 1√
3

(1−KNC
0 )σrefoed , σrefoed < 0 (8.279)

where KNC
0 and σref

oed are specified by the user, see Fig. 8.7(b).

(a) (b)

Figure 8.7: a) Graphical representation of reference oedometric modulus determined at reference stress
b) Current stresses at the end of optimization process associated with σref

oed
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8.6 Testing implementation with simple laboratory tests

Numerical simulation of three basic laboratory tests is performed in this section to examine and
compare two potential formulations of nonlinear elasticity presented in Section 8.3, recall Eqs. (8.89)
and (8.90). Hereinafter, these formulations will be termed incremental and secant, respectively, and
for the sake of clarity both are now reviewed for the bulk response as

• Incremental formulation (currently implemented in GEO5 FEM)

σi+1
m = σim +Kur(σ̂m)∆εv (8.280)

• Secant formulation

σi+1
m = Kur(σ

i+1
m )(εiv + ∆εv) (8.281)

The response derived from Eq. (8.280) will further be compared with that provided by PLAXIS where
the unloading/realoding modulus Eur = Eur(σ̂1) is function of the minor principal stress being σ1 for
the assumed standard elasticity sign convention.

In all cases, the computational model consists of two constant strain triangular elements. While
the oedometric test is run in a plane strain regime, the axisymmetric state of stress is assumed for
isotropic and triaxial compression. The loading and boundary conditions are displayed in Fig. 8.8 for
individual cases. All simulations assumed zero initial stress. This is also why the non-zero values of
c = 10 kPa and ϕ = 30◦ are adopted together with Ep,ref

ur = 30 MPa and σref
m = −100 kPa to set the

initial stiffness of Eur(σm = 0) according to Eq. (8.17). The value of mp = 0.5 was used. Note that

the same values of Ep,ref
ur = Eref

ur ,mp = m,−σref
m = pref were adopted also in PLAXIS simulations,

recall Section 8.5.2.

σ1 = σ2 > σ3 σ1 = σ2 = σ3
σ1 = σ2 > σ3

(a) (b) (c)

Figure 8.8: Computational models of simple laboratory tests: a) one-dimensional compression (oe-
dometer), b) isotropic compression, c) drained triaxial compression.

We begin with the results that compare the two formulations of nonlinear elasticity. These are
plotted for the case of isotropic and oedometric compression in Fig. 8.8. The observed difference
between the two approaches is obvious as no adjustments to model parameters, the model parameter
mp in particular, was considered. What, however, is more interesting is the independence of secant
formulation on the selected magnitude of load increment for both loading scenarios. Clearly, this is
not the case of incremental formulations, being currently implemented in both PLAXIS and GEO5
FEM software. While for the case of isotropic compression this difference is almost negligible owing to
a relatively small load step needed to solve Eq. (8.96), the oedometric compression test already reveals
the expected load step size dependence. This observation should be taken into account in structural
analyses, particularly when starting from a zero initial stress. This issue is addressed in more detail
in Section 11.5.1.

Still within the nonlinear elasticity framework the second example aims at comparing the predic-
tions provided by the two previously mentioned softwares. Fig. 8.10(a) shows a reasonable match
of the predicted response for the case isotropic compression. This is obviously of no surprise as for
this type of analysis the mean and minor principal stresses are the same so the modulus of elasticity
Eur evolves in both softwares identically. On the contrary, some differences should be expected for
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Figure 8.9: Nonlinear elastic response, influence of load step magnitude: a) isotropic compression,
b) oedometric compression
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Figure 8.10: Nonlinear elastic response, comparing predictions provided by PLAXIS and GEO5
FEM for the same set of data: a) isotropic compression, b) oedometric compression

loading conditions where σm 6= σ1 such as for example the case of oedometric compression presented
in Fig. 8.10(b). As already mentioned in Section 8.1.1 this difference becomes less pronounced for
larger Poisson ratios as also evident from the presented plots. How to bring these predictions close to
each other via adjusting the model parameters Ep,ref

ur ,mp is described in Section 8.5.2.

Table 8.2: Material and model parameters [19, 9]. All stiffness and strength parameters are in [kPa]
and correspond to σ1−formulation

Soil Eref
i Eref

ur νur [-] σref
m m c ϕ [0] ψ [0] M [-] Href Rf

1 18182 30000 0.2 -100 0.50 10 30 5 1.04 25836 0.9
2 54545 90000 0.25 -100 0.55 0 30 16 1.47 71229 0.9
3 3909 11500 0.20 -100 0.80 0 20 0 0.78 1699 0.9

Moving beyond the nonlinear behavior calls for the introduction of additional parameters, namely
those defining the plastic potential and cap yield surfaces. The specific material data, adopted in
the remaining simulations, are stored in Table 8.2. Note that all these parameters correspond to the
σ1−formulation. While Soil 1 is taken from [19], Soil 2, representing a dense sand, and Soil 3,
representing a clayey soil, are available in [9]. Here, Href was found from Eq. (8.82) for the given ratio
Ks

Kc
when substituting Ep,ref

ur by Eref
ur listed in Table 8.2.

To be consistent with the first set of examples we start from isotropic and oedometric loading
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Figure 8.11: Plastic response, comparing predictions provided by PLAXIS and GEO5 FEM for the
same set of data (Soil 1): a) isotropic compression, b) oedometric compression
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Figure 8.12: Plastic response in undrained triaxial compression: a) comparing predictions provided
by PLAXIS and GEO5 FEM for the same set of data (Soil 1), b) comparing predictions associated
with variable combination of active yield surfaces (Soil 1)

conditions. Figure 8.11 provides similar observation discussed in previous paragraphs also for plastic
loading conditions. Since starting from zero initial stress, the hardening shear yield surface and the
cap yield surface are simultaneously active already at the onset of loading. Nevertheless, the ultimate
failure surface has not been reached in either of these examples even for relatively large stresses.

Thus to arrive at the Matsuoka-Nakai yield surface we performed yet another simulation pertinent
to triaxial loading conditions. The resulting comparison appears in Fig. 8.12(a). Herein, the sample
was first isotropically compressed to 100 kPa. Thus triaxial shearing started in both cases, given the
data in Table 8.2, from the same stiffness Eur ≈ 34 MPa. While in PLAXIS this stiffness remained
constant as a consequence of no evolution of minor principal stress σ1, the elastic stiffness Eur(σm)
in GEO5 FEM was gradually reduced as a function of evolving mean effective stress σm down to
about Eur = 29 MPa at the end of loading. This minor difference, however, caused essentially no
significant difference in the predictions derived by individual softwares. Also note that in both cases
we eventually arrived at an elastic perfectly plastic behavior. It is worth mentioning that in the present
simulation of the undrained triaxial test we performed the finite element analysis in the displacement
control loading regime by setting ∆uh = −0.5∆uv where ∆uh and ∆uv represent increments of
the horizontal and vertical displacements, respectively. Given the 1m×1m domain dimensions and
axisymmetric state of stress, recall Fig. 8.8(s), this setting maintains zero increment of the volumetric
strain εv = 0 as required. This is also why the analysis was not terminated when reaching the
Matsuoka-Nakai yield surface representing essentially an elastic perfectly plastic material, recall the
discussion in Section 4.6.2.
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The next example is concerned with the performance of individual facets of the hardening soil
model. Figure 8.12(b) shows the performance of the model in undrained triaxial compression when
allowing for either a single yield surface or a specific combination of yield surfaces to be active. For
example, the red lines were obtained when turning off both the hardening shear and cap yield surfaces
thus arriving at predictions identical to those one would obtain with the application of the standard
Mohr-Coulomb model. The remaining examples are just for illustration as the present formulation
of the cap yield surface is unique to the Hardening soil model. Nevertheless, one may still draw a
parallel with, e.g., the Modified cam clay model when allowing for the cap yield surface only to drive
the soil response. This prediction is represented by black lines in Fig. 8.12(b). One may identify the
critical state which in this particular case corresponds to zero mean effective stress, recall Fig. 8.1(b).
Similarly, a Soft soil like model, see Section 9 for its actual formulation, can be imagined if turning off
the hardening shear yield surface. This is the case when the Matsuoka-Nakai and cap yield surfaces are
only allowed to enter the analysis. This particular combination generates the blue lines in Fig. 8.12(b).
As expected, these lines initially follow the black lines as only the cap yield surface is active at this
stage of loading. The behavior then turns into the one corresponding to a perfectly plastic material
once the Matsuoka-Nakai yield surface is reached.

The last example is devoted to the drained triaxial compression test. To properly arrive at a
failure state given by Eq. (8.1) the analysis was carried out in the displacement control regime by
prescribing vertical displacements uv along the top boundary in Fig. 8.8(c) in place of the vertical
pressure. Given the preceding isotropic compression stage to generate initial confinement stresses
σ0 equal to 50, 100, 200 kPa the vertical displacements were set in turn to 0.1, 0.15, and 0.175 m,
respectively.
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Figure 8.13: Drained triaxial test (Soil 1)

The resulting stress-strain curves for Soil 1, recall Table 8.2, are plotted in Fig. 8.13, whereas
the results obtained for Soils 2 and Soil 3 are presented in Fig. 8.14. In all cases we eventually
arrived at a failure deviatoric stress qf . This state is manifested by increasing vertical strain ε3 = uv
at zero increment of ∆q. Just for illustration we also show in Fig. 8.13 the failure stress associated

with σ0 = −σ1 = 200 kPa together with
qf
2

and the corresponding modulus E50. Recall that the solid

lines were derived assuming the evolution moduli Ei and Eur according to Eqs. (8.16) and (8.17),
respectively. So in triaxial compression these moduli evolve in dependence on the evolution of mean
effective stress σm. This is in contradiction to the original formulation implemented in PLAXIS
where, in accord with Eq. (8.21), these moduli remain constant as the minor principal stress σ1 does
not change, recall the previous discussion devoted to the results derived for undrained conditions.
Taking into account Eq. (8.20) the value of Ei in Table 8.2 gives Ep,ref

50 = 10 MPa. Because the same
data without any adjustments were adopted also in comparative simulations performed in PLAXIS we
also have Ep,ref

50 = Eref
50 . Equation (8.21) yields E50 = 13.6 MPa which is almost identical to the value

of E50 = 13.4 MPa obtained from simulations via PLAXIS. On the other hand, GEO5 FEM gives
the E50 modulus in the range of 13.6 − 17.4 MPa. Nevertheless, the predictions provided by both
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softwares are, similar to an undrained compression test, essentially indistinguishable for the Soil 1 set
of data. It is also worth mentioning that in this way one should recover E50 = Eref

50 from Fig. 8.13 when
considering the value of confining pressure σ0 = σref = −100 kPa and the σ1−formulation (PLAXIS).
As already mentioned this is the principal advantage of using the σ1−formulation.
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Figure 8.14: (a-c) Drained triaxial test: a) Soil 2 with original parameters, b) Soil 3 with original

parameters, c) Soil 3 with adjusted parameters Eref
i → Ep,ref

i , Rf : 0.9 → 0.85, d) one-dimensional
compression test (oedometer, Soil 3, for input data refer to Table 8.3)

To appreciate potential differences in the predictions provided by the σ1− and σm− formulations
for the same set of data we tested two more soils, one corresponding to a dense sand (Soil 2), and
one representing a clayey soil (Soil 3). The results in Figs. 8.14(a,b) were derived assuming the data
in Table 8.2 estimated such as to match laboratory measurements via simulations while adopting the
σ1−formulation [9]. Quite significant differences are observed for the clayey type of soil (Soil 3).

Table 8.3: Material and model parameters of Soil 3

Formulation Eref
i Eref

ur νur [-] σref
m m c ϕ [0] ψ [0] M [-] Href Rf

σ1 (Eσ,ref , Hσ,ref) 3909 11500 0.20 -100 0.80 0 20 0 0.78 1699 0.9
σm (Ep,ref , Hp,ref) 7000 8314 0.20 -100 0.80 0 20 0 0.78 1228 0.85

To reconcile the two approaches calls for adjusting the material parameters associated with the
σm−formulation as described in Section 8.5.2. These are listed in the 3rd row of Table 8.3 denoted
as σm and were used with GEO5 FEM, whereas the 2nd row collects the original data adopted with
PLAXIS. Note that only the first 2 steps in the parameter migration procedure were exploited to
derive the σm−data.

It is interesting to point out that in order to arrive at improved predictions with the σm−formulation
in triaxial compression it is sufficient to adjust Ep,ref

i together with Rf while keeping the other model
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parameters unchanged as these two parameters play the decisive role in adjusting the shape of the
stress-strain curve for this type of test. This was essentially tested and the results appear in Fig. 8.14(c)
showing a reasonable match provided by the two simulations.

It has already been shown in Fig. 8.11 that a significant difference between the two formulations
when considering the same set of data can be expected for the oedometric test. This is supported by
the results plotted in Fig. 8.14(d). The black line was constructed using the σm− formulation while
employing the data pertinent to the σ1−formulation. When compared to PLAXIS prediction, the
blue line, the difference is remarkable. A considerable improvement can be achieved by exploiting the
material and model parameters adjusted with the help of the parameter migration procedure. The
corresponding results are represented by the red line in Fig. 8.14(d). Further improvement might be
expected if taking the present data as a point of departure and exercise the step 3 in Section 8.5.2 for
finer tuning.

8.7 Hardening soil model in undrained analysis

8.8 Hardening soil model in stability analysis

This topic becomes relevant when running the stability analysis within a given calculation stage, pro-
viding the Hardening soil model was selected to represent the soil behavior in standard stress analysis.
To this end, some action is required to allow for the application of standard shear strength parameters
reduction procedure in stability analysis implemented in GEO5 FEM software. In particular, the
Matsuoka-Nakai limit yield surface will be the only one potentially active yield surface throughout the
analysis. The strength reduction procedure then corresponds to a simultaneous reduction of peak val-
ues of the cohesion c and the angle of internal friction ϕ. On the other hand, the unloading/reloading

stiffness Eur(σ̂m) = Eur equal to the one at the end of the preceding stress or earthquake analysis is
kept constant within the reduction process.



Chapter 9

Soft soil model

The original formulation of the Soft soil (SS) model, also implemented in PLAXIS [63], was developed
in [16]. But unlike PLAXIS, which grounds upon the application of the Mohr-Coulomb model, the
present formulations, similarly to Chapter 8, is presented entirely in the invariant stress space combin-
ing the Matsuoka-Nakai yield surface introduced in Section 8.1.2 and the cap yield surface in the form
of the Generalized Cam-clay (GCC) model described in detail in Section 12.1. The three-dimensional
plot of the Soft soft model in the principal stress space appears in Fig. 9.1(a), whereas its projections
into the meridian and deviatoric planes are displayed in Fig. 9.1(b) and Fig. 9.1(c), respectively.
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Figure 9.1: Yield surface: a) plot in principal stress space, b) plot in meridian plane, c) plot in
deviatoric plane

Point out that in comparison to the cap yield surface in the GCC model the present formulation
accounts for a non-zero cohesion c. Another modification is associated with the definition of the slope
of critical state line g(θ, ϕ,M) = χ(θ, ϕ)M . In the SS model the shape parameter M depends on
the coefficient of lateral earth pressure for normally consolidated soils KNC

0 in the form, see [16] for
detailed derivation,

M =
√

3

√√√√√√√ (1−KNC
0 )2

(1 + 2KNC
0 )2

+

(1−KNC
0 )(1− 2νur)

(
λ∗

κ∗
− 1

)
(1 + 2KNC

0 )(1− 2νur)
λ∗

κ∗
− (1−KNC

0 )(1 + νur)

(9.1)

≈
√

3

3
(3.0− 2.8KNC

0 ) (9.2)

where

κ∗ =
κ

1 + ein
and similarly λ∗ =

λ

1 + ein
(9.3)

are defined in terms of the slopes of swelling and normal consolidation lines κ and λ and the initial
void ratio ein given by Eq. (11.3) in terms of the maximum void ratio e0. For a detailed description
of these parameters we refer the reader to Section 11.1.1. The Poisson ratio νur is identical to that
introduced in Chapter 8 for the Hardening soil model and is typically in the range (0.1− 0.2).
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While the Matsuoka-Nakai yield surface remains constant and in light of elastic-perfectly plastic
material, recall Fig. 4.1, depends on the peak values of the effective angle of internal friction ϕ and
effective cohesion c, the soil in compression may undergo hardening controlled by the evolution of
cap yield surface as a function of the current value of the preconsolidation pressure pc, see Figs. 11.2
and 11.3 in Section 11.1 for more details.

Similarly to critical state models, see ahead Chapters 11 and 12, the response inside the yield
surface is assumed linear elastic with the bulk (K) and shear (G) moduli written as

Ks = −σ
i
m

κ∗
(9.4)

Gs =
3(1− 2νur)

2(1 + νur)
Ks = ζKs (9.5)

where σim represents the mean effective stress at the beginning of the new load increment. This
is consistent with the Modified and Generalized Cam-clay models formulated in the framework of
constant elasticity return also implemented in the current version of GEO5 FEM, see for example
Section 11.2.2.

The complete list of material parameters needed in the formulation of SS model is available in
Table 9.1.

Table 9.1: Parameters of Soft soil plasticity model

Symbol Units Description

κ [-] Slope of swelling line (swelling modulus)
λ [-] Slope of normal consolidation line (isotropic NCL, compression modulus)
e0 [-] Maximum void ratio
νur [-] Poisson’s ratio

c [kPa] Effective peak cohesion
ϕ [◦] Effective peak angle of internal friction
ψ [◦] Angle of dilation

KNC
0 [-] Coefficient of lateral earth pressure for normal consolidation

emax [-] Maximum void ratio to terminate dilation
OCR [-] Overconsolidation ratio
POP [kPa] Preoverburden pressure
α [1/◦C] Coefficient of thermal expansion

M [-] Slope of critical state line at triaxial compression, calculated
pc [kPa] Preconsolidation pressure (pminc = 1kPa), calculated

9.1 Formulation of Soft soil model

As already suggested in the previous section the Soft soil model combines two yield surfaces to overcome
some of the drawbacks associated with the formulation of the Modified Cam-clay model as put forward
in Chapters 11 and 12. Unlike the GCC model, however, the shear response is restricted by an
independent failure criterion in the form of the Matsuoka-Nakai yield surface. Thus when compared
to the Hardening soil model the soil hardening is limited to compression where the elastic behavior
is bounded by a cap yield surface. Because at a point of intersection we wish to arrive at a smooth
transition from one surface to the other, the projection of the cap yield surface into a deviatoric plane
assumes the LMN dependence, recall Section 8.1.2. Thus except for the definition of the critical state
line Mc and introduction of a non-zero cohesion c its formulation can be provided in the spirit of the
subcritical part of the GCC model, see the definition of function fGCCc in Section 12.1.1, Eq. (12.3).
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Mathematical formulation of these two functions is then provided by

fSSs = fMN
s = Iσ − sin2 ϕ, recall Eq. (8.23) (9.6)

fSSc =
J2

χ2(θ, ϕ)M2
+ σ̂m(σm + pc), compare with Eq. (12.3) (9.7)

where, similar to Eq. (8.18),

σ̂m = σm − c cotϕ (9.8)

and Iσ and χ(θ, ϕ) follow from Eqs. (8.24) and (8.42), respectively. Proceeding in the footsteps of
the Drucker-Prager (or Hardening soil) and the Generalized Cam-clay models the plastic potential
surfaces are assumed in the form

gSSs = gMN
s = J + σ̂mMψ, recall Eqs. (4.8) or (8.70) (9.9)

gSSc =
J2

χ̃2(θ̃, ϕ)M2
+ σ̂m(σm + pc), compare with Eq. (8.74) or (12.12) (9.10)

Remember that in accord with Eq. (8.74) we keep χ̃(θ̃, ϕ) constant in the local stress update by setting
θ̃ = θtr where the Lode angle θtr is evaluated on the basis of trial stresses defined in Eq. (17.82).

In contrast to critical state models in Chapters 11 and 12 the Soft soil model allows for hardening
only. This means that only the subcritical part of the Cam-clay model, recall Figs. 11.2(b) and 12.1(b),
can be active. This in turn introduces certain restrictions on the magnitude of the angle of internal
friction ϕ. To see this we first define

Mc = χ(θ, ϕ)M (9.11)

Ms = ĝ(θ, ϕ) = − J

σ̂m
(9.12)

where Eq. (8.32) was called to define the slope of the Matsuoka-Nakai yield surface Ms. To avoid
potential softening within the cap model we must ensure that Mc > Ms-value should be larger than
the slope of the Matsuoka-Nakai failure surface Ms. Recall that the value of Ms is found from the
solution of cubic equation (8.34). While for triaxial compression (TC) the value of slope Mc is a
function of KNC

0 (χ = 1), the Ms-value depends solely on the value of peak effective friction angle
and is written as

MTC
s =

2
√

3 sinϕ

3− sinϕ
(9.13)

Table 9.2 lists some specific values for three types of soil assuming three particular values of KNC
0

typically found in the range (0.4− 0.6).

Table 9.2: Slope of critical state line for triaxial compression Mc = M, θ = 30◦, χ = 1

soil κ λ e λ/κ KNC
0 M Mapprox

1 0.0077 0.066 0.788 8.57 0.4/0.5/0.6 1.130/0.940/0.774
2 0.0250 0.181 1.67 7.24 0.4/0.5/0.6 1.125/0.934/0.768 1.085/0.924/0.762
3 0.0164 0.106 0 6.45 0.4/0.5/0.6 1.121/0.930/0.763

Similarly, the values of Ms for several angles of internal friction and three specific value of Lode’s
angle θ are provided in Table 9.3.

Finally, we consider soil 1 and the case of triaxial compression to illustrate the influence of both
KNC

0 and ϕ on the Mc/Ms ratio listed in Table 9.4. It seen that for relatively large angles of internal
friction and larger values of KNC

0 the Mc/Ms ration may drop below zero. As illustrated in Fig. 9.2(b)
for the case of ϕ = 40◦ and KNC

0 = 0.6, this suggests potential softening within the cap yield surface.
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Table 9.3: Slope of Matsuoka-Nakai failure surface

ϕ θ χ Ms

10 -30/0/30 0.812/0.937/1 0.190/0.196/0.213
20 -30/0/30 0.753/0.869/1 0.354/0.387/0.446
30 -30/0/30 0.693/0.801/1 0.495/0.555/0.693
40 -30/0/30 0.638/0.737/1 0.611/0.696/0.945

Table 9.4: Soil 1 - Mc/Ms ratio for triaxial compression

ϕ Mc/Ms

[◦] KNC
0 = 0.4 KNC

0 = 0.5 KNC
0 = 0.6

10 5.309 4.416 3.634
20 2.535 2.109 1.735
30 1.631 1.357 1.117
40 1.196 0.995 0.819

This is not allowed in the implemented version of the soft soil model. Thus considering the case of
TC the following condition should be satisfied

ϕ < arcsin

(
3M

2
√

3 +M

)
(9.14)

which is clearly not the case for M(KNC
0 = 0.6) = 0.774 which gives ϕmax = 33.2◦ < ϕ = 40◦.
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Figure 9.2: Cap and shear failure surfaces as a function of ϕ and KNC
0 : a) KNC

0 = 0.4, b) KNC
0 = 0.6

9.2 Stress return mapping

To open this section we consider the case when both yield surfaces are simultaneously active. With
reference to Eqs. (9.9) and (9.10), recall also Eq. (1.26), the plastic strain increments attain the forms

∆εpl = ∆epl +m∆εplv (9.15)

∆εplv = ∆λs
∂gSSs
∂σm

+ ∆λc
∂gSSc
∂σm

= ∆λsMψ + ∆λc(2σ
i+1
m + pi+1

c − c cotϕ) (9.16)

∆epl = ∆λs
∂gSSs
∂s

+ ∆λc
∂gSSc
∂s

= ∆λQ−1si+1 = ∆λPσi+1 (9.17)
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where the plastic multiplier ∆λ is given by

∆λ =
∆λs

2J i+1
+

∆λc
χ̃2M2

(9.18)

The interested reader may also compare this equation with Eq. (8.78). The superscript (i+ 1) in the
above equations states that all derivatives are taken with respect to stresses evaluated at the end of
the (i+1) load increment. It is also useful to provide the increment of the equivalent deviatoric plastic

strain ∆Epld as

∆Epld =
√

2(∆epl)TQ∆epl = ∆λ

√
2(si+1)TQ−1si+1 = 2∆λJ i+1 (9.19)

Next, similar to PLAXIS, we assume that the elastic stiffness matrix is evaluated at the beginning
of the new load increment and is kept constant throughout the local stress update, i.e., the bulk

modulus Ks = Ki = −σ
i
m

κ∗
. This allows us, with the help of Eqs. (17.82), (9.16), (9.17) and (9.19), to

write the stresses and associated equivalent stress measures at the end of the (i+ 1) load increment as

• Mean stress σi+1
m

σi+1
m = σim +Ki(∆εv −∆εplv ) = σtrm −Ki(∆λsMψ + ∆λc(2σ

i+1
m + pi+1

c − c cotϕ)) (9.20)

Rearrange the above equation to get

σi+1
m =

σtrm −Ki(∆λsMψ + ∆λc(p
i+1
c − c cotϕ))

1 + 2Ki∆λc
, compare with Eq. (8.84) (9.21)

• Deviatoric stress si+1

si+1 = si + 2GiQ

(
∆e−

(
∆λs

2J i+1
+

∆λc
χ̃2M2

)
Q−1si+1

)
(9.22)

Rearrange the above equation to get

si+1 =
si + 2GiQ∆e

1 +Gi
(

∆λs
J i+1

+
2∆λc
χ̃2M2

) =
str

1 +Gi
(

∆λs
J i+1

+
2∆λc
χ̃2M2

) , compare with Eq. (8.86)

(9.23)

• Equivalent deviatoric stress J i+1

J i+1 = J i +Gi(∆Ed −∆Epld ) = J tr −Gi∆Epld = J tr −Gi
(

∆λs
J i+1

+
2∆λc
χ̃2M2

)
J i+1 (9.24)

Rearrange the above equation to get

J i+1 =
J tr −Gi∆λs

1 +
2Gi∆λc
χ̃2M2

, compare with Eq. (8.87) (9.25)

Inspecting Eqs. (9.21), (9.23) and (9.25) suggests the vector of primary variables a in the form

aT =
{
pi+1
c ,∆λs,∆λc

}
(9.26)

In the framework of multi-yield surface plasticity the vector of residuals to be minimized can be then
written as

r =


pi+1
c − pc(∆λc, pi+1

c )
fSSs (σi+1(∆λs,∆λc, p

i+1
c ))

fSSc (σi+1(∆λs,∆λc, p
i+1
c ), pi+1

c )

 = r(a(ε), ε) (9.27)
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Similarly to the Hardening soil model the preconsolidation pressure evolves only with the part of the
volumetric plastic strain associated with the cap yield surface ∆εplvc. Adopting Eqs. (9.16) and (9.21)
then gives

pc = pic exp

[
− ∆εplvc
λ∗ − κ∗

]
= pic exp

[
−∆λc(2σ

i+1
m (∆λs = 0) + pi+1

c − c cotϕ)

λ∗ − κ∗

]
= pic exp

[
− 1

λ∗ − κ∗
∆λc(2σ

tr
m + pi+1

c − c cotϕ)

1 + 2Ki∆λc

]
, compare with Eq. (11.68) (9.28)

where we exploited Eq. (11.15) derived exhaustively in Section 11.1.1.
The system of nonlinear implicit equations (9.27) can be solved by employing the Newton-Raphson

method
ai+1
j+1 = ai+1

j −H−1
j rj (9.29)

where the Jacobian matrix H is provided by

H =
∂r

∂a
+
∂r

∂s

∂s

∂a
=



dr1

dpc

dr1

d∆λs

dr1

d∆λc

dr2

dpc

dr2

d∆λs

dr2

d∆λc

dr3

dpc

dr3

d∆λs

dr3

d∆λc


(9.30)

To initialize Eq. (9.29) we assume

aT0 =
{
pic, 0, 0,

}
(9.31)

rT0 =
{

0, fSSs (σtr), fSSc (σtr, pic)
}

(9.32)

Employing standard differentiation of composite functions, while dropping out the superscript (i+ 1)
for the sake of simplicity, gives the components of the Jacobian matrix H in the form of chain rules as

• H1i

H11 =
dr1

dpc
= 1 +

pc
λ∗ − κ∗

∂∆εplvc
∂pc

(9.33)

H12 =
dr1

d∆λs
=

pc
λ∗ − κ∗

∂∆εplvc
∂∆λs

(9.34)

H13 =
dr1

d∆λc
=

pc
λ∗ − κ∗

∂∆εplcv
∂∆λc

(9.35)

where

∂∆εplvc
∂pc

=
∆λc

1 + 2Ki∆λc
(9.36)

∂∆εplvc
∂∆λs

= 0 (9.37)

∂∆εplcv
∂∆λc

=
2σtrm + pi+1

c − c cotϕ

(1 + 2Ki∆λc)2
(9.38)
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• H2i

dr2

dpc
=

dIσ
dpc

=
∂Iσ
∂σm

∂σm
∂pc

(9.39)

dr2

d∆λs
=

dIσ
d∆λs

=
∂Iσ
∂σm

∂σm
∂∆λs

+
∂Iσ
∂J

∂J

∂∆λs
+
∂Iσ
∂I3s

dI3s

d∆λs
(9.40)

dr2

d∆λc
=

dIσ
d∆λc

=
∂Iσ
∂σm

∂σm
∂∆λc

+
∂Iσ
∂J

∂J

∂∆λc
+
∂Iσ
∂I3s

dI3s

d∆λc
(9.41)

where

∂Iσ
∂σm

=
∂Iσ
∂I1σ

∂I1σ

∂σm
+

∂Iσ
∂I2σ

∂I2σ

∂σm
+

∂Iσ
∂I3σ

∂I3σ

∂σm
(9.42)

∂Iσ
∂J

=
∂Iσ
∂I2σ

∂I2σ

∂J
+

∂Iσ
∂I3σ

∂I3σ

∂J
(9.43)

∂Iσ
∂I3s

=
∂Iσ
∂I3σ

∂I3σ

∂I3s
(9.44)

• H3i

dr3

dpc
=

∂r3

∂pc
+

∂r3

∂σm

∂σm
∂pc

(9.45)

dr3

d∆λs
=

∂r3

∂J

∂J

∂∆λs
+

∂r3

∂σm

∂σm
∂∆λs

+

+
∂r3

∂χ

∂χ

∂ϑ

∂ϑ

∂ sin 3θ

(
∂ sin 3θ

∂J

∂J

∂∆λs
+
∂ sin 3θ

∂I3s

dI3s

d∆λs

)
(9.46)

dr3

d∆λc
=

∂r3

∂J

∂J

∂∆λc
+

∂r3

∂σm

∂σm
∂∆λc

+

+
∂r3

∂χ

∂χ

∂ϑ

∂ϑ

∂ sin 3θ

(
∂ sin 3θ

∂J

∂J

∂∆λc
+
∂ sin 3θ

∂I3s

dI3s

d∆λc

)
(9.47)

where

∂r3

∂pc
= σm − c cotϕ (9.48)

∂r3

∂σm
= 2σm + pc − c cotϕ (9.49)

∂r3

∂J
=

2J

χ2M2
(9.50)

∂r3

∂χ
= − 2J2

χ3M2
(9.51)

dI3s

d∆λs
=

(
∂I3s

∂s

)T ds

d∆λs
(9.52)

dI3s

d∆λc
=

(
∂I3s

∂s

)T ds

d∆λc
(9.53)

ds

d∆λs
=

∂s

∂∆λs
+
∂s

∂J

∂J

∂∆λs
(9.54)

ds

d∆λc
=

∂s

∂∆λc
+
∂s

∂J

∂J

∂∆λc
(9.55)
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Further details are available in Section 8.3.2. The derivatives not explicitly provided therein are

∂σm
∂pc

= − Ki∆λc
1 + 2Ki∆λc

(9.56)

∂σm
∂∆λs

= −
KiMψ

1 + 2Ki∆λc
(9.57)

∂σm
∂∆λc

= −
Ki(2σtrm + pc − c cotϕ− 2Ki∆λsMψ)

(1 + 2Ki∆λc)2
(9.58)

∂J

∂∆λs
= − Gi

1 +
2Gi∆λc
χ̃2M2

(9.59)

∂J

∂∆λc
= − J tr −Gi∆λs(

1 +
2Gi∆λc
χ̃2M2

)2

2Gi

χ̃2M2
= − J

1 +
2Gi∆λc
χ̃2M2

2Gi

χ̃2M2
(9.60)

∂s

∂∆λs
= − str[

1 +Gi
(

∆λs
J

+
2∆λc
χ̃2M2

)]2

Gi

J
= − s

1 +Gi
(

∆λs
J

+
2∆λc
χ̃2M2

)Gi
J

(9.61)

∂s

∂∆λc
= − str[

1 +Gi
(

∆λs
J

+
2∆λc
χ̃2M2

)]2

2Gi

χ̃2M2
= − s

1 +Gi
(

∆λs
J

+
2∆λc
χ̃2M2

) 2Gi

χ̃2M2
(9.62)

∂s

∂J
=

str[
1 +Gi

(
∆λs
J

+
2∆λc
χ̃2M2

)]2

Gi∆λs
J2

=
s

1 +Gi
(

∆λs
J

+
2∆λc
χ̃2M2

)Gi∆λs
J2

(9.63)

(9.64)

Remember that all stresses including equivalent stress measure J and the preconsolidation pressure
pc are evaluated at the end of the (i+ 1) load increment.

9.3 Algorithmic tangent stiffness matrix

A general framework for the derivation of algorithmic tangent stiffness matrix is presented in Sec-
tion 8.4. Some specific issues related to the present version of the cap yield surface are addressed in
Section 12.3.2. These two sections thus constitute the right springboard in succeeding formulations.
We start from Eq. (8.184) and write the algorithmic tangent stiffness matrix D as

D =
dσi+1

dεi+1
= 3m

(
dσi+1

m

dεi+1

)T

+
dsi+1

dεi+1
(9.65)

Expanding both terms on the right-hand side of Eq. (9.65) grounds on the following stress and strain
dependencies, recall Eqs. (8.187) - (8.191),

pi+1
c = f(pi+1

c , σtrm(∆εv(ε)),∆λs(ε),∆λc(ε),∆εv(ε)) (9.66)

si+1 = f(J i+1,∆λs(ε),∆λc(ε),∆e(ε)) (9.67)

J i+1 = f(J tr(∆e(ε)),∆λs(ε),∆λc(ε)) (9.68)

To simplify notation the superscript (i+1) identifying the stresses and strains with the end of the (i+1)
load increment is left out in subsequent formulations. Also, the notation introduced in Eqs. (8.185)

and (8.186) will be used. With this in mind we adopt Eq. (9.21) and write the term
dσm
dε

as

dσm
dε

=
∂σm
∂ε

+
∂σm
∂pc

dpc
dε

+
∂σm
∂∆λs

∂∆λs
∂ε

+
∂σm
∂∆λc

∂∆λc
∂ε

(9.69)

=
1

1 + 2Ki∆λc

(
3Kim−KiMψ

∂∆λs
∂ε

−Ki∆λc
dpc
dε
−
Ki(2σtrm + pc − c cotϕ− 2Ki∆λsMψ)

1 + 2Ki∆λc

∂∆λc
∂ε

)
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where the term
dpc
dε

follows from Eq. (9.28) and is defined by

dpc
dε

= − pc
(λ∗ − κ∗)(1 + 2Ki∆λc)

[
6Ki∆λcm+ ∆λc

dpc
dε

+
2σtrm + pc − c cotϕ

1 + 2Ki∆λc

∂∆λc
∂ε

]
(9.70)

Rearranging Eq. (9.70) gives

dpc
dε

= a43m+ a5
∂∆λc
∂ε

(9.71)

a4 = − 2Ki∆λcpc
(λ∗ − κ∗)(1 + 2Ki∆λc) + ∆λcpc

= −K
i

a

2∆λcpc
λ∗ − κ∗

(9.72)

a5 = −

(
2σtrm + pc − c cotϕ

1 + 2Ki∆λc

)
pc

(λ∗ − κ∗)(1 + 2Ki∆λ) + ∆λcpc
= −pc

a

2σtrm + pc − c cotϕ

(λ∗ − κ∗)(1 + 2Ki∆λc)
(9.73)

a = 1 +
∆λcpc
λ∗ − κ∗

+ 2Ki∆λc (9.74)

We may now substitute back from Eq. (9.71) to Eq. (9.69) to get

dσm
dε

= a13m+ a2
∂∆λs
∂ε

+ a3
∂∆λc
∂ε

(9.75)

a1 =
Ki

1 + 2Ki∆λc
(1− a4∆λc) (9.76)

a2 = −
KiMψ

1 + 2Ki∆λc
(9.77)

a3 = − Ki

1 + 2Ki∆λc

(
2σtrm + pc − c cotϕ− 2Ki∆λsMψ

1 + 2Ki∆λc
+ a5∆λc

)
(9.78)

Similarly to Section 8.4 the second term on the right-hand side of Eq. (9.65) receives the form,
recall Eqs. (8.192) and (8.193),

ds

dε
=

∂s

∂ε
+

ds

dχ̃

(
dχ̃

dε

)T

+
ds

d∆λs

(
∂∆λs
∂ε

)T

+
ds

d∆λc

(
∂∆λc
∂ε

)T

(9.79)

= E + s1

(
∂∆λs
∂ε

)T

+ s2

(
∂∆λc
∂ε

)T

(9.80)

where the derivatives
ds

d∆λs
= s1,

ds

d∆λc
= s2 are provided by (9.54) and (9.55) and the matrix E

reads

E = E1 + E2 (9.81)

E1 =
∂s

∂ε
=

[
∂s

∂∆e
+
∂s

∂J

(
∂J

∂∆e

)T
]
∂∆e

∂ε
(9.82)

E2 =
ds

dχ̃

(
dχ̃

dε

)T

(9.83)

with

ds

dχ̃
=

∂s

∂χ̃
+
∂s

∂J

∂J

∂χ̃
(9.84)

dχ̃

dε
=

[
ds̃

dε

]T ∂χ̃
∂s̃

(9.85)

ds̃

dε
=

∂s̃

∂∆e

∂∆e

∂ε
(9.86)
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The remaining partial derivatives in Eqs. (9.82) - (9.86) are provided by

∂s

∂∆e
=

2GiQ

1 +Gi
(

∆λs
J

+
2∆λc
χ̃2M2

) (9.87)

∂J

∂∆e
=

∂J

∂J tr
∂J tr

∂∆e
=

Gi

1 +
2Gi∆λc
χ̃2M2

∂∆Ed
∂∆e

,
∂∆Ed
∂∆e

=
∂
√

2∆eTQ∆e

∂∆e
=

2Q∆e

∆Ed
=
s

J
(9.88)

∂s

∂χ̃
=

str[
1 +Gi

(
∆λs
J

+
2∆λc
χ̃2M2

)]2

4Gi∆λc
χ̃3M2

=
s

1 +Gi
(

∆λs
J

+
2∆λc
χ̃2M2

) 4Gi∆λc
χ̃3M2

(9.89)

∂J

∂χ̃
=

J tr −Gi∆λs(
1 +

2Gi∆λc
χ̃2M2

)2

4Gi∆λc
χ̃3M2

=
J

1 +
2Gi∆λc
χ̃2M2

4Gi∆λc
χ̃3M2

(9.90)

∂χ̃

∂s̃
=

∂χ̃

∂ϑ

∂ϑ

∂ sin 3θ̃

(
∂ sin 3θ̃

∂J̃

∂J̃

∂s̃
+
∂ sin 3θ̃

∂Ĩ3s

∂Ĩ3s

∂s̃

)
(9.91)

∂s̃

∂∆e
= = 2GiQ (9.92)

It is worth mentioning that s̃ = str, J̃ = J tr, Ĩ3s = Itr3s

Similarly to Section 8.4 the unknown derivatives
∂∆λs
∂ε

and
∂∆λc
∂ε

are determined from the con-

sistency condition, see Eq. (8.226), which in the case of Soft soil model reads

dri
dε

= 0 (9.93)

r2 = fSSs , r3 = fSSc (9.94)

We begin with the Matsuoka-Nakai yield surface fSSs ≡ fMN
s and write the corresponding consis-

tency condition in the form, recall Eqs. (8.222) and (8.223) to get the terms
dJ

dε
, and

dI3s

dε
,

dr2

dε
=

∂Iσ
∂σm

dσm
dε

+
∂Iσ
∂J

dJ

dε
+
∂Iσ
∂I3s

dI3s

dε
(9.95)

=
∂Iσ
∂σm

dσm
dε

+
∂Iσ
∂J

[
ds

dε

]T ∂J
∂s

+
∂Iσ
∂I3s

[
ds

dε

]T ∂I3s

∂s
(9.96)

= c1
dσm
dε

+ c2

[
ds

dε

]T
j1 + c3

[
ds

dε

]T
j2 = 0, compare with Eq. (8.234) (9.97)

where the derivatives
∂Iσ
∂σm

,
∂Iσ
∂J

,
∂Iσ
∂I3s

were introduced in are given by Eqs. (9.42), (9.43), (9.44). After

substituting from Eqs. (9.75) and (9.80) back to Eq. (9.97) we arrive at

dr2

dε
= g1 + h11

∂∆λs
∂ε

+ h12
∂∆λc
∂ε

= 0 (9.98)

g1 = c1a13m+ ET(c2j1 + c3j2)

h11 = c1a2 + s1
T(c2j1 + c3j2)

h12 = c1a3 + s2
T(c2j1 + c3j2)



9.3. ALGORITHMIC TANGENT STIFFNESS MATRIX 127

Next, consider consistency condition associated with the cap yield surface fSSc in the form

dr3

dε
=

∂r3

∂J

dJ

dε
+
∂r3

∂χ

∂χ

∂ϑ

∂ϑ

∂ sin 3θ

d sin 3θ

dε
+

∂r3

∂σm

dσm
dε

+
∂r3

∂pc

dpc
dε

(9.99)

=
∂r3

∂σm

dσm
dε

+

+

(
∂r3

∂J
+
∂r3

∂χ

∂χ

∂ϑ

∂ϑ

∂ sin 3θ

∂ sin 3θ

∂J

)[
ds

dε

]T ∂J
∂s

+

+
∂r3

∂χ

∂χ

∂ϑ

∂ϑ

∂ sin 3θ

∂ sin 3θ

∂I3s

[
ds

dε

]T ∂I3s

∂s
+

+
∂r3

∂pc

dpc
dε

(9.100)

= c4
dσm
dε

+ c5

[
ds

dε

]T
j1 + c6

[
ds

dε

]T
j2 + c7

dpc
dε

= 0 (9.101)

where
d sin 3θ

dε
=
∂ sin 3θ

∂J

dJ

dε
+
∂ sin 3θ

∂I3s

dI3s

dε
(9.102)

together with Eqs. (8.222) and (8.223) was exploited. Substituting from Eqs. (9.75), (9.80) and (9.71)
to Eq. (9.101) finally yields

dr3

dε
= g2 + h21

∂∆λs
∂ε

+ h22
∂∆λc
∂ε

= 0 (9.103)

g2 = (c4a1 + c7a4)3m+ ET(c5j1 + c6j2)

h21 = c4a2 + s1
T(c5j1 + c6j2)

h22 = c4a3 + c7a5 + s2
T(c5j1 + c6j2)

Proceeding in the footsteps of Section 8.4 we may now identify three potential scenarios:

• Both the shear (Matsuoka-Nakai) and cap yield surfaces are simultaneously active
In this case of multi-yield surface plasticity the consistency conditions (9.98) and (9.103) can be

now used to solve for
∂∆λs
∂ε

and
∂∆λc
∂ε

as

[
h11 h12

h21 h22

]
︸ ︷︷ ︸

H


(
∂∆λs
∂ε

)T

(
∂∆λc
∂ε

)T

 =

{
−gT1
−gT2

}
(9.104)

so

∂∆λs
∂ε

= q1 =
1

h11h22 − h12h21
(−h22g1 + h12g2) (9.105)

∂∆λc
∂ε

= q2 =
1

h11h22 − h12h21
(h21g1 − h11g2) (9.106)

Finally, introducing the vectors q1, q2 into Eqs. (9.75) and (9.80) gives Eq. (9.65) in the form

D = E + A + B + C (9.107)

where

A = 9a1mm
T (9.108)

B = (3a2m+ s1)qT1 (9.109)

C = (3a3m+ s2)qT2 (9.110)
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• Only the shear (Matsuoka-Nakai) yield surface is active

We start from Eq. (9.98) and set
∂∆λc
∂ε

= 0. This gives

dr2

dε
= g1 + h11

∂∆λs
∂ε

= 0 −→ ∂∆λs
∂ε

= − 1

h11
g1 = q1 (9.111)

Substituting back to Eqs. (9.75) and (9.80) allows us to write Eq. (9.65) as

D = E + A + B (9.112)

where the matrices A and B are provided by Eqs. (9.108) and (9.109), respectively.

• Only the cap yield surface is active

The procedure is similar to the previous case but here we adopt Eq. (9.103) and set
∂∆λs
∂ε

= 0

instead to get

dr2

dε
= g2 + h22

∂∆λc
∂ε

= 0 −→ ∂∆λc
∂ε

= − 1

h22
g2 = q2 (9.113)

After substituting back to Eqs. (9.75) and (9.80) we now receive Eq. (9.65) in the form

D = E + A + C (9.114)

where the matrices A and C are provided by Eqs. (9.108) and (9.110), respectively.

9.4 Note on numerical implementation

Similarly to all plasticity models that include the hardening cap yield surface the issue of initial
preconsolidation pressure pinc must be addressed. Because in the Soft soil model the cap yield surface
closely resembles the formulation of the subcritical (compression) part of the Generalized cam clay
model, this step is fully compatible with the discussion presented in Section 11.4 including the initial
value of the bulk modulus Kin = K0 for low initial stresses as this parameter is not included in the
standard material setting of the Soft soil model. The only difference is thus the present formulation
of the cap yield surface via Eq. (9.7) which, unlike the Generalized Cam-clay model, allows for a
non-zero cohesion c. Using the notation from Section 11.4 the initial preconsolidation pressure pinc
then becomes

pinc = − (J
b
)2

χ2(θ
b
, ϕ)M2σ̂m(σam)

− σam (9.115)

Because of apex singularity the need for the solution of apex problem may arise for a certain
inadmissible stress states. Observing a close similarity of the present plastic potential surface given
by Eq. (9.9) with the one adopted in the Drucker-Prager model, recall Eq. (4.6), allows us to follow
the discussion presented in Section 4.4. An indicator that calls for the solution of the apex problem
is now given by

Mψ
J tr

Gi
− 1

Ki

(
σtrm − c cotϕ

)
< 0 (9.116)

where Gi,Ki are evaluated at the beginning of the new load increment.

9.5 Testing implementation with simple laboratory tests

Figure 9.3 shows simple finite element models to simulate an oedometric, isotropic, and triaxial com-
pression test. The purpose of this section is to address an influence of the initial load step size when
starting from zero initial stresses and some specific features related to the application of Soft soil
model in drained triaxial compression. While the former issue is thoroughly examined with reference
to the Modified Cam-clay model in Section 11.5.1, the latter one takes us back to the performance
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σ1 = σ2 > σ3 σ1 = σ2 = σ3
σ1 = σ2 > σ3

(a) (b) (c)

Figure 9.3: Computational models of simple laboratory tests: a) one-dimensional compression (oe-
dometer), b) isotropic compression, c) drained triaxial compression.

Table 9.5: Material properties of Soft soil and Modified Cam-clay model used in numerical simulations

ν κ λ ein Mcs = M c ϕ [◦] KNC
0

0.26 0.025 0.181 1.67 1.146 0 20 0.4

of Drucker-Prager model discussed in Section 4.6.2. Table 9.5 stores the material parameters of the
Soft soil and the Modified Cam-clay model employed in the presented simulations. The slope of the
critical state line Mcs used in Eq. (11.17) was calculated on the basis of Eq. (9.1).

The results of one-dimensional compression test are plotted in Fig. 9.4(a). Because starting from
zero initial stress the initial stiffness given by

K0 =
1

κ∗
, recall Eq. (11.136) (9.117)

is relatively small yielding a large increment of strain for a relatively large initial load step (ζ = 0.1) as
observed in the black and red lines in 9.4(a). Reducing the initial load step size (ζ = 0.001)provides a
considerably improved prediction as indicated by the blue line in 9.4(a). A useful option how to arrive
at realistic predictions with a relatively low number of load steps by gradually increasing the load step
size ζ controlled by the minimum number of required iterations is addressed also in Section 11.5.1, see
Fig. 11.7(b) in particular.
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Figure 9.4: a) One-dimensional compression (oedometric) test: compering predictions provided by
the Soft soil and Modified Cam-clay model, b) Isotropic compression (stage 1) followed by triaxial
compression (stage 2)

Additionally, Figure 9.4(a) compares the predictions derived by the Soft soil (SS) and the Modified
Cam-clay (MCC) models. Remember that in triaxial compression the Modified and Generalized Cam-
clay models provide the same predictions because the LMN parameter χ in Eqs. (9.7) and (12.3) equals
to 1 so the Lode angle dependence is irrelevant. Point out that with the Soft soil model both the
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Matsuoka-Nakai and cap yield surfaces are simultaneously active during the loading stage so the stress
point moves with the intersection of the two surfaces. This results in some differences in the predicted
stress-strain curves. Upon unloading the stress point stays within the elastic region of the Modified
Cam-clay model so upon unloading the response predicted by the MCC model is purely nonlinear
elastic. On the contrary, the fact that at the end of unloading stage the response changes from triaxial
compression to triaxial extension turns on the Matsuoka-Nakai yield surface thus generating additional
plastic strains. This is demonstrated by an increased nonlinearity in the derived stress-strain curve,
see, e.g., the black line in Fig. 9.4(a).

The second example is concerned with the performance of Soft soil model in drained triaxial
compression. To this end, we would like to brink the reader attention to the discussion presented
already in Section 4.6.2 for the elastic-perfectly plastic Drucker-Prager model.

Figure 9.5: Drained triaxial compression: initial conditions and loading path identifying the elastic
limit state associated with the Matsuoka-Nakai yield surface and the critical state predicted by the
Modified Cam-clay model

Figure 9.5 shows the loading path in triaxial compression relating the increment of deviatoric stress
∆J and the mean effective stress ∆σm as ∆J = −

√
3∆σm. Also recall that the Matsuoka-Nakai yield

surface in the Soft soil model grounds upon perfected plasticity so only the cap yield surface may
expand (harden) with increasing volumetric plastic strains. In the first stage of loading, the case of
isotropic compression, the cap yield surface thus gradually expands from pc = 1 kPa to pinc = 50 kPa
owing to the prescribed confining pressure of 50 kPa. The corresponding stress-strain curve appears as
the black solid line in Fig. 9.4(b). In Fig. 9.5 the end point on this curve is manifested by the smallest
ellipse being the initial cap yield surface prior to triaxial compression. In the second loading stage,
the case of traxial compression, the stress point moves along the set loading path while the cap yield
surface continues to expand until reaching the common point of intersection with the Matsuoka-Nakai
yield surface. The associated stress-strain curves plot as the solid and dashed red curves in 9.4(b) with
the star symbol identifying the common point of intersection of the two yield surfaces. We denote
this point as the elastic limit given by the Matsuoka-Nakai yield surface to draw similarity with the
Drucker-Prager model. We may now adopt Eq. (4.56) to give the associated stresses Je = 30.03 kPa
and σem = −67.34 kPa. The corresponding preconsolidation pressure is denoted as pec in Fig. 9.5. Given
the prescribed loading path and no hardening of the Matsuoka-Nakai yield the simulation carried out
with the Soft soil model is terminated as the stress point cannot move beyond this limit stress state. It
is worth mentioning that turning off the Matsuoka-Nakai yield surface, i.e., using purely the Modified
Cam-clay model allows us to pass this point until arriving at the critical state predicted by the MCC
model manifested by zero increments of plastic volumetric strains. This final cap yield surface is
labeled with the preconsolidation pressure pcsc in Fig. 9.5. The corresponding stress strain curves are
plotted as the blue solid and dashed curves in Fig. 9.4(b).
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9.6 Soft soil model in stability analysis

Similarly to what was mentioned in Section 8.8 with reference to the Hardening soil model the Soft soil
model may appear in stability analysis when performing this analysis within a given calculation stage
only. In this case the cap yield surface is simply turned off so the plastic response is driven purely
by the Matsuoka-Nakai shear yield surface. Standard shear strength parameters reduction procedure
in stability analysis implemented in GEO5 FEM software is thus readily available with no additional
actions required.
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Chapter 10

Modified Mohr-Coulomb model

New version of the Modified Mohr-Coulomb (MMC) model is under current development and will
appear in fall 2025. Apart from currently available features, the MCM model will allow to bound the
plastic response along the hydrostatic axis by introducing a compression cap. In order to unite imple-
mentation of all model, the van Eckelen type of smoothing of the irregular Mohr-Coulomb hexagon will
be replaced by the Matsuoka-Nakai yield surface. Basic information can be found in online manual.
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Chapter 11

Modified Cam-clay model

The model belongs to the class of critical state a models and was proposed by Roscoe and his co-
workers [68], who in an attempt of confirming the original findings of Hvorslev [38], introduced the
concept of a critical void ratio state at which an unlimited deformation can take place without altering
the current stress and void ratio state. Within this behavioral framework a strain-dependent yield
surface controlling the progressive yielding of a material sample can be defined. Regardless of their
point of departure all material points moving along a certain stress path with a progressively evolving
yield surface eventually end at a unique critical void ratio line that belongs to a certain unique state
boundary surface (SBS) when plotted in J − σm − e space [68], where J is defined as the square root
of the second invariant of deviatoric stress, σm is the mean effective stress and e stands for the void
ratio, recall Chapter 1. Such a surface appears in Fig. 11.1 where CSL and NCL stand for the critical
state line and normal consolidation line, respectively.

Figure 11.1: State boundary surface

The corresponding yield surface appears in Fig. 11.2. As suggested in Fig. 11.2(b) the yield
surface may naturally expand (hardening) or shrink (softening) with the evolution of preconsolidation
pressure pc representing the maximum pressure a soil has witnessed ever before providing the isotropic
consolidation conditions apply, e.g. setting K0 = 1 in K0 procedure described in Section 1.10.2. When
projected to a deviatoric plane, the yield surface plots as a circle similarly to the Drucker-Prager model
described in Chapter 4.

Table 11.1 provides the list of material parameters of the Modified Cam-clay model.

11.1 Formulation of Modified Cam-clay yield criterion

To begin with, consider projection of a state boundary surface into e− ln(−σm). Assuming isotropic
loading conditions, J = 0 (isotropic compression), allows schematic projection of all points on this
surface into a domain bounded by the σm − e axis and the virgin or normal consolidation line
(isotropic NCL) plotted in Fig. 11.3(a). As suggested in [68] this line represents a loosest packing
or greatest void ratio for any given value of σm stress. Although theoretically acceptable (e = 0)
a minimum value emin 6= 0 of void ratio that the soil can experience is usually assumed. From the
mathematical formulation the maximum value of void ratio e0 will be hereafter associated with a
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Figure 11.2: Modified Cam-clay yield surface: a) plot in effective principal stress space, b) plot in
meridian plane, c) plot in deviatoric plane

Table 11.1: Parameters of Modified Cam-clay plasticity model

Symbol Units Description

κ [-] Slope of swelling line (swelling modulus)
λ [-] Slope of normal consolidation line (isotropic NCL, compression modulus)
e0 [-] Maximum void ratio
ν [-] Poisson’s ratio
Mcs [-] Slope of critical state line

OCR [-] Overconsolidation ratio
POP [kPa] Preoverburden pressure
α [1/◦C] Coefficient of thermal expansion

ϕcs [◦] Critical state friction angle
pc [kPa] Preconsolidation pressure (pminc = 1kPa), calculated

stress level |σm| = 1, Fig. 11.3(a). For a remoulded clay, the soil initially moves down the virgin
consolidation line. When unloaded at a certain level of mean effective stress, e.g. p1

c , it moves up
the so called swelling line . When reloaded, it moves along the same line until it rejoins the normal
consolidation line and when stressed even further, it follows this line again.
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Figure 11.3: a,b) Behavior under isotropic compression, c) Initial state of stress
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11.1.1 Constitutive law

Notice that both lines in Fig. 11.3(a) are assumed to be straight in e− ln(−σm) space. Introducing the
so called compression and swelling moduli λ, κ, respectively, renders the following equations defining
the two lines

e = e0 − λ ln(−σm) – virgin consolidation line (11.1)

e = ei − κ ln(−σm) – swelling line, i = 1, 2, ... (11.2)

While the values of e0, κ, λ characterize a particular type of clayey soil, the value of initial void ratio ei

is linked to a specific swelling line, i.e., to a specific state of soil. At this point it appears useful to recall
that in GEO5 FEM the zero state of deformation is assumed at the end of the 1st calculation stage,
which in turn is expected to provide the state of geostatic or initial stress σa. As a point of departure
in defining the evolution of void ratio it thus becomes desirable to identify the associated void ratio ea

in Fig. 11.3(b), which will be considered the initial void ratio ein henceforth, see also Section 1.11. To
proceed, imagine that the initial stress of a normally consolidated soil σam in Fig. 11.3(b) satisfies the
yield condition, see also discussion in Section 11.4 addressing numerical implementation with reference
to an initial stiffness and preconsolidation pressure. To arrive at a such stress state, we consider an
illustrative example being represented by the obb̄ loading path in Fig. 11.3(c), where the specimen is
first consolidated isotropically to point b and then loaded in triaxial compression to arrive at point
b̄. From void ratio point of view, such a stress state can be reached following the oaāb̄ loading path,
i.e., isotropic loading to point a assuming normal consolidation - isotropic elastic unloading along the
κ-line to arrive at point ā representing essentially a certain overconsolidated stress state - shearing to
point b̄. The associated initial void ratio ea is then provided by

ea = ein = e0 + (κ− λ) ln(pac )− κ ln(−σam) (11.3)

The above procedure is thus applicable to both normally consolidated (the current stress point sits
on the initial yield surface) and overconsolidated (the current stress point is found inside the initial
yield surface, e.g., point ¯̄b in Fig. 11.1.1(c)) soils.

From a mathematical formulation it appears more convenient (assuming incompressibility of indi-
vidual grains) to re-plot Fig. 11.3(a) in εv − ln(−σm) space, εv being the total volumetric strain, see
Figs. 11.4.
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Figure 11.4: a) Behavior under isotropic compression, b) Elastic and plastic part of total strain
increment

Note that the rate form of Eq. (11.2) is given by

ė = −κσ̇m
σm

(11.4)

With reference to Eq. (1.75) and Fig. 11.4(b) we get the rate of elastic strain as

ε̇elv = − κ

1 + e

σ̇m
σm

= −κ∗ σ̇m
σm

(11.5)
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Accepting linearization (1.77) provides

ε̇elv =
ė

1 + ein
(11.6)

so that

κ∗ =
κ

1 + ein
and similarly λ∗ =

λ

1 + ein
(11.7)

In summary, the rate form of a constitutive law when making difference between primary loading and
unloading-reloading is given by

σ̇m = −σm
λ∗
ε̇v – primary loading (11.8)

σ̇m = −σm
κ∗
ε̇elv – unloading-reloading (11.9)

(11.10)

When moving along the λ−line the material point experiences plastic loading while elastic response
is assumed inside the domain. During plastic loading the total volumetric strain increment ∆εv can
be split into elastic and plastic parts. With reference to Fig. 11.4(b) we get

∆εv = −λ∗
[
ln(pi+1

c )− ln(pic)
]

(11.11)

∆εelv = −κ∗
[
ln(pi+1

c )− ln(pic)
]

(11.12)

∆εplv = −(λ∗ − κ∗)
[
ln(pi+1

c )− ln(pic)
]

(11.13)

or in the rate form

ε̇plv = −(λ∗ − κ∗) ṗc
pc

(11.14)

Rearranging Eq. (11.13) then provides the evolution law for preconsolidation pressure pc during pri-
mary loading in the form

pi+1
c = pic exp

[
−∆εplv
λ∗ − κ∗

]
(11.15)

Eq. (11.15) thus gives a form of isotropic hardening/softening law for primary loading. During elastic
unloading or reloading the preconsolidation pressure pc remains constant. In analogy with Eq. (11.15)
the evolution of mean effective stress σm is provided by

σi+1
m = σim exp

[
−∆εelv
κ∗

]
(11.16)

which suggests a nonlinear elastic response.

11.1.2 Yield surface

Assuming a constant value of the void ratio e and following the work of Roscoe and Burland [67] the
projection of the state boundary surface in J − σm space is plotted as an ellipse given by

fMCC =
J2

M2
cs

+ σ2
m + σmpc = 0 (11.17)

where pc is the current value of the preconsolidation pressure and Mcs is the slope of critical state
line, see Fig. 11.2(a). Note that Eq. (11.17) represents a yield surface of the Modified Cam-clay model
proposed in [67]. Its main advantage, apart from the ability to describe (at least qualitatively) the
real response of clays (particularly those found in lightly overconsolidated state), is the simplicity in
numerical implementation. In its original format the full surface is a surface of revolution about the
J-axis thus giving a circular yield surface in the deviatoric plane. The allowable region for the material
point to undergo only an elastic response depends solely on the value of Mcs, which is assumed to be
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constant depending on the value of critical state angle ϕcs. As for the Drucker-Prager model it ranges
between the values

M+30◦
cs (ϕcs) =

2
√

3 sinϕcs
3− sinϕcs

for triaxial compression (11.18)

M−30◦
cs (ϕcs) =

2
√

3 sinϕcs
3 + sinϕcs

for triaxial extension (11.19)

It should be mentioned that the GEO5 FEM software adopts the first option, i.e., Mcs = M+30◦
cs (ϕcs).

With reference to Eq. (11.15) the size of the ellipse changes depending on the current value of the
preconsolidation pressure pc. For the material found on the subcritical side the yield surface expands
with the direction of plastic strain normal to the yield surface (associated plasticity is assumed) until
the point of intersection with the critical state line is reached. At this point (point 3 in Fig. 11.2(b)),
the normal to the yield surface is vertical thus no plastic volumetric strain is predicted at this point.
Hence, all the plastic strain is distortional. When further sheared under constant volume, the material
point behaves as perfectly plastic with no change in stress. Such a response is consistent with what
is observed in reality. When on the supercritical side, the constitutive model predicts softening. The
amount of softening, however, is too excessive when compared to real soil behavior. In addition,
for highly overconsolidated soils the model significantly overestimates the failure stresses. These
drawbacks observed by many investigators led to the development of series of cam clay formulations
in an attempt to modify the prediction of the clay response on the supercritical side. Mostly, combined
yield surfaces were proposed. An overview of several such models is presented in [65]. Another possible
modification is suggested in Chapter 12 describing the Generalized Cam-clay model.

11.2 Stress return mapping

With reference to Section 1.4 the yield function in Eq. (11.17) can be rewritten as

fMCC =
J2

M2
cs

+ σ2
m + σmpc =

1

2

sTQ−1s

M2
cs

+ σ2
m + σmpc (11.20)

=
1

2

sTQ−1s

M2
cs

+ (mTσ)2 +mTσpc =
1

2

σTPσ

M2
cs

+ (mTσ)2 +mTσpc

Because the flow rule is assumed to obey associated plasticity (fMCC = gMCC) we get plastic strain
increments in the form

∆εplv = ∆λ
∂fMCC

∂σm
= ∆λ(2σm + pc) (11.21)

∆epl = ∆λ
∂fMCC

∂s
= ∆λ

Q−1s

M2
cs

= ∆λ
Pσ

M2
cs

(11.22)

∆εpl = ∆λ
∂fMCC

∂σ
= ∆λ

[
Pσ

M2
cs

+ (2σm + pc)m

]
(11.23)

where ∆λ represents an increment of plastic multiplier. Starting from the above definitions the
formulation of a stress return algorithm may proceed along two pathways:

• Variable elasticity return

• Constant elasticity return (currently implemented in GEO5 FEM)

11.2.1 Variable elasticity return

Recall Eq. (11.16) and write the increment of effective mean stress as

∆σm = σi+1
m − σim = σim

(
exp

[
−∆εelv
κ∗

]
− 1

)
= Ks∆ε

el
v (11.24)
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where superscripts (i) and (i+ 1) represent to successive load steps. Noting that

∆εelv = ∆εv −∆λ(2σi+1
m + pi+1

c ) (11.25)

provides the secant bulk modulus Ks as a function of the current stress state in the form

Ks = σim

exp

(
−∆εv −∆λ(2σi+1

m + pi+1
c )

κ∗

)
− 1

∆εv −∆λ(2σi+1
m + pi+1

c )
= σim

exp

[
−∆εelv

κ∗

]
− 1

∆εelv
(11.26)

The secant shear modulus Gs is usually written assuming a constant Poisson ratio ν as, see Section 1.8,

Gs =
3(1− 2ν)

2(1 + ν)
Ks (11.27)

Using a standard predictor corrector procedure described in Section 17.2.9 together with Eq. (11.22),
the deviatoric stress at the end of the current load increment is provided by

si+1 =
si + 2GsQ∆e

1 +
2Gs∆λ

M2
cs

=
str

1 +
2Gs∆λ

M2
cs

(11.28)

where str(Gs) stands for the trial deviatoric stress. Adopting Eq. (1.24) finally gives

J i+1 =
J tr

1 +
2Gs∆λ

M2
cs

(11.29)

where

J tr(Gs) =

√
1

2
(str)TQ−1str =

[
J i2 + 2Gs∆e

Tsi + (Gs)
2∆E2

d

] 1
2

(11.30)

J i2 =
1

2
(si)TQ−1si (11.31)

∆Ed =
√

2∆eTQ∆e (11.32)

It is evident that arriving at deviatoric stresses at the end of the (i + 1) load step requires the
knowledge of the mean stress σi+1

m (Eq. (11.16)), the preconsolidation pressure pi+1
c (Eq. (11.15)), and

the increment of plastic multiplier ∆λ. To this end, the following set of residuals must be satisfied
simultaneously

r =



σi+1
m − σim exp

[
−∆εelv

κ∗

]
pi+1
c − pic exp

[
− ∆λ

λ∗ − κ∗
(
2σi+1

m + pi+1
c

)]
(
J i+1

)2
M2
cs

+
(
σi+1
m

)2
+ σi+1

m pi+1
c


= r(a(ε), ε) (11.33)

where the vector of primary variable a is reads

aT = {σi+1
m , pi+1

c ,∆λ} (11.34)

Such a system of implicit equations is solved with the help of Newton-Raphson method

ai+1
j+1 = ai+1

j −H−1rj (11.35)

supplemented by the initial condition

(ai+1
0 )T = {σtrm, pic, 0} (11.36)

rT0 = {0, 0, (J tr)2

M2
cs

+ (σtrm)2 + σtrmp
i
c} (11.37)
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With reference to Eq. (11.28) the Jacobian matrix H is then written as

H =
∂r

∂a
+
∂r

∂s

∂s

∂a
=



dr1

dσm

dr1

dpc

dr1

d∆λ

dr2

dσm

dr2

dpc

dr2

d∆λ

dr3

dσm

dr3

dpc

dr3

d∆λ


(11.38)

The components of matrix H are

• H1i

dr1

dσm
=

∂r1

∂σm
= 1− 2∆λ

κ∗
σm (11.39)

dr1

dpc
=

∂r1

∂pc
= −∆λ

κ∗
σm (11.40)

dr1

d∆λ
=

∂r1

∂∆λ
= −2σi+1

m + pi+1
c

κ∗
σm (11.41)

• H2i

dr2

dσm
=

∂r2

∂σm
=

2∆λ

λ∗ − κ∗
pc (11.42)

dr2

dpc
=

∂r2

∂pc
= 1 +

∆λ

λ∗ − κ∗
pc (11.43)

dr2

d∆λ
=

∂r2

∂∆λ
=

2σi+1
m + pi+1

c

λ∗ − κ∗
pc (11.44)

• H3i

dr3

dσm
=

∂r3

∂σm
+

(
∂r3

∂s

)T ∂s

∂Gs

∂Gs
∂σm

(11.45)

=
∂r3

∂σm
+
∂r3

∂J

∂J

∂Gs

∂Gs
∂σm

(11.46)

dr3

dpc
=

∂r3

∂pc
+

(
∂r3

∂s

)T ∂s

∂Gs

∂Gs
∂pc

(11.47)

=
∂r3

∂pc
+
∂r3

∂J

∂J

∂Gs

∂Gs
∂pc

(11.48)

dr3

d∆λ
=

(
∂r3

∂s

)T( ∂s

∂∆λ
+

∂s

∂Gs

∂Gs
∂∆λ

)
(11.49)

=
∂r3

∂J

(
∂J

∂∆λ
+

∂J

∂Gs

∂Gs
∂∆λ

)
(11.50)

where

σm = σim exp

[
−∆εelv

κ∗

]
(11.51)

pc = pic exp

[
− ∆εplv
λ∗ − κ∗

]
= pic exp

[
− ∆λ

λ∗ − κ∗
(
2σi+1

m + pi+1
c

)]
(11.52)
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with partial derivatives in vector H3i given by

∂r3

∂σm
= 2σi+1

m + pi+1
c (11.53)

∂r3

∂pc
= σi+1

m (11.54)

∂r3

∂s
=

Q−1si+1

M2
cs

(11.55)

∂s

∂∆λ
= − si + 2GsQ∆e(

1 +
2Gs∆λ

M2
cs

)2

2Gs
M2
cs

= − s

1 +
2Gs∆λ

M2
cs

2Gs
M2
cs

(11.56)

∂s

∂Gs
=

2Q∆e− 2∆λ

M2
cs

si(
1 +

2Gs∆λ

M2
cs

)2 =

2Q∆e− 2∆λ

M2
cs

s

1 +
2Gs∆λ

M2
cs

(11.57)

∂r3

∂J
=

2J i+1

M2
cs

(11.58)

∂J

∂∆λ
= − J tr(

1 +
2Gs∆λ

M2
cs

)2

2Gs
M2
cs

= − J

1 +
2Gs∆λ

M2
cs

2Gs
M2
cs

(11.59)

∂J

∂Gs
=

∂J tr

∂Gs

(
1 +

2Gs∆λ

M2
cs

)
− J tr 2∆λ

M2
cs(

1 +
2Gs∆λ

M2
cs

)2 =

∂J tr

∂Gs
− J 2∆λ

M2
cs

1 +
2Gs∆λ

M2
cs

(11.60)

∂J tr

∂Gs
=

1

J tr

(
∆eTsi +Gs∆E

2
d

)
(11.61)

∂Gs
∂σm

= ζ
∂Ks

∂∆εelv

∂∆εelv
∂σm

= −2∆λζ
∂Ks

∂∆εelv
(11.62)

∂Gs
∂pc

= ζ
∂Ks

∂∆εelv

∂∆εelv
∂pc

= −∆λζ
∂Ks

∂∆εelv
(11.63)

∂Gs
∂∆λ

= ζ
∂Ks

∂∆εelv

∂∆εelv
∂pc

= −(2σi+1
m + pi+1

c )ζ
∂Ks

∂∆εelv
(11.64)

∂Ks

∂∆εelv
= −Ksκ

∗ + σm
κ∗∆εelv

(11.65)
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11.2.2 Constant elasticity return

When keeping the bulk modulus constant within a given load step, i.e., Ks = Ki
s = −σ

i
m

κ∗
, we arrive

at a simplified version of Eq. (11.16) in the form

σi+1
m = σim +Ki

s(∆εv −∆εplv ) = σtrm −Ki
s∆ε

pl
v (11.66)

Next, substitute from Eq. (11.21) into Eq. (11.66) and suitably rearrange to get

σi+1
m =

σtrm −Ki
s∆λp

i+1
c

1 + 2Ki
s∆λ

=
σim +Ki

s(∆εv −∆λpi+1
c )

1 + 2Ki
s∆λ

(11.67)

Introducing Eq. (11.67) into Eq. (11.15) or Eq. (11.52) gives the preconsolidation pressure pi+1
c as

pi+1
c = pic exp

[
−∆λ(2σi+1

m + pi+1
c )

λ∗ − κ∗

]
= pic exp

[
− ∆λ

λ∗ − κ∗
2σtrm + pi+1

c

1 + 2Ki
s∆λ

]
= pic exp

[
− ∆λ

λ∗ − κ∗
2(σim +Ki

s∆εv) + pi+1
c

1 + 2Ki
s∆λ

]
(11.68)

Similar procedure yielding Eq. (11.67) can be exploited to provide the deviatoric stress si+1

si+1 =
str

1 +
2Gis∆λ

M2
cs

=
si + 2GisQ∆e

1 +
2Gis∆λ

M2
cs

(11.69)

and subsequently

J i+1 =
J tr

1 +
2Gis∆λ

M2
cs

(11.70)

Therefore, σi+1
m = σi+1

m (pi+1
c ,∆λ), si+1 = si+1(pi+1

c ,∆λ), J i+1 = J i+1(pi+1
c ,∆λ) are functions pi+1

c and
∆λ only. The latter two variables can be arranged in the vector of primary variables a

aT = {pi+1
c ,∆λ} (11.71)

They follow from the solution of the following two residuals

r =


pi+1
c − pic exp

[
− ∆λ

λ∗ − κ∗
2(σim +Ki

s∆εv) + pi+1
c

1 + 2Ki
s∆λ

]
(
J i+1

)2
M2
cs

+
(
σi+1
m

)2
+ σi+1

m pi+1
c

 (11.72)

employing the Newton-Raphson scheme (11.35) with

(ai+1
0 )T = {pic, 0} (11.73)

r0
T = {0, (J tr)2

M2
cs

+ (σtrm)2 + σtrmp
i
c} (11.74)

The 2× 2 Jacobian matrix H now receives the form

H =
∂r

∂a
+
∂r

∂J

(
∂J

∂a

)T

+
∂r

∂σm

(
∂σm
∂a

)T

=


dr1

dpc

dr1

d∆λ

dr2

dpc

dr2

d∆λ





144 CHAPTER 11. MODIFIED CAM-CLAY MATERIAL MODEL

where

• H1i

dr1

dpc
= 1 +

pc
λ∗ − κ∗

∆λ

1 + 2Ki
s∆λ

(11.75)

dr1

d∆λ
=

pc
λ∗ − κ∗

2σtrm + pi+1
c

(1 + 2Ki
s∆λ)2 =

dpc
λ∗ − κ∗

2σi+1
m + pi+1

c

1 + 2Ki
s∆λ

(11.76)

• H2i

dr2

dpc
=

∂fMCC

∂pc
+
∂fMCC

∂σm

∂σm
∂pc

= σi+1
m − (2σi+1

m + pi+1
c )

Ki
s∆λ

1 + 2Ki
s∆λ

(11.77)

dr2

d∆λ
=

∂fMCC

∂J

∂J

∂∆λ
+
∂fMCC

∂σm

∂σm
∂∆λ

(11.78)

∂fMCC

∂J

∂J

∂∆λ
= −2J i+1

M2
cs

J tr
2Gis
M2
cs(

1 +
2Gis∆λ

M2
cs

)2 = − 4Gis(J
i+1)2

M2
cs(M

2
cs + 2Gis∆λ)

(11.79)

∂fMCC

∂σm

∂σm
∂∆λ

= −(2σi+1
m + pi+1

c )
Ki
s(2σ

tr
m + pi+1

c )

(1 + 2Ki
s∆λ)2 = −Ki

s

(2σi+1
m + pi+1

c )2

1 + 2Ki
s∆λ

(11.80)

where we again introduced

pc = pic exp

[
− ∆λ

λ∗ − κ∗
2(σim +Ki

s∆εv) + pi+1
c

1 + 2Ki
s∆λ

]
(11.81)

It is worth to remember that all derivatives are evaluated at the end of the (i+ 1) load step, i.e., they
are taken with respect to pi+1

c , σi+1
m , si+1, and J i+1.

11.3 Algorithmic tangent stiffness matrix

Similarly to Section 4.3 we begin by writing the algorithmic tangent stiffness matrix D as

D =
dσi+1

dεi+1
= 3m

(
dσi+1

m

dεi+1

)T

+
dsi+1

dεi+1
(11.82)

and consider the two stress return mapping approaches described in the above two sections separately.
Taking into account the last sentence in the previous section we drop the superscripts (i+ 1) to raise

readability, so for example
dσ

dε
=

dσi+1

dεi+1
.

11.3.1 Matrix D based on variable elasticity stress return

The formulation proceeds closely in the footsteps of [14] with some minor simplifications attributed
to omitting the residuum g2 in Eq. (3.13b).

Given Eqs. (11.16) and (11.15) we first write

dσm
dε

=
∂σm
∂∆εelv

d∆εelv
dε

= −σm
κ∗

d∆εelv
dε

= σ̃m
d∆εelv

dε

= σ̃m

[
∂∆εelv
∂ε

−∆λ

(
2

dσm
dε

+
dpc
dε

)
− (2σi+1

m + pi+1
c )

∂∆λ

∂ε

]
(11.83)

dpc
dε

= − pi+1
c

λ∗ − κ∗

[
∆λ

(
2

dσm
dε

+
dpc
dε

)
+ (2σi+1

m + pi+1
c )

∂∆λ

∂ε

]
(11.84)
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Next, rearrange Eq. (11.84) to get

dpc
dε

= − 2∆λpi+1
c

(λ∗ − κ∗) + ∆λpi+1
c

dσm
dε
− pi+1

c (2σi+1
m + pi+1

c )

(λ∗ − κ∗) + ∆λpi+1
c

∂∆λ

∂ε
(11.85)

Substituting from Eq. (11.85) into Eq. (11.83) and rearranging provides

dσm
dε

= a13m+ a2
∂∆λ

∂ε
(11.86)

a1 =
σ̃m
a

(
1 +

∆λpi+1
c

λ∗ − κ∗

)
= σ̃m

(
1− 2∆λσ̃m

a

)
(11.87)

a2 = − σ̃m
a

(
2σi+1

m + pi+1
c

)
(11.88)

a = 1 +
∆λpi+1

c

λ∗ − κ∗
+ 2∆λσ̃m (11.89)

Similarly, substituting from Eq. (11.86) into Eq. (11.85) and rearranging yields

dpc
dε

= a33m+ a4
∂∆λ

∂εi+1
(11.90)

a3 = − σ̃m
a

2∆λpi+1
c

λ∗ − κ∗
(11.91)

a4 = −p
i+1
c

a

2σi+1
m + pi+1

c

λ∗ − κ∗
(11.92)

With reference to Eq. (11.28) the second term in Eq. (11.82) becomes

ds

dε
=

∂s

∂∆e

∂∆e

∂ε
+

∂s

∂∆λ

(
∂∆λ

∂ε

)T

+
∂s

∂Gs

∂Gs
∂∆εelv

(
d∆εelv

dε

)T

(11.93)

= E +
∂s

∂∆λ

(
∂∆λ

∂ε

)T

+ µ

(
d∆εelv

dε

)T

(11.94)

The partial derivatives appearing in Eq. (11.94) are

∂s

∂∆e
=

2GsQ

1 +
2Gs∆λ

M2
cs

(11.95)

∂s

∂∆λ
= − si + 2Q∆e(

1 +
2Gs∆λ

M2
cs

)2

2Gs
M2
cs

= − s

1 +
2Gs∆λ

M2
cs

2Gs
M2
cs

, Eq. (11.56) (11.96)

∂s

∂Gs
=

2Q∆e− 2∆λ

M2
cs

si(
1 +

2Gs∆λ

M2
cs

)2 =

2Q∆e− 2∆λ

M2
cs

s

1 +
2Gs∆λ

M2
cs

, Eq. (11.57) (11.97)

∂Gs
∂∆εelv

= ζ
∂Ks

∂∆εelv
= − ζ

∆εelv

(
Ks +

σi+1
m

κ∗

)
(11.98)

∂∆e

∂εi+1
= PQ (11.99)

With reference to Eq. (11.83) the last total derivative in Eq. (11.82) receives the form

d∆εelv
dε

=
∂∆εelv
∂ε

−∆λ

(
2

dσm
dε

+
dpc
dε

)
− (2σi+1

m + pi+1
c )

∂∆λ

∂ε
(11.100)
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which upon substituting from Eqs. (11.86) and (11.90) rewrites as

d∆εelv
dε

= b13m+ b2
∂∆λ

∂εi+1
(11.101)

b1 = 1−∆λ(2a1 + a3) =
a1

σ̃m
= 1− 2∆λσ̃m

a
(11.102)

b2 = −∆λ(2a2 + a4)− (2σi+1
m + pi+1

c ) =
a2

σ̃m
= −1

a

(
2σi+1

m + pi+1
c

)
(11.103)

It now remains to determine the term
∂∆λ

∂ε
. Following [14] we employ the consistency condition

dfMCC

dε
=

[
ds

dε

]T ∂fMCC

∂s
+ (2σi+1

m + pi+1
c )

dσm
dε

+ σi+1
m

dpc
dε

= 0 (11.104)

where the first term on the on the right hand side of Eq. (11.104) is provided by (recall Eq. (11.94))(
dfMCC

dε

)
1

=

[(
∂fMCC

∂s

)T
ds

dε

]T
=

[
ds

dε

]T ∂fMCC

∂s
=

=

[
ET +

∂∆λ

∂ε

(
∂s

∂∆λ

)T

+
d∆εelv

dε
µT

]
∂fMCC

∂s
=

=

[
ET +

∂∆λ

∂ε

(
∂s

∂∆λ

)T

+

(
b13m+ b2

∂∆λ

∂ε

)
µT

]
∂fMCC

∂s
(11.105)

Next, substitute from Eqs. (11.86), (11.90) and (11.105) into Eq. (11.104) to get

dfMCC

dε
=

[
ET +

∂∆λ

∂ε

(
∂s

∂∆λ

)T

+

(
b13m+ b2

∂∆λ

∂ε

)
µT

]
∂fMCC

∂s
+

+ (2σi+1
m + pi+1

c )

(
a13m+ a2

∂∆λ

∂ε

)
+ σi+1

m

(
a33m+ a4

∂∆λ

∂ε

)
(11.106)

= 0

Solving Eq. (11.106) for
∂∆λ

∂ε
finally gives

∂∆λ

∂ε
=

1

c
(f + c13m) (11.107)

f =
[
ET + b13mµT

] ∂fMCC

∂s
,

∂fMCC

∂s
=

1

M2
cs

Q−1si+1 =
1

M2
cs

Pσi+1 (11.108)

c1 = a1(2σi+1
m + pi+1

c ) + a3σ
i+1
m (11.109)

c = −

[(
∂s

∂∆λ

)T

+ b2µ
T

]
∂fMCC

∂s
− a2(2σi+1

m + pi+1
c )− a4σ

i+1
m (11.110)

Introducing Eq. (11.107) back into Eqs. (11.101), (11.94), (11.90), and (11.86) suggests

dσm
dε

=
(
a1 +

a2c1

c

)
3m+

a2

c
f (11.111)

ds

dε
= E +

1

c

(
∂s

∂∆λ
+ b2µ

)
fT +

[
c1

c

∂s

∂∆λ
+

(
b1 +

b2c1

c

)
µ

]
3mT (11.112)

which when substituted back into Eq. (11.82) finally yields the algorithmic tangent stiffness matrix D
as (for

∂s

∂∆λ
refer to Eq. (11.56))

D = E +
1

c

(
∂s

∂∆λ
+ 3a2m+ b2µ

)
fT +

+
1

c

[
3c1

∂s

∂∆λ
+ 9 (a1c+ a2c1)m+ 3 (b1c+ b2c1)µ

]
mT (11.113)



11.3. ALGORITHMIC TANGENT STIFFNESS MATRIX 147

11.3.2 Matrix D based on constant elasticity stress return

In analogy with the previous section, see also [15], we start from Eqs. (11.67) and (11.68) and write

dσm
dε

=
∂σm
∂ε

+
∂σm
∂pc

dpc
dε

+
∂σm
∂∆λ

∂∆λ

∂ε

=
1

1 + 2Ki
s∆λ

(
3Ki

sm−Ki
s∆λ

dpc
dε
−Ki

s

(
2σi+1

m + pi+1
c

) ∂∆λ

∂ε

)
(11.114)

dpc
dε

= − pi+1
c

(λ∗ − κ∗)(1 + 2Ki
s∆λ)

[
6Ki

s∆λm+ ∆λ
dpc
dε

+
2σtrm + pi+1

c

1 + 2Ki
s∆λ

∂∆λ

∂ε

]
= − pi+1

c

(λ∗ − κ∗)(1 + 2Ki
s∆λ)

[
6Ki

s∆λm+ ∆λ
dpc
dε

+ (2σi+1
m + pi+1

c )
∂∆λ

∂ε

]
(11.115)

Rearranging Eq. (11.115) gives

dpc
dε

= a33m+ a4
∂∆λ

∂ε
(11.116)

a3 = − 2Ki
s∆λp

i+1
c

(λ∗ − κ∗)(1 + 2Ki
s∆λ) + ∆λpi+1

c

= −K
i
s

a

2∆λpi+1
c

λ∗ − κ∗
(11.117)

a4 = − (2σi+1
m + pi+1

c )pi+1
c

(λ∗ − κ∗)(1 + 2Ki
s∆λ) + ∆λpi+1

c

= −p
i+1
c

a

2σi+1
m + pi+1

c

λ∗ − κ∗
(11.118)

a = 1 +
∆λpi+1

c

λ∗ − κ∗
+ 2Ki

s∆λ (11.119)

Next, upon substituting from Eq. (11.116) into Eq. (11.114) we get

dσm
dε

= a13m+ a2
∂∆λ

∂ε
(11.120)

a1 =
Ki
s

1 + 2Ki
s∆λ

(1− a3∆λ) =
Ki
s

a

(
1 +

∆λpi+1
c

λ∗ − κ∗

)
(11.121)

a2 = − Ki
s

1 + 2Ki
s∆λ

(
2σi+1

m + pi+1
c + ∆λa4

)
= −K

i
s

a

(
2σi+1

m + pi+1
c

)
(11.122)

Point out the terms a1 − a4 are identical to those provided by Eqs. (11.87) - (11.92) once replacing
Ki
s by σ̃m in Eqs. (11.117), (11.119), (11.121), and (11.122). The second term in in Eq. (11.82) now

becomes
ds

dε
=

∂s

∂∆e

∂∆e

∂ε
+

∂s

∂∆λ

(
∂∆λ

∂ε

)T

= E +
∂s

∂∆λ

(
∂∆λ

∂ε

)T

(11.123)

where

E =
2GisQPQ

1 +
2Gis∆λ

M2
cs

(11.124)

∂s

∂∆λ
= −2Gis

M2
cs

si+1

1 +
2Gis∆λ

M2
cs

= − 2Giss
i+1

M2
cs + 2Gis∆λ

(11.125)

With the help of consistency condition, remember Eq. (11.106), in the form

dfMCC

dε
=

[
ET +

∂∆λ

∂ε

(
∂s

∂∆λ

)T
]
∂fMCC

∂s
+

+ (2σi+1
m + pi+1

c )

(
a13m+ a2

∂∆λ

∂ε

)
+ σi+1

m

(
a33m+ a4

∂∆λ

∂ε

)
(11.126)

= 0
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we arrive at the searched term
∂∆λ

∂ε
in the form

∂∆λ

∂ε
=

1

c
(f + c13m) (11.127)

f = ET∂f
MCC

∂s
,

∂fMCC

∂s
=

1

M2
cs

Q−1si+1 =
1

M2
cs

Pσi+1 (11.128)

c1 = a1(2σi+1
m + pi+1

c ) + a3σ
i+1
m (11.129)

c = −
(
∂s

∂∆λ

)T ∂fMCC

∂s
− a2(2σi+1

m + pi+1
c )− a4σ

i+1
m (11.130)

As in the previous section we now substitute from Eq. (11.127) into Eqs. (11.120) and (11.123) to get

dσm
dε

=
(
a1 +

a2c1

c

)
3m+

a2

c
f (11.131)

ds

dε
= E +

1

c

∂s

∂∆λ

(
fT + c13mT

)
(11.132)

and subsequently from Eqs. (11.131) and (11.132) into Eq. (11.82) to obtain the algorithmic tangent

stiffness matrix D in the form (for
∂s

∂∆λ
refer to Eq. (11.125))

D = E +
1

c

(
∂s

∂∆λ
+ 3a2m

)
fT +

1

c

[
3c1

∂s

∂∆λ
+ 9 (a1c+ a2c1)m

]
mT (11.133)

11.4 Note on numerical implementation

An important issue which requires our attention is the determination of initial preconsolidation pres-
sure pinc and associated initial bulk modulus Kin

s . Limiting our attention to the GEO5 FEM program
we note that these two parameters are not included in the standard material setting of the Modified
Cam-clay model. Instead, their distributions are derived on the basis of the assumed geostatic stress
profile.

The distribution of initial geostatic stress in GEO5 FEM is always calculated in the first calculation
stage. The user may choose from the following three options:

K0 procedure

The K0 procedure is described in Section 1.14 suggesting the initial mean stress in the form

σam =
1

3
(1 + 2K0)σaz (11.134)

where K0 is the coefficient of lateral earth pressure at rest and σaz is the vertical geostatic stress, recall
Figs. 11.3(b,c) and the corresponding discussion in Section 11.1.1. In the most simple case we have
σaz = −γ h, where γ is the bulk unit weight and h is the actual depth of a stress point in the soil
profile.

If we assume that the clay did not experience greater vertical stresses in the past (normally con-
solidated clay) then the value of initial preconsolidation pressure is determined for the current stress
to sit on the yield surface. This gives for the Modified Cam-clay model, recall Fig. 11.3(c),

pinc = pac = − (J
b
)2

M2
csσ

a
m

− σam (11.135)

Initializaton of pinc for overconsolidated soils is described in Section 1.13.
The initial bulk modulus follows directly from

Kin
a = −1 + ein

κ
σam = −σ

a
m

κ∗
, Ks,min =

1

κ∗
for σam > −1 kPa (11.136)

where the initial void ratio ein is provided by Eq. (11.3).
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Elastic analysis

Note that the program GEO5 FEM allows us to switch from one material model to another between
two calculation stages. This option can therefore be exploited in cases where K0 procedure is not
applicable. In particular, the soil to be represented by the Modified Cam-clay models is assumed to
follow a linear Hooke’s law in the first calculation stage. The corresponding initial stresses σa are
then used in Eq. (11.135) in place of Eq. (11.134) to derive the desired distributions of pinc and Kin

s .
Equation (11.3) still applies when setting the initial void ratio ein. From the second construction
stage the linear elastic model is substituted by an appropriate plastic one to obtain more realistic
predictions of the soil behavior.

It is worth mentioning that in some cases both approaches may generate stresses found in the super-
critical domain and consequently predicting too large values of pinc when introduced into Eq. (11.135).
Also, the overconsolidation parameters OCR = 1 and POP = 0 are considered so the soil is assumed
to be normally consolidated. To introduce overconsolidation a loading/unloading sequence would have
to be introduced.

Plastic analysis

The plastic analysis involves plastic material models for clayey soils already in the first calculation
stage. During calculation, the soil is thus assumed to move down the virgin consolidation line with

the initial values of pinc = 1 kPa and Kin
s =

1

κ∗
. All plastic deformations that arise during the first

calculation stage are set equal to zero before resuming any further calculations. The initial void ratio
ein = e0 gradually evolves until arriving at the value of e1ststage at the end of this first calculation
stage. This value is then used to initialize parameters κ∗, λ∗ adopted in subsequent calculation stages.
Similarly to elastic step the overconsolidation parameters OCR = 1 and POP = 0 are considred so
the soil is assumed to be normally consolidated. To introduce overconsolidation a loading/unloading
sequence would have to be introduced.

11.4.1 Note on determination of parameters κ and λ

The input parameters for the present critical state models are listed in Table 11.1. Our experience
indicates that unlike Young’s modulus or Poisson’s ratio the swelling modulus κ and the compression
modulus λ in particular are, however, unknown to majority of practical users. This is also why the
critical state models still receive much less attention in comparison with rather classical Mohr-Coulomb
like models. Fortunately, we may direct the user to our calibration software ExCalibre [25] available
free of charge which provides all data of the model such that numerical predictions fit the supplied
laboratory measurements as close as possible. Application of this software typically requires data from
oedometric and triaxial tests. When only data from an oedometric test are available one may proceed
along the following lines to get a quick estimate of the stiffness parameters κ, λ.

To establish a link between the κ and λ moduli and the corresponding parameters derived we
consider results of a typical oedometric test in Fig. 11.5. It is well known that the complete stress state
of a sample in the oedometer apparatus in not known. Unlike the triaxial apparatus the oedometer
apparatus provides only the axial stress σz and the total volumetric strain εv equal to the axial strain
εz. Assuming undrained conditions the results from oedometer tests are often plotted in terms of
e− log(−σz) diagram, see Fig. 11.5(a). This graph is very similar to e− ln(−σm) diagram plotted in
Fig. 11.3(a). Owing to the geometrical constraints imposed by a standard oedometer apparatus the
slope of the virgin consolidation line is called the one-dimensional compression index written as

Cc =
∆e

∆ log(−σz)
=

∆e

log
σi+1
z

σiz

(11.137)

To bring the compression modulus λ and the one-dimensional compression index Cc to the same
footing we introduce the coefficient of lateral earth pressure at rest for normally consolidated soils
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Figure 11.5: Behavior under one dimensional compression: a) idealization, b) typical result of an
oedometer test

KNC
0 and write the effective mean stress as, recall Eq. (11.134),

σm =
1

3
(1 + 2KNC

0 )σz (11.138)

Note that KNC
0 is often estimated from Jaky’s formula KNC

0 = 1 − sinϕ, where ϕ is the effective
angle of internal friction. Since KNC

0 is approximately constant along the virgin compression line [66,
Chapter 1] we get, recall Eq. (11.1),

λ =
∆e

∆ ln(−σm)
=

∆e

ln
σi+1
m

σim

=
∆e

ln
σi+1
z

σiz

(11.139)

Since lnx = 2.3 log x we get after comparing Eqs. (11.137) and (11.139)

λ =
Cc
2.3

(11.140)

Assuming that the swelling lines also plot as straight lines in both e − ln(−σm) and e − log(−σz)
diagrams as shown in Figs. 11.3(a) and 11.5(a) we obtain a similar approximation of the swelling
modulus κ in terms of the swelling index Cs as

κ ≈ Cs
2.3

(11.141)

However, such an assumption is not valid in general. In fact, K0 is not constant along the swelling line
but rather increases during unloading as schematically demonstrated in Fig. 11.5(b). A modification
to Eq. (11.141) is typically provided in the form

κ ≈ 3
1− νur
1 + νur

Cs
2.3

(11.142)

where νur represents Poisson’s ratio derived from the ratio of differences in the horizontal and vertical
stress developed in oedometer during unloading and reloading

∆σx =
νur

1− νur
∆σz = K0∆σz (11.143)

With this definition it is easy to show that

3
1− νur
1 + νur

=
3

1 + 2K0
(11.144)
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However, neither of the two approximate relations for the swelling modulus κ are universally accepted
and should therefore be used with considerable caution. Finally note that Eq. (11.142) reduces to

Eq. (11.141) under incompressibility condition since for νur = 0.5 the term 3
1− νur
1 + νur

= 1.

11.5 Testing implementation with simple laboratory tests

Two specific features of the Modified Cam-clay model concerning an initial stiffness and a harden-
ing/softening behavior are addressed. While the current version of GEO5 FEM exploits the constant
elasticity stress return algorithm, the following examples are presented for illustration in the framework
of variable elasticity stress return mapping.

11.5.1 Influence of low initial stiffness

Regardless of the type of elasticity return, either variable (Section 11.2.1) or constant (Section 11.2.2),
the initial value of the bulk modulus Kin

s in GEO5 FEM is calculated according to Eq. (11.136).
With variable elasticity return it is subsequently updated with the help of Eq. (11.26). It is there-
fore clear that the initial stiffness might be quite low when starting the loading process from zero
initial stress considering the initial preconsolidation pressure pc = 1 kPa and the initial bulk modulus

Kin
s =

1

κ∗
kPa. Consequently, the initial load step considerably affects the resulting stress-strain re-

sponse. Adopting data from Table 11.2 this issue is examined in Figs. 11.6 and 11.7. To this end, an
axisymmetric analysis using two 3-node constant strain triangles displayed in Fig. 11.6(a) are used.

Table 11.2: Material properties of Modified Cam-clay model used in numerical tests

ν κ λ ein Mcs

0.26 0.0077 0.066 0.788 0.693

Figure 11.6 shows the results from an isotropic compression test assuming σv = σr in Fig. 11.6(a).
Because starting from σm = 0 the initial bulk modulus is small, which in turn may considerably
overestimates the volumetric strain for the 1st load increment providing its magnitude is insufficiently
small. Such a result is represented by the black solid line derived for the load fraction ζ = 0.1.
The influence of small initial stiffness is reduced when decreasing the initial load increment, compare
the red and blue lines in Fig. 11.6(b) corresponding to ζ = 0.01 and ζ = 0.001, respectively. To
avoid large number of load steps, the program GEO5 FEM allows for a gradual increase of the load
fraction in dependency on the number of iterations needed to achieve convergence for the previous
load step. This option can be set by specifying the minimum number of iterations for a given load step
in the “analysis settings”. If the number of iterations does not exceed this value, the load fraction is
increased for the next load step. In Fig. 11.6 this option corresponds to the response marked as VLF
(variable load fraction). By default the minimum number of iterations is set equal to 1 thus enforcing
the constant load step throughout the analysis. In this particular case, the VLF result was derived
with the minimum number of iterations set equal to 5. While 1000 steps was considered to plot the
blue line, the VLF plot needed 10 load steps only with no loss of accuracy. Point out that normal
consolidation was considered moving down the λ-line with pc gradually increasing from 1 kPa to 10
MPa in this particular example.

The second example illustrates the effect of low initial stiffness in the simulation of an oedometric
test. To comply with the kinematic constrains imposed by an oedometer the traction boundary condi-
tions in the radial direction are replaced by the kinematic boundary conditions evident in Fig. 11.6(a).

We begin with the results in Fig. 11.7 corresponding to pure nonlinear elastic response. Both
loading and unloading branch is represented. Clearly, for constant load increment keeping the load
fraction ζ constant throughout the analysis the loading and unloading response follows the same path,
see the black and red lines. A noticeable deviation from this result occurs when allowing for a gradual
increase of load increment, see the blue line. This is because of elasticity where the load increment is
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Figure 11.6: a) Axisymmetric FEM model, b) Nonlinear elastic response in isotropic compression

increased with every load step thus also at the initial stage of loading which was not the case in the
previous example. Moreover, allowing for a variable load fraction also upon unloading may generate
some permanent elastic strains as demonstrated by the green line.

On the other, running the analysis within a plastic regime provides almost negligible difference
between the results associated with both constant variable load fraction options. This is attributed
to the fact that at the initial loading stage the first few steps proceed with the same load increment.
Upon unloading, artificial permanent strains due to nonlinearity are negligible compare to permanent
plastic strains.
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Figure 11.7: a) Nonlinear elastic response in oedometric compression, b) Comparing nonlinear elastic
and elastic plastic response in oedometric compression

11.5.2 Effect of hardening/softening in triaxial loading conditions

We have already put forward that simulating a triaxial test with an elastic-perfectly plastic model
may result in a singular stiffness matrix once first violating the failure criterion. This typically occurs
when combining the Newton-Raphson method with the loading driven by applied tractions. With the
Modified Cam-clay model, however, such a situation arises only when reaching the critical state. Prior
to that the model predicts either hardening or softening in dependence on the current stress state as
visualized in Fig. 11.2(b). To examine all these features we move back to triaxial loading conditions
and consider a specific loading path presented in Fig. 11.8. Drained conditions are assumed with no
evolution of pore pressure so all stresses are effective.

The entire analysis was split into four calculation stages:

1. Isotropic compression to set initial chamber pressure. The analysis started from a zero mean
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Figure 11.8: a) Evolution of yield surface, b) Prescribed load path in terms vertical (σv) and radial
(σr) pressure, c) Evolution of mean (σm) and equivalent deviatoric (J) stress measures as a function
of vertical strain

pressure with pinc = 1 kPa and Kin
s = 1/κ∗ ≈ 232 kPa. As indicated in Fig. 11.8(b), the sample

was isotropically normally consolidated to a mean stress σm = pc = 50 kPa by proportionally
increasing the vertical and radial stresses σv = σr. The resulting yield surface plots as the
black ellipse in Fig. 11.8(a). The black arrow shows the corresponding loading path. The solid
black line in Fig. 11.8(c) shows the evolution of the mean stress σm as a function of the vertical
strain εv. Point out a relatively compliant behavior within the first load increment attributed
to combination of a low initial stiffness and a large load fraction of ζ = 0.1.

2. In the second calculation stage the sample was loaded in triaxial compression to arrive at
the maximum vertical pressure σv = 140 kPa while keeping the radial pressure constant, see
Fig. 11.8(b). In this calculation stage the preconsolidation pressure gradually increases accord-
ing to Eq. (11.15). This hardening phase is manifested by a gradually expanding yield surface.
The final state derived at end of loading is plotted as the red ellipse in Fig. 11.8(a). The arrow
shows a standard triaxial compression loading path with the slope of J/σm =

√
3. Clearly, the

critical state, defined as the intersection of the critical state (Mcs) line with the yield surface,
was not reached during this stage. Consequently, no difficulty to converge was experienced with
the application of FULL Newton-Raphson method, recall Section 17.2.6. This is also supported
by the red stress-strain curves not reaching the plateau as typical of the critical state.

3. The third stage represents elastic unloading. The soil response, however, is still nonlinear.
The unloading path, displayed both in Fig. 11.8(b) and Fig. 11.8(a) (blue line), was selected
specifically to arrive at an overconsolidated state with a zero deviatoric stress J and the mean
stress σm = 25 kPa being at the center of the original black yield surface, see also the resulting
stress-strain curves (blue lines) in Fig. 11.8(c).

4. In the forth calculation stage the sample was loaded in pure shear while keeping the mean stress
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constant at the level of σm = 25 kPa, see the green line in Fig. 11.8(a) The prescribed evolution
of vertical and radial pressures appears in Fig. 11.8(b). Because expecting softening (the stress
point appears in supercritical region of the yield surface, see Fig. 11.2(b)) the Arc-length method
was adopted. In particular, the option with no update of a material stiffness matrix (update
NONE, recall Section 17.2.6) was selected. It is seen that initially the response is elastic moving
inside the current yield surface. Once violating the yield criterion (point 4ep on the red ellipse)
the material begins to soften. Point out that this state corresponds to the vertical pressure of
σv = 67.2 kPa, well below the preset value of 75 kPa as indicated in Fig. 11.8(b). The softening
continues until arriving at a critical state (point 4sp on the final gray ellipse). Green arrows in
Fig. 11.8(b) indicate a gradual change of both vertical and radial pressures being well identified
by the Arc-length method. Once at the critical state there is no further evolution of pc and
thus no change in the equivalent deviatoric stress J . Also notice that in this particular case
the increment of both total and elastic volumetric strain is equal to zero. In this case, the
application of Eq. (11.26) is not applicable and the algorithm switches to constant elasticity
return mapping. More specifically, this loading path keeps the bulk modulus constant equal
to that at the end of the unloading stage 3. Notice that orange curve (stage 4I) represents an
intermediate state obtained prior to arriving at the final critical state. Additionally, because the
mean effective stress remains constant equal to half the preconsolidation pressure at the end of
isotropic loading stage the final yield surface matches the one at the end of isotropic compression.
Final comment concerns the large number of iterations observed in this calculation stage. This
is clearly attributed to the application of elastic stiffness matrix within the Arc-length method
as schematically illustrated in Fig. 17.9(c).

11.6 Modified Cam-model in undrained analysis

11.7 Modified Cam-clay model in stability analysis

The GEO5 FEM software allows for the application of the Modified Cam-clay model in stability
analysis performed within a given calculation stage. As in standard analysis the solution procedure
is based on the reduction of a shear strength parameter, i.e., the critical state friction angle ϕcs. Its
initial value is derived from the current value of the critical state line Mcs as

sinϕcs =
3Mcs

2
√

3 +Mcs

(11.145)

Thus when starting from a certain equilibrium stress state σ sitting on the current yield surface the
reduction of ϕcs generates an inadmissible stresses which must be returned to the new yield surface,
e.g. the one associated with the 1st reduction step, as indicated in Fig. 11.9(a).

(a) (b)

Figure 11.9: Illustration of reduction steps in stability analysis: a) initial yield surface associated with
the 1st reduction step (solid line), b) evolution of yield surfaces within successive reduction steps

Unlike standard analysis, however, the stiffness K, associated with the stress state σ at the end
of the standard calculation stage, is kept constant throughout the whole reduction process. Note that
keeping the initial preconsolidation pressure pc fixed corresponds to an elastic-perfectly plastic mate-
rial. In such a case, one may experience convergences problems when returning from an inadmissible
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stress state along the hydrostatic axis. Therefore, the preconsolidation pressure is allowed to evolve
as displayed in Fig. 11.9(b). Therein, the stress σ11 sits on a yield surface that evolves during the
1st local stress update pc → p11

c and the stress σ1n is the stress at convergence of the 1st reduction
step. The corresponding yield surface is the initial yield surface for the next reduction step as again
indicated in Fig. 11.9(b).

From numerical point of view the local stress return algorithm and the algorithmic tangent stiffness
matrix are therefore described in Sections 11.2.2 and 11.3.2, respectively.
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Chapter 12

Generalized Cam-clay model

The last paragraph in Section 11.1.2 put forward several drawbacks associated with the formulation of
the Modified Cam-clay (MCC) model. To overcome these drawbacks, e.g., prediction of the excessive
shear strength on the supercritical side, a new model, termed the Generalized Cam-clay (GCC) model
henceforth, has been proposed. Similar to existing formulations the yield function is composed of
two smoothed functions continuously connected at the point of intersection with the critical state
line. Graphical representation is displayed in Fig. 12.1. The list of material parameters describing the
associated stress-strain response is provided in Table 12.1.

σ1=σ2=σ3

-σ2

-σ3

-σ1

Meridian plane

−σm

J

g~ g

pcpc/2

Supercritical domain Subcritical domain

CSL Y.F. GCC Y.F. MCC

Deviatoric plane

σ3 σ1

σ2

θ=0

θ=30°

θ=−30°

Y.F. GCC
Y.F. MCC

(a) (b) (c)

Figure 12.1: Generalized Cam-clay yield surface: a) plot in effective principal stress space, b) plot in
meridian plane, c) plot in deviatoric plane

Table 12.1: Parameters of Generalized Cam-clay plasticity model

Symbol Units Description

κ [-] Slope of swelling line (swelling modulus)
λ [-] Slope of normal consolidation line (isotropic NCL, compression modulus)
e0 [-] Maximum void ratio
ν [-] Poisson’s ratio
ϕcs [◦] Critical state friction angle
ϕ [◦] Peak friction angle

OCR [-] Overconsolidation ratio
POP [kPa] Preoverburden pressure
α [1/◦C] Coefficient of thermal expansion

pc [kPa] Preconsolidation pressure (pminc = 1kPa), calculated

157
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12.1 Formulation of Generalized Cam-clay yield criterion

Since falling into a family of critical state models we refer the reader to Chapter 11 for a general
introduction to individual model parameters and to Section 11.1.1, in particular, for the formulation
of constitutive (stress-strain) equations. Reformulation of the original Modified Cam-clay yield surface
is presented next.

12.1.1 Yield and plastic potential surface

Mathematically, the two functions governing the soil behavior in the subcritical and supercritical
domains, recall Fig. 12.1, are written as

fGCC =

{
fGCCd , for σm > −pc/2 (supercritical side)
fGCCc , for σm ≤ −pc/2 (subcritical side)

(12.1)

fGCCd =
J2

g2(θ, ϕcs)
− β

[
σ2
m − (−σm)1+α (γpc)

1−α
]

(12.2)

fGCCc =
J2

g2(θ, ϕcs)
+ σ2

m + σmpc (12.3)

where

g̃(θ, ϕcs, ϕ) = g(θ, ϕcs)
√
β (12.4)

g(θ, ϕcs) = χ(θ, ϕcs)Mϕcs (12.5)

MTC
ϕcs =

2
√

3 sinϕcs
3− sinϕcs

for triaxial compression (12.6)

MTE
ϕcs =

2
√

3 sinϕcs
3 + sinϕcs

for triaxial extension (12.7)

β =

(
sinϕ

sinϕcs

3− sinϕcs
3− sinϕ

)2

(12.8)

γ =

(
2α

1 + α

) 1
1−α

(12.9)

α =
β + 1

β − 1
(12.10)

Function χ(θ, ϕcs) depends on the current value of Lode’s angle θ and describes the shape of the
projection of GCC yield surface into a deviatoric plane, which in the present formulation assumes
the form provided by the Matsuoka-Nakai yield surface outlined in detail in Section 8.1.2. Also point
out that Mϕcs = MTC

ϕcs is actually used in GEO5 FEM. Parameters α, β, γ are defined such as to
give a vertical normal to the yield surface at the joint point of the two functions and to maintain
compatibility of both yield functions for any value of Lode’s angle. As plotted in Fig. 12.1(b), at zero
deviatoric stress (J = 0) they suggest a common tangent of the function fGCCd with the limit function
of Hardening soil model, see Chapter 8, or the Soft soil model, see Chapter 9.

Note that no changes with respect to the MCC model are introduced on the subcritical side.
The smooth transition from one surface to the other not only considerably simplifies the numerical
implementation, but also ensures fulfilling the critical state condition already predicted by the Modified
Cam-clay model. Furthermore, the model also predicts a unique state boundary surface and the
consolidation/swelling behavior. Unlike for the MCC model, the swelling behavior and the failure
stresses, in particular, are considerably suppressed. Such a behavior is in better accordance with
reported experimental results.

Formulation of the plastic potential surface is again consistent with the Hardening and Soft soil
models as it considers a circular projection of the plastic potential surface into a deviatoric plane. This
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is achieved by fixing the current value of Lode’s angle to the one associated with the trial stresses,
i.e., θ̃ = θtr, recall Section 8.3. This gives the plastic potential surfaces in the form

gGCCd =
J2

g2
G(θ̃, ϕcs)

− β
[
σ2
m − (−σm)1+α (γpc)

1−α
]

(12.11)

gGCCc =
J2

g2
G(θ̃, ϕcs)

+ σ2
m + σmpc (12.12)

gG(θ̃, ϕcs) = χ̃2(θ̃, ϕcs)M
2
ϕcs (12.13)

With this definition the flow rule becomes, unlike the MCC model, a non-associated.

12.2 Stress return mapping

With reference to Eqs. (12.11) and (12.12) the volumetric ∆εplv and deviatoric epl plastic strain incre-
ments are given by

∆εplvd = ∆λ
∂gGCCd

∂σm
= ∆λβ

[
−2σm − (1 + α)(−σm)α(γpc)

1−α] (12.14)

∆εplvc = ∆λ
∂gGCCc

∂σm
= ∆λ (2σm + pc) (12.15)

∆epld = ∆λ
∂gGCCd

∂s
= ∆λ

Pσ

g2
G

= ∆λ
Q−1s

g2
G

(12.16)

∆eplc = ∆λ
∂gGCCc

∂s
= ∆λ

Pσ

g2
G

= ∆λ
Q−1s

g2
G

(12.17)

so the elastic volumetric strain increments read

∆εelvd = ∆εv −∆λβ
[
−2σm − (1 + α)(−σm)α(γpc)

1−α] (12.18)

∆εelvc = ∆εv −∆λ (2σm + pc) (12.19)

Recall that ∆λ represents an increment of plastic multiplier. Similar to Section 11.2 (MCC model)
the two stress return mapping algorithms are considered

• Variable elasticity return

• Constant elasticity return (currently implemented in GEO5 FEM)

12.2.1 Variable elasticity return

Because a detailed derivation of stress-strain equations, representing the current values of preconsoli-
dation pressure pi+1

c , mean σi+1
m and deviatoric si+1 stresses and the corresponding equivalent stress

deviatoric stress measure J i+1 and the increment of equivalent deviatoric strain ∆E at (i + 1) load
increment, is presented in Section 11.2.1 we only list the final expressions for the sake of conciseness:

• Preconsolidation pressure

pi+1
c = pic exp

[
− ∆εplv
λ∗ − κ∗

]
(12.20)

• Mean stress

σi+1
m = σim exp

[
−∆εelv

κ∗

]
(12.21)

• Deviatoric stress

si+1 =
si + 2GsQ∆e

1 +
2Gs∆λ

g2
G

=
str

1 +
2Gs∆λ

g2
G

(12.22)
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• Equivalent deviatoric stress

J i+1 =
J tr

1 +
2Gs∆λ

g2
G

(12.23)

J tr(Gs) =

√
1

2
(str)TQ−1str =

[
J i2 + 2Gs∆e

Tsi + (Gs)
2∆E2

d

] 1
2

(12.24)

J i2 =
1

2
(si)TQ−1si (12.25)

∆Ed =
√

2∆eTQ∆e (12.26)

where the secant shear modulus Gs is provided by Eqs. (11.27) and (11.26).

As already indicated in Section 11.2.1 arriving at updated stress values at the end of the (i + 1)
load increment requires satisfying a certain set of residuals which now receive the form

r =


σi+1
m − σm
pi+1
c − pc

(fGCCd )i+1 or (fGCCc )i+1

 = r(a(ε), ε) (12.27)

where σm, pc are given by Eqs. (12.21) and (12.20), respectively. The vector of primary variables a is
identical to that of Eq. (11.34) and is found employing the Newton-Raphson method

ai+1
j+1 = ai+1

j −H−1rj (12.28)

together with the initial condition

(ai+1
0 )T = {σtrm, pic, 0} (12.29)

rT0 = {0, 0, (fGCCd )tr or (fGCCc )tr} (12.30)

Individual components of the Jacobian matrix H, recall Eq. (11.38), are given by

• H1i

H11 =
dr1

dσm
= 1 +

σm
κ∗

∂∆εelv
∂σm

= 1− σm
κ∗

∂∆εplv
∂σm

(12.31)

H12 =
dr1

dpc
=
σm
κ∗

∂∆εelv
∂pc

= −σm
κ∗

∂∆εplv
∂pc

(12.32)

H13 =
dr1

d∆λ
=
σm
κ∗

∂∆εelv
∂∆λ

= −σm
κ∗

∂∆εplv
∂∆λ

(12.33)

• H2i

H21 =
dr2

dσm
=

pc
λ∗ − κ∗

∂∆εplv
∂σm

(12.34)

H22 =
dr2

dpc
= 1 +

pc
λ∗ − κ∗

∂∆εplv
∂pc

(12.35)

H23 =
dr2

d∆λ
=

pc
λ∗ − κ∗

∂∆εplv
∂∆λ

(12.36)
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• H3i

H31 =
dr3

dσm
=
∂fGCC

∂σm
+
∂fGCC

∂J

∂J

∂Gs

∂Gs
∂σm

+

+
∂fGCC

∂g

∂g

∂sin 3θ

(
∂ sin 3θ

∂J

∂J

∂Gs

∂Gs
∂σm

+
∂ sin 3θ

∂I3s

(
∂I3s

∂s

)T ∂s

∂Gs

∂Gs
∂σm

)
(12.37)

H32 =
dr3

dpc
=
∂fGCC

∂pc
+
∂fGCC

∂J

∂J

∂Gs

∂Gs
∂pc

+

+
∂fGCC

∂g

∂g

∂sin 3θ

(
∂ sin 3θ

∂J

∂J

∂Gs

∂Gs
∂pc

+
∂ sin 3θ

∂I3s

(
∂I3s

∂s

)T ∂s

∂Gs

∂Gs
∂pc

)
(12.38)

H33 =
dr3

d∆λ
=
∂fGCC

∂J

(
∂J

∂∆λ
+

∂J

∂Gs

∂Gs
∂∆λ

)
+

+
∂fGCC

∂g

∂g

∂sin 3θ

(
∂ sin 3θ

∂J

[
∂J

∂∆λ
+

∂J

∂Gs

∂Gs
∂∆λ

]
+

∂ sin 3θ

∂I3s

(
∂I3s

∂s

)T [ ∂s

∂∆λ
+

∂s

∂Gs

∂Gs
∂∆λ

])
(12.39)

where

∂Gs
∂σm

= ζ
∂Ks

∂∆εelv

∂∆εelv
∂σm

= −ζ ∂Ks

∂∆εelv

∂∆εplv
∂σm

(12.40)

∂Gs
∂pc

= ζ
∂Ks

∂∆εelv

∂∆εelv
∂pc

= −ζ ∂Ks

∂∆εelv

∂∆εplv
∂pc

(12.41)

∂Gs
∂∆λ

= ζ
∂Ks

∂∆εelv

∂∆εelv
∂∆λ

= −ζ ∂Ks

∂∆εelv

∂∆εplv
∂∆λ

(12.42)

∂Ks

∂∆εelv
= −Ksκ

∗ + σm
κ∗∆εelv

(12.43)

where

∂∆εplvd
∂σm

= ∆λβ
[
−2 + α(1 + α)(−σi+1

m )α−1(γpi+1
c )1−α] (12.44)

∂∆εplvc
∂σm

= 2∆λ (12.45)

∂∆εplvd
∂pc

= ∆λβ
[
−(1 + α)(1− α)γ(−σi+1

m )α(γpi+1
c )−α

]
(12.46)

∂∆εplvc
∂pc

= ∆λ (12.47)

∂∆εplvd
∂∆λ

= β
[
−2σi+1

m − (1 + α)(−σi+1
m )α(γpi+1

c )1−α] (12.48)

∂∆εplvc
∂∆λ

= 2σi+1
m + pi+1

c (12.49)
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The remaining partial derivatives are

∂fGCCd

∂σm
= β

[
−2σm − (1 + α)(−σi+1

m )α(γpi+1
c )1−α] (12.50)

∂fGCCc

∂σm
= 2σi+1

m + pi+1
c (12.51)

∂fGCCd

∂pc
= βγ(1− α)(−σi+1

m )1+α(γpi+1
c )−α (12.52)

∂fGCCc

∂pc
= σi+1

m (12.53)

∂fGCCd

∂J
=

∂fGCCc

∂J
=

2J i+1

g2
(12.54)

∂fGCCd

∂g
=

∂fGCCc

∂g
= −2(J i+1)2

g3
(12.55)

∂g

∂sin 3θ
=

∂g

∂χ

∂χ

∂ϑ

∂ϑ

∂ sin 3θ
(12.56)

∂g

∂χ
= Mϕcs (12.57)

All other derivatives have already been defined either in Section 11.2.1 when replacing Mcs by gG or
in Section 8.3.2 within the formulation of the Hardening soil model.

12.2.2 Constant elasticity return

Similarly to the previous section and with reference to Section 11.2.2 we first summarize the governing
equations of the local stress update

• Preconsolidation pressure

pi+1
c = pic exp

[
− ∆εplv
λ∗ − κ∗

]
(12.58)

• Mean stress
σi+1
m = σim +Ki

s(∆εv −∆εplv ) (12.59)

• Deviatoric stress

si+1 =
si + 2GisQ∆e

1 +
2Gis∆λ

g2
G

=
str

1 +
2Gis∆λ

g2
G

(12.60)

• Equivalent deviatoric stress

J i+1 =
J tr

1 +
2Gis∆λ

g2
G

(12.61)

J tr =
[
J i2 + 2Gis∆e

Tsi + (Gis)
2∆E2

d

] 1
2

(12.62)

where in analogy with Section 11.2.2 the secant bulk modulus Ki
s = −σ

i
m

κ∗
is kept constant with the

plastic corrector step. The variables J i and ∆Ed are provided by Eqs. (12.25) and (12.26), respectively.
Because the local stress update follows entirely in the footsteps of Section 12.2.1, Eqs. (12.27) - (12.30),
we present only the relevant derivatives that appear in definition of the Jacobian matrix H.
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The components of H now receive the following simplified forms

• H1i

H11 = 1 +Ki
s

∂∆εplv
∂σm

(12.63)

H12 = Ki
s

∂∆εplv
∂pc

(12.64)

H13 = Ki
s

∂∆εplv
∂∆λ

(12.65)

• H2i - given by Eqs. (12.34) - (12.36)

• H3i

H31 =
dr3

dσm
=
∂fGCC

∂σm
(12.66)

H32 =
dr3

dpc
=
∂fGCC

∂pc
(12.67)

H33 =
dr3

d∆λ
=
∂fGCC

∂J

∂J

∂∆λ
+

+
∂fGCC

∂g

∂g

∂sin 3θ

(
∂ sin 3θ

∂J

∂J

∂∆λ
+
∂ sin 3θ

∂I3s

(
∂I3s

∂s

)T ∂s

∂∆λ

)
(12.68)

where

∂J

∂∆λ
= − J tr(

1 +
2Gis∆λ

g2
G

)2

2Gis
g2
G

= − J

1 +
2Gis∆λ

g2
G

2Gis
g2
G

(12.69)

∂s

∂∆λ
= − str(

1 +
2Gis∆λ

g2
G

)2

2Gis
g2
G

= − s

1 +
2Gis∆λ

g2
G

2Gis
g2
G

(12.70)

All other derivatives were already defined either in the previous section or in Section 8.3.2.

12.3 Algorithmic tangent stiffness matrix

Although the Generalized Cam-clay model is a two-yield surface plasticity model, the derivation of
the algorithmic tangent stiffness matrix is analogous to the procedure described in Section 11.3 as
only one yield surface can be active at a given time (load step). So there is no need to consider the
concept of multisurface plasticity as was the case of the Hardening soil model in Chapter 8 or the Soft
soil model in Chapter 9. From what was presented in the previous sections it is also obvious that the
derivation of algorithmic tangent stiffness matrix D given by

D =
dσi+1

dεi+1
= 3m

(
dσi+1

m

dεi+1

)T

+
dsi+1

dεi+1
(12.71)

is common to both yield surfaces with some minor differences pertinent to their specific formulations,
regardless of the type of returning mapping algorithm. Similarly to Section 11.3 we shall drop the
superscript (i+ 1) and consider all derivatives to be taken at the end of the (i+ 1) load increment, so

for example the notation
dσ

dε
=

dσi+1

dεi+1
will be used.
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12.3.1 Matrix D based on variable elasticity stress return

Similarly with other sections, see also [14], we start from Eqs. (12.21) - (12.20) and Eqs. (12.14) -
(12.15) to write

dσm
dε

= −σ
i+1
m

κ∗

(
3m− d∆εplv

dε

)
= σ̃m

(
3m− d∆εplv

dε

)
(12.72)

dpc
dε

= − pi+1
c

λ∗ − κ∗
d∆εplv

dε
(12.73)

d∆εplv
dε

=
∂∆εplv

∂σi+1
m

dσm
dε

+
∂∆εplv
∂pc

dpc
dε

+
∂∆εplv
∂∆λ

∂∆λ

∂ε

= a1
dσm
dε

+ a2
dpc
dε

+ a3
∂∆λ

∂ε
(12.74)

where the terms a1, a2, a3 follow from Eqs. (12.44) (12.49) depending on the active yield surface.
Therefore

dσm
dε

= σ̃m

(
3m− a1

dσm
dε
− a2

dpc
dε
− a3

∂∆λ

∂ε

)
=

=
σ̃m

1 + a1σ̃m

(
3m− a2

dpc
dε
− a3

∂∆λ

∂ε

)
(12.75)

dpc
dε

= − pi+1
c

λ∗ − κ∗

(
a1

dσm
dε

+ a2
dpc
dε

+ a3
∂∆λ

∂ε

)
=

= − pc
(λ∗ − κ∗)(1 + a1σ̃m)

(
a1σ̃m3m+ a2

dpc
dε

+ a3
∂∆λ

∂ε

)
(12.76)

Rearranging Eq. (12.76) gives

dpc
dε

= a63m+ a7
∂∆λ

∂εi+1
(12.77)

a6 = − pi+1
c a1σ̃m

(λ∗ − κ∗)(1 + a1σ̃m) + a2p
i+1
c

, compare with Eq. (11.117) (12.78)

a7 = − pi+1
c a3

(λ∗ − κ∗)(1 + a1σ̃m) + a2p
i+1
c

, compare with Eq. (11.118) (12.79)

Finally, substituting from Eq. (12.77) back to Eq. (12.75) yields

dσm
dε

= a43m+ a5
∂∆λ

∂ε
(12.80)

a4 =
σ̃m

1 + a1σ̃m
(1− a2a6), compare with Eq. (11.121) (12.81)

a5 = − σ̃m
1 + a1σ̃m

(a3 + a2a7), compare with Eq. (11.122) (12.82)

Recall Eq. (12.22) to write the second term in Eq. (12.71) in the form, compare with Eq (11.94),

ds

dε
=

∂s

∂ε
+

ds

dχ̃

(
dχ̃

dε

)T

︸ ︷︷ ︸
E2

+
∂s

∂∆λ

(
∂∆λ

∂ε

)T

+
∂s

∂Gs

∂Gs
∂∆εelv

(
3m− d∆εplv

dε

)T

=

= E1 + E2 + s1

(
∂∆λ

∂ε

)T

+ µ

(
3m− d∆εplv

dε

)T

(12.83)
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where the total and partial derivatives that enter Eq. (12.83) are provided by

∂s

∂ε
=

∂s

∂∆e

∂∆e

∂ε
= E1 (12.84)

∂s

∂∆e
=

2GsQ

1 +
2Gs∆λ

g2
G

(12.85)

∂∆e

∂ε
= PQ (12.86)

ds

dχ̃
=

∂s

∂gG

∂gG
∂χ̃

=
si+1

1 +
2Gs∆λ

g2
G

4Gs∆λ

χ̃3M2
ϕcs

(12.87)

dχ̃

dε
=

[
ds̃

dε

]T ∂χ̃
∂s̃

(12.88)

ds̃

dε
=

∂s̃

∂∆e

∂∆e

∂ε
+

∂s̃

∂∆εv

∂∆εv
∂ε

(12.89)

∂χ̃

∂s̃
=

∂χ̃

∂ϑ

∂ϑ

∂ sin 3θ̃

(
∂ sin 3θ̃

∂J̃

∂J̃

∂s̃
+
∂ sin 3θ̃

∂Ĩ3s

∂Ĩ3s

∂s̃

)
(12.90)

∂s̃

∂∆e
= 2G̃sQ (12.91)

∂s̃

∂∆εv
=

∂s̃

∂G̃s

∂G̃s
∂∆εv

= 2Q∆e ζ
∂K̃s

∂∆εv
(12.92)

∂K̃s

∂∆εv
= − 1

∆εv

(
K̃s −

σ̃m
κ∗

)
(12.93)

The term
d∆εplv

dε
is given by Eq. (12.74), which can be rearranged with the help of Eqs. (12.80)

and (12.77) to get

d∆εplv
dε

= b13m+ b2
∂∆λ

∂εi+1
(12.94)

b1 = a1a4 + a2a6 (12.95)

b2 = a1a5 + a2a7 + a3 (12.96)

Adopting Eq. (12.74) in Eq. (12.83) we finally arrive at its simplified version

ds

dε
= E1 + E2 + 3(1− b1)µmT + (s1 − b2µ)

(
∂∆λ

∂ε

)T

= F + f

(
∂∆λ

∂ε

)T

(12.97)

In analogy with previous sections the term
∂∆λ

∂ε
(see, e.g., Section 11.3.1, Eq. (11.104)) is derived

from the consistency condition written as

dfGCC

dε
=

dr3

dε
=
∂r3

∂J

dJ

dε
+
∂r3

∂g

∂g

∂ sin 3θ

d sin 3θ

dε
+

∂r3

∂σm

dσm
dε

+
∂r3

∂pc

dpc
dε

= 0 (12.98)

Remember Section 8.4 where the terms
dJ

dε
(Eq. (8.222)) and

d sin 3θ

dε
(Eq. (8.237)) were derived to

give

dJ

dε
=

[
ds

dε

]T ∂J
∂s

(12.99)

d sin 3θ

dε
=

∂ sin 3θ

∂J

[
ds

dε

]T ∂J
∂s

+
∂ sin 3θ

∂I3s

[
ds

dε

]T ∂I3s

∂s
(12.100)
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With these definitions we may expand Eq. (12.98) as

dr3

dε
=

∂r3

∂σm

dσm
dε

+

+

(
∂r3

∂J
+
∂r3

∂g

∂g

∂ sin 3θ

∂ sin 3θ

∂J

)[
ds

dε

]T ∂J
∂s

+

+
∂r3

∂g

∂g

∂ sin 3θ

∂ sin 3θ

∂I3s

[
ds

dε

]T ∂I3s

∂s
+

+
∂r3

∂pc

dpc
dε

(12.101)

= c1
dσm
dε

+ c2

[
ds

dε

]T
j1 + c3

[
ds

dε

]T
j2 + c4

dpc
dε

= 0 (12.102)

where the terms c1 =
∂r3

∂σm
=

∂f

∂σm
and c4 =

∂r3

∂pc
=

∂f

∂pc
are given by Eqs. (12.50) - (12.53) depending

on the active yield surface. Substituting from Eqs. (12.80), (12.97) and (12.77) into Eq. (12.102) gives

dr3

dε
= g + h

∂∆λ

∂ε
= 0 −→ ∂∆λ

∂ε
= −1

h
g = q (12.103)

g = (c1a4 + c4a6)3m+ FT(c2j1 + c3j2) (12.104)

h = c1a5 + c4a7 + fT(c2j1 + c3j2) (12.105)

The consistent tangent stiffness matrix D is finally obtained by substituting back from Eq. (12.103)
into Eqs. (12.80), (12.97) and (12.77). This yields

D = F + 9a4mm
T + (3a5m+ f)qT (12.106)

12.3.2 Matrix D based on constant elasticity stress return

The general procedure is identical to that in the previous section taking into account some simplifi-
cations introduced already in Section 12.2.2, the constant stiffness within the stress return mapping
algorithm in particular. With that and in light of Eqs. (12.59) - (12.58) and Eqs. (12.14) - (12.15) the
first two equations in the previous section become

dσm
dε

= Ki
s

(
3m− d∆εplv

dε

)
(12.107)

dpc
dε

= − pi+1
c

λ∗ − κ∗
d∆εplv

dε
(12.108)

Unlike the previous section we now treat the term
d∆εplv

dε
for individual domains separately. Thus

starting with the subcritical domain, recall Section 11.3.2 and Eqs. (11.114) and (11.115), we get

dσm
dε

= Ki
s

[
3m−∆λ

(
2

dσm
dε

+
dpc
dε

)
− (2σm + pc)

∂∆λ

∂ε

]
=

Ki
s

1 + 2∆λKi
s

[
3m−∆λ

dpc
dε
−
(
2σi+1

m + pi+1
c

) ∂∆λ

∂ε

]
(12.109)

dpc
dε

= − pi+1
c

λ∗ − κ∗

[
∆λ

(
2

dσm
dε

+
dpc
dε

)
+ (2σi+1

m + pi+1
c )

∂∆λ

∂ε

]
= − pi+1

c

(λ∗ − κ∗)(1 + 2∆λKi
s)

[
2∆λKi

s3m+ ∆λ
dpc
dε

+ (2σi+1
m + pi+1

c )
∂∆λ

∂ε

]
(12.110)
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As expected the terms
dp+1

c

dεi+1
and

dσi+1
m

dεi+1
are, therefore, given by Eqs. (11.116) - (11.122). Now,

considering the supercritical domain, we first write

d∆εplv
dε

=
∂∆εplvd
∂σm

dσm
dε

+
∂∆εplvd
∂pc

dpc
dε

+
∂∆εplvd
∂∆λ

∂∆λ

∂ε

= a1
dσm
dε

+ a2
dpc
dε

+ a3
∂∆λ

∂ε
(12.111)

where the terms a1, a2, a3 are given by Eqs. (12.44), (12.46) and (12.48), respectively. Therefore

dσm
dε

= Ki
s

(
3m− a1

dσm
dε
− a2

dpc
dε
− a3

∂∆λ

∂ε

)
=

=
Ki
s

1 + a1Ki
s

(
3m− a2

dpc
dε
− a3

∂∆λ

∂ε

)
(12.112)

dpc
dε

= − pi+1
c

λ∗ − κ∗

(
a1

dσm
dε

+ a2
dpc
dε

+ a3
∂∆λ

∂ε

)
=

= − pi+1
c

(λ∗ − κ∗)(1 + a1Ki
s)

(
a1K

i
s3m+ a2

dpc
dε

+ a3
∂∆λ

∂ε

)
(12.113)

Point out that setting a1 = 2∆λ (Eq. (12.45)), a2 = ∆λ (Eq. (12.47)) and a3 = 2σi+1
m + pi+1

c

(Eq. (12.49)) in Eqs. (12.112) and (12.113) yields Eqs. (12.109) and (12.110), respectively. Next,
rearrange Eq. (12.113) to get

dpc
dε

= a63m+ a7
∂∆λ

∂ε
(12.114)

a6 = − pi+1
c a1K

i
s

(λ∗ − κ∗)(1 + a1Ki
s) + a2p

i+1
c

, compare with Eqs. (11.117), (12.78) (12.115)

a7 = − pi+1
c a3

(λ∗ − κ∗)(1 + a1Ki
s) + a2p

i+1
c

, compare with Eqs. (11.118), (12.79) (12.116)

Finally, substituting from Eq. (12.114) back to Eq. (12.112) provides

dσm
dε

= a43m+ a5
∂∆λ

∂ε
(12.117)

a4 =
Ki
s

1 + a1Ki
s

(1− a2a6), compare with Eqs. (11.121), (12.81) (12.118)

a5 = − Ki
s

1 + a1Ki
s

(a3 + a2a7), compare with Eqs. (11.122), (12.82) (12.119)

Similarly to the Modified Cam-clay model these equations are identical to those derived in the pre-
vious section if replacing Ki

s by σ̃m. We have also confirmed that no specific distinction between
subcritical and supercritical regions is needed providing the terms a1, a2, a3 are associated with the
correct derivatives. In what follows we thus proceed in a general way and if needed the differences
between supercritical and subcritical regions will be mentioned. Therefore, with reference to the pre-

vious section, the next step is to derive the term
ds

dε
which in the case of constant elasticity return

receives this simplified form

ds

dε
=
∂s

∂ε
+

ds

dχ̃

(
dχ̃

dε

)T

︸ ︷︷ ︸
E2

+
∂s

∂∆λ

(
∂∆λ

∂ε

)T

= E1 + E2︸ ︷︷ ︸
E

+s1

(
∂∆λ

∂ε

)T

(12.120)
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where the corresponding total and partial derivatives are now provided by

∂s

∂ε
=

∂s

∂∆e

∂∆e

∂ε
= E1 (12.121)

∂s

∂∆e
=

2GisQ

1 +
2Gis∆λ

g2
G

(12.122)

∂∆e

∂ε
= PQ (12.123)

ds

dχ̃
=

∂s

∂gG

∂gG
∂χ̃

=
si+1

1 +
2Gis∆λ

g2
G

4Gis∆λ

χ̃3M2
ϕcs

(12.124)

dχ̃

dε
=

[
ds̃

dε

]T ∂χ̃
∂s̃

(12.125)

ds̃

dε
=

∂s̃

∂∆e

∂∆e

∂ε
(12.126)

∂χ̃

∂s̃
=

∂χ̃

∂ϑ

∂ϑ

∂ sin 3θ̃

(
∂ sin 3θ̃

∂J̃

∂J̃

∂s̃
+
∂ sin 3θ̃

∂Ĩ3s

∂Ĩ3s

∂s̃

)
(12.127)

∂s̃

∂∆e
=

∂str

∂∆e
= 2GisQ (12.128)

To obtain the term
∂∆λ

∂ε
we invoke again the consistency condition

dfGCC

dε
=

dr3

dε
=
∂r3

∂J

dJ

dε
+
∂r3

∂g

∂g

∂ sin 3θ

d sin 3θ

dε
+

∂r3

∂σm

dσm
dε

+
∂r3

∂pc

dpc
dε

= 0 (12.129)

which, with the help of Eqs. (12.99) and (12.100), rewrites as

dr3

dε
=

∂r3

∂σm

dσm
dε

+

+

(
∂r3

∂J
+
∂r3

∂g

∂g

∂ sin 3θ

∂ sin 3θ

∂J

)[
ds

dε

]T ∂J
∂s

+

+
∂r3

∂g

∂g

∂ sin 3θ

∂ sin 3θ

∂I3s

[
ds

dε

]T ∂I3s

∂s
+

+
∂r3

∂pc

dpc
dε

(12.130)

= c1
dσm
dε

+ c2

[
ds

dε

]T
j1 + c3

[
ds

dε

]T
j2 + c4

dpc
dε

= 0 (12.131)

where the terms c1 =
∂r3

∂σm
=

∂f

∂σm
and c4 =

∂r3

∂pc
=

∂f

∂pc
are given by Eqs. (12.50) - (12.53) depending

on the active yield surface. Substituting from Eqs. (12.117), (12.120) and (12.114) into Eq. (12.131)
gives

dr3

dε
= g + h

∂∆λ

∂ε
= 0 −→ ∂∆λ

∂ε
= −1

h
g = q (12.132)

g = (c1a4 + c4a6)3m+ ET(c2j1 + c3j2) (12.133)

h = c1a5 + c4a7 + sT1 (c2j1 + c3j2) (12.134)

The consistent tangent stiffness matrix D follows again from substituting back from Eq. (12.132) into
Eqs. (12.117), (12.120) and (12.114). This gives, compare with Eq. (12.106),

D = E + 9a4mm
T + (3a5m+ s1)qT (12.135)
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12.4 Note on numerical implementation

Recall Eq. (12.2) to realize that neither function fGCCd nor its derivatives with respect to σm can be
evaluated when the mean effective stress becomes positive, e.g. the value of the trial stress σtrm > 0
attained during the elastic predictor step. In such a case the stress is first brought back to the yield
surface represented by the Matsuoka-Nakai model, see the relevant section in Chapter 8 devoted to
the Hardening soil model, and subsequently adjusted using the implicit integration scheme described
next. When this return is not permitted, the apex problem must be solved as discussed for example in
Section 4.4. Because all issues pertinent to the Matsuoka-Nakai yield surface are thoroughly discussed
in Section 8.1.2 we again limit out attention to essential steps associated with the formulation of the
Matsuoka-Nakai yield surface within the GCC model. We begin with writing the yield and plastic
potential surfaces as

fGCCMN = Iσ(σ)− sin2 ϕ (12.136)

gGCCMN = J + σmgG(θ̃, ϕcs) (12.137)

where the invariant stress measure Iσ is given by Eq. (8.24). The plastic volumetric and deviatoric
strains are then provided by

∆εplv = ∆λ
∂gGCCMN

∂σm
= ∆λgG (12.138)

∆epl = ∆λ
∂gGCCMN

∂s
= ∆λ

Q−1si+1

2J i+1
(12.139)

and the current stress measures follow from

σi+1
m = σtrm −Ki

s∆λgG (12.140)

J i+1 = J tr −Gis∆λ (12.141)

si+1 = str − 2Gis∆λ
si+1

2J i+1
=

str

1 +
Gis∆λ

J i+1

= str
(

1− Gis∆λ

J tr

)
,

si+1

J i+1
=
str

J tr
(12.142)

An indicator that turns on the apex problem, recall Eq. (4.44), is now given by

gG(θ̃, ϕcs)
J tr

Gis
− σtrm
Ki
s

< 0 (12.143)

Assuming that neither the preconsolidation pressure (pc = pic) nor the bulk modulus (Ks = Ki
s) evolves

within the plastic corrector step leaves the plastic multiplier ∆λ the only unknown to be determined
such that the residuum r = (fGCCMN )i+1 → 0. The associated Newton-Raphson scheme then reads

∆λj+1 = ∆λj −
rj
drj

d∆λ

(12.144)

r0 = fGCCMN (σtr), ∆λ0 = 0 (12.145)

dr

d∆λ
=

dIσ
d∆λ

=

(
∂Iσ
∂I1σ

∂I1σ

∂σm
+

∂Iσ
∂I2σ

∂I2σ

∂σm
+

∂Iσ
∂I3σ

∂I3σ

∂σm

)
∂σm
∂∆λ

+

+
∂Iσ
∂I2σ

∂I2σ

∂J

∂J

∂∆λ
+

∂Iσ
∂I3σ

(
∂I3σ

∂J

∂J

∂∆λ
+
∂I3σ

∂I3s

dI3s

d∆λ

)
(12.146)

where the not yet defined partial derivatives receive the forms, otherwise refer to Section 8.3.2,

∂σm
∂∆λ

= −Ki
sgG (12.147)

∂J

∂∆λ
= −Gis (12.148)

dI3s

d∆λ
=

(
∂I3s

∂s

)T ds

d∆λ
= −

(
∂I3s

∂s

)T strGis
J tr

(12.149)
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Further comments concerning initialization of the preconsolidation pressure pinc and the bulk mod-
ulus Kin

s are consistent with Section 11.4.

12.5 Testing implementation with simple laboratory tests

Simple laboratory tests are again simulated to test the model implementation. Herein, the material
parameters summarized in Table 12.2 are used. Depending on the initial stress and the volumetric
strain increment, the algorithm switches between the constant and variable elasticity return mapping,
recall Section 11.5. Nevertheless, the version grounding on the constant elasticity return mapping
is implemented in the current version of GEO5 FEM. Because the effect of initial stiffness on the
predicted stress-strain response is comparable to the MCC model, recall Section 11.5.1, we focus on
the issue of softening, which is the essential difference between the GCC and MCC models. In all
numerical experiments only the triaxial loading conditions are be examined.

Table 12.2: Material properties used for triaxial test

ν κ λ ein Mcs ϕ [◦] ϕcs [◦]

0.26 0.025 0.181 1.67 0.794 40 34

The first test considers an undrained triaxial test. The sample is first stressed in isotropic com-
pression (IC) to the value of mean effective stress σm = −100 kPa starting with pinc = 1 kPa and

Kin
s =

1

κ∗
kPa. The second load stage assumes an undrained triaxial compression (TC). The results

are plotted in Fig. 12.2. Is is seen that the critical state was eventually reached. This example is
selected primarily to show agreement between the Modified and the Generalized Cam-clay models as
in triaxial compression the variable χ(θ = 30◦) = 1. Also because ∆εv = ∆εelv , the analysis adopts the
constant elasticity return mapping algorithm with both the bulk (Ks) and shear (Gs) moduli being
constant equal to their values at the end of the isotropic compression state.
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Figure 12.2: Undrained triaxial test - comparing cam-clay and generalized cam-clay model

The second example aims to test the response upon softening. A similar loading/unloading se-
quence as plotted in Fig. 11.8(a) is again examined. Since the shear strength is now controlled by the
angle of internal friction ϕ rather than by the Mcs-line the onset of plasticity appears much sooner
resulting also in much less of softening in comparison to the prediction provided by the MCC model.
With the MCC model the shear strength is significantly overestimated. Note that the onset of soften-
ing with the MCC model would be associated with the red bullet on the dashed red line in Fig. 12.3(a).
Again, the orange yield surface in 12.3(a) represents an intermediate state evolving prior to finally
arriving at the critical state.
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Similarly to the Modified Cam-clay model, modeling softening with triaxial compression (constant
stress state) required application of the Arc length method in the stress loading regime. To avoid this,
the loading via prescribed displacements only would be required. More detailed discussion on this
numerical experiment is available in Section 11.5.2.
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Figure 12.3: Drained triaxial test: a) loading path and evolution of yield surface, b) evolution of mean
(σm) and equivalent deviatoric (J) stress measures as a function of vertical strain

12.5.1 Comparing GCC and MCC models in triaxial compression and extension

It has been found that predictions based on circular yield surface in the deviatoric plane (Drucker-
Prager, Modified Cam-clay models) do not agree well with experimental observations. The literature
further advocates the use of yield surfaces that plot somewhere in between circle and Mohr-Coulomb
hexagon in the deviatoric plane. Finally, the comments on the shape of plastic potential in the
deviatoric plane, see [65], support the implementation of the Generalized Cam-clay model in the
framework of non-associated plasticity with a circular shape of plastic potential and rounded triangular
shape of yield surface in the deviatoric plane.

In all experiments the sample was first isotropically stressed to arrive at the mean stress σm = −200
kPa. When interested in the effect of highly overconsolidated states the sample was then isotropically
unloaded to reach the initial overconsolidated stress σm = −20 kPa prior to shearing. The results
appears in Figs. 12.4 - 12.7. Note that CDP stands for a circular shape while RTDP for a triangular
shape of the yield surface in the deviatoric plane. As seen, formulation of the GCC model assuming
a circular shape in the deviatoric plane (GCCCDP) is also examined. It is worth mentioning that
when testing overconsolidated soils the soil within the yield surface was considered a linear elastic for
simplicity.

Fig. 12.4 shows the results for a normally consolidated sample loaded in triaxial compression.
Both the initial and final (critical state) yield surface is displayed in Fig. 12.4(a). As expected, for
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this particular example all models deliver the same response. Recall that for triaxial compression the
initial yield stress coincides for all yield surfaces and in correspondence with the formulation evolves
in the same way for all models, recall Fig. 12.2.

The results for overconsolidated soils are plotted in Fig. 12.5 together with those derived from
the GCCCDP model. Clearly, the same response is predicted by both Generalized Cam-clay models.
Fig. 12.5 shows again evolution of the yield surface. Arrows along the loading path indicate the
softening regime after the first yielding is met. Normals to the yield surface confirm an initial steeper
slope of a descending part of the curves plotted for the GCC models in Fig. 12.5(c) when compared to
the evolution of volumetric strain predicted by the MCC model. As for normally consolidated soils,
all predictions eventually arrive at the same critical state.

An expected difference between both formulations of GCC models becomes visible when examining
the triaxial extension tests. Fig. 12.6 shows the results for normally consolidated soils. Note that the
GCCRTDP model (the one implemented in GEO5 FEM) delivers a considerably softer response when
compared to the predictions provided by the MCC and GCCCDP models. This fact is further explained
in Fig. 12.6(a), which shows that the critical yield surface for the GCCRTDP model is reached at much
lower stresses than for the other two models (not shown). Such a critical comparison also suggests
that the use of critical state models requires some caution as the formulations based on the constant
slope of the critical state line (CDP) may significantly overestimate the final failure, see also discussion
in [65] on the problem of a rigid strip footing.

Perhaps the most interesting results are presented for overconsolidated soils loaded in triaxial
extension, see Fig. 12.7. Note that for the assumed loading path the MCC and GCCCDP predict
hardening while softening is observed for the GCCRTDP model. So not only quantitatively, but also a
qualitatively different behavior of clayey soils can be predicted with different formulations of critical
state models.

12.6 Generalized Cam-clay model in stability analysis

Similarly to the Modified Cam-clay model the strength reduction procedure corresponds to a simul-

taneous reduction of both the peak ϕ and critical ϕcs friction angles while keeping the stiffness K
constant, while the preconsolidation pressure pc is allowed to evolve, recall Fig. 11.9. Implementation
of the stress return algorithm within a given reduction step and the formulation of the algorithmic
tangent stiffness matrix thus follows Sections 12.2.2 and 12.3.2, respectively.
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Chapter 15

Interface constitutive model
A proper modeling of soil–structure interaction requires a suitable treatment of relative movement of
the structure with respect to the soil that usually occurs. In the framework of continuum mechanics,
the most appealing way of treating interfaces is the use of interface elements discussed in Section 17.2.5.
This section introduces an interface material model that can be used to simulate contact between two
materials, e.g., a concrete pile and soil.

Table 15.1: Parameters of interface constitutive model

Symbol Units Description

Kn [MN/m3] Normal stiffness
Ks [MN/m3] Tangential stiffness

µ [-] Interface friction (µ = tanϕ)
c [kPa] Cohesion
ϕ [◦] Angle of internal friction
ψ [◦] Angle of dilation (ψ = 0)
σt [kPa] Tensile strength

δc [-] Cohesion reduction factor (c = δc · csoil)
δϕ [-] Friction reduction factor (tanϕ = δϕ · tanϕsoil)

The material parameters of the interface model are listed in Table 15.1. Similarly to material
models of the Mohr-Coulomb type the nonlinear response is controlled by the interface shear strength
parameters c and ϕ. The model also allows us to reduce or completely exclude tension by specifying
the tensile strength σt < c cotϕ in the direction normal to the interface. The elastic response is driven
by normal and tangential stiffnesses Kn and Ks representing the relation between interface tensile
σ (normal) and shear τ (longitudinal) stresses and normal [[u]] and shear [[v]] relative displacements
(jumps), respectively, developed along the interface.

�
�
�
�

c cotg

ψ = 0
volume preserving
return mapping

i−1 i−1(τ     σ     )
1

c

−σ

final failure surface

tan

tσ

Trial stress tr(τ    σ  )i i
tr

ϕ

Updated stress ii

initial failure surface

ϕ
τ

(τ    σ  )

Figure 15.1: Failure surface for interface model

The interface material is assumed in GEO5 FEM to be well represented by the Mohr-Coulomb
failure criterion with tension cut off as seen in Fig. 15.1.
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An elastic – perfectly plastic response of the interface material in shear is assumed. Such a behavior
is schematically illustrated in Fig. 15.2(a) showing a variation of the shear stress as a function of the
relative tangential displacement. In tension or compression a purely elastic response of the interface
material is considered. When the tensile stress σ exceeds a certain allowable strength limit σt, the
initial yield surface collapses to a residual surface which corresponds to dry friction, see Figs. 15.1 and
15.2(b).

maxτ

maxτ

us un

Ks Kn

τ σ

tσ
1 1

Figure 15.2: Constitutive model for interface

15.1 Yield surface and stress update procedure

The mathematical representation of the initial yield surface displayed in Fig. 15.1 is given by

f INT = |τ |+ σ tanϕ− c (15.1)

where ϕ and c are the angle of internal friction and cohesion of the interface material, respectively.
The direction of the plastic flow depends on the shape of the plastic potential surface. Here, a non-
associated plastic flow rule is assumed with the plastic potential function written as

gINT = |τ |+ σ tanψ (15.2)

where ψ is the angle of dilation. In analogy to material models described in the previous sections,
the angle of dilation controls the magnitude of the irreversible (plastic) volume expansion. As stated
in the previous paragraph, the plastic response is limited to shear only which corresponds to the
value of the dilation angle ψ equal to zero (volume preserving return mapping), see Fig. 15.1. Thus,
setting ψ = 0 gives the normals to the yield and potential surfaces in the form, recall for example the
Mohr-Coulomb model in Chapter 5 and the corresponding equations (5.17) - (5.22),

n =
∂f INT

∂σ
=

{
τ/|τ |
tanϕ

}
ng =

∂gINT

∂σ
=

{
τ/|τ |

0

}
(15.3)

where the stress vector σ follows from Eq. (17.43)

σT = {τ, σ}

The normal to the plastic potential function ng then provides the direction of the plastic flow governing
the return mapping algorithm. This algorithm is schematically depicted in Fig. 15.1. In particular,
when solving a plasticity problem the analysis is carried out in several load increments. To that
end, suppose that stresses at state i are known and we wish to proceed to a new stress state i + 1
by applying a new load increment. This step results into an increment of the vector of relative
displacements ∆ [[u]] T = {∆ [[u]] ,∆ [[v]]}. The elastic “trial” stresses are provided by

τ tr = τ i +Ks∆ [[u]]i+1 (15.4)

σtr = σi +Kn∆ [[v]]i+1 (15.5)
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The particular form of ng just confirms the elastic response in the normal direction so that

σi+1 = σtr

as evident from Figs. 15.1 and 15.2. The shear stress then follows from the yield condition (15.1).
Note that during plastic flow the stresses must remain on the yield surface. Therefore

(f INT )i+1 = |τ i+1|+ σi+1 tanϕ− c = 0 (15.6)

Next, multiplying both sides of Eq. (15.6) by the first component of ng, noting that τ i+1/|τ i+1| =
τ tr/|τ tr| and then solving for τ i+1 gives

τ i+1 =
(
−σtr tanϕ+ c

) τ tr

|τ tr|

Thus, in the absence of pore pressure the stresses at the end of the i+ 1 load increment are given by{
τ
σ

}i+1

= Kn [[v]]i+1

{
0
1

}
+
(
−σtr tanϕ+ c

){ τ tr/|τ tr|
0

}
(15.7)

15.2 Tangent stiffness matrix

Following [73] the algorithmic tangent stiffness matrix D can be found from the expression, recall for
example Eq. (4.19),

D =
∂σi+1

∂ [[u]]i+1
(15.8)

Referring to Eq. (15.7) it becomes evident that

∂

(
Kn [[v]]i+1

{
0
1

})T

∂

{
[[u]]i+1

[[v]]i+1

} = Kn

[
0 0
0 1

]
(15.9)

∂

(
(−σtr tanϕ+ c)

{
τ tr/|τ tr|

0

})T

∂

{
[[u]]i+1

[[v]]i+1

} =

[
a11 a12

0 0

]
(15.10)

where

a11 = (−σtr tanϕ+ c)
∂

∂τ tr

(
τ tr

|τ tr|

)
∂τ tr

∂ [[u]]i+1

a12 =
∂(−σtr tanϕ+ c)

∂σi+1

τ tr

|τ tr|
∂σi+1

∂ [[v]]i+1

After expanding individual derivatives in the above expressions we get

∂

∂τ tr

(
τ tr

|τ tr|

)
=

1

|τ tr|

(
1− τ trτ tr

|τ tr||τ tr|

)
= 0

∂(−σtr tanϕ+ c)

∂σi+1
= − tanϕ

∂τ tr

∂ [[u]]i+1
= Ks

∂σi+1

∂ [[v]]i+1
= Kn
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Finally, introducing the above expressions back into Eq. (15.10) and then adding to Eq. (15.9) yields
the desired tangent stiffness matrix in the form

D =

[
0 −Kn tanϕ

(
τ tr/|τ tr|

)
0 Kn

]
(15.11)

It is interesting to see that with ψ = 0 the algorithmic tangent stiffness matrix does not depend on
the shear stiffness Ks. So when moving beyond the elastic limit, the choice of Ks is irrelevant. This
observation will be addressed in subsequent section with regard to a practical application of interface
elements.

15.3 Application of interface elements in structural analysis

It has been demonstrated in a number of practical applications that meaningful results can only be
obtained providing the interface elements are adopted to allow for the evolution of relative displace-
ments along the soil-structure interface. While simple from an implementation point of view, this step
introduces a number of modeling as well as computational complications the user should be aware of.
Some of the more important ones will now be discussed in greater detail.

Figure 15.3: Topology, soil profile and construction stages

As a suitable example we consider an analysis of a sheeting wall performed in several calculation
stages as schematically shown in Fig. 15.3. Point out that the initial stresses were generated with
the help of K0 procedure described in Section 1.14. For simplicity, the analysis was performed using
elastic perfectly plastic Mohr-Coulomb model with material parameters listed in Table 15.2.

Table 15.2: Material properties of selected soils
soil E = Eur [MPa] ν c [MPa] ϕ [0] ψ [0] γ [kN/m3]

F8 - CH 4 0.42 8 17 0 20.5
S5 - SC 12 0.35 12 28 0 18.5

Choice of nonlinear constitutive model

Here, the previously developed Mohr-Coulomb failure criterion is adopted to simulate an imperfect
bonding between the retaining structure and soil, Fig. 15.1. A tension cut-off condition with σt = 0 is
invoked to limit tensile stresses immediately adjacent to the retaining wall. Also, plastic volumetric
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strains are excluded by setting the dilation angle ψ = 0. Consequently, the elastic interface response
in tension/compression is a priori predicted. Once tensile tractions are developed at any point along
the interface the initial yield surface is abruptly switched to the final one, the dashed line in Fig. 15.1.
The new yield surface thus becomes active whenever the interface closes upon compression.
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Figure 15.4: Influence of interface elements: predicted deformations of embedded wall and distributions
of bending moments

The importance of interface elements to predict realistic behavior is clearly seen from Fig. 15.4. If
the perfect bonding is assumed (analysis without interface elements) the condition of zero shear stress
at the ground surface (condition to maintain right angle between the earth retaining structure and
ground surface) produces an unacceptable deformation of the structure into the soil - the structure is
essentially pulled by the adjacent soil. This results in an unrealistic prediction of bending moment, the
dashed line in Fig. 15.4. The dot-dashed lines then represent the results derived with the use of interface
elements and the Mohr-Coulomb plasticity model driving the evolution of mutual displacements along
the soil-structure interface. These results are at least qualitatively close to those predicted by the
GEO5 Sheeting verification program based on the theory of dependent pressures. Here it is worth to
recall a rather problematic determination of the modulus of subsoil reaction, which greatly influences
the resulting deformations of the wall estimated by the program Sheeting verification. Similarly, a less
severe disagreement between the results can be expected upon modifying the initial elastic modulus
of the soil and when adopting a stiffness increasing with depth in finite element simulations. This will
be partly examined in the last paragraph of this section.

Influence of elastic stiffnesses of interface model

As outlined at the beginning of this chapter, see also Section 17.2.5, the interface tractions that do not
violate the yield condition (15.1) are proportional to the relative displacements of the top and button
of the interface according to Eq. (17.43). However, in the elastic regime a perfect bonding is generally
assumed suggesting the displacement jumps [[u]] and [[v]] be equal to zero. The elastic stiffnesses Ks

and Kn in Eq. (17.44) can thus be thought as certain penalty terms of no particular physical meaning,
as long as they are sufficiently high, to allow for the introduction of these constraints into the principle
of virtual work.

It is generally recognized that very high values of the elastic stiffnesses (of several orders of mag-
nitude larger than the elastic moduli of the adjacent soil) may cause ill-conditioning of the resulting
system of algebraic equations owing to the large differences between the diagonal and off-diagonal
terms in the global stiffness matrix. This is often manifested by oscillations of interface tractions in
the interface elements [3], which may eventually result in the loss of convergence of the solution of



186 CHAPTER 15. INTERFACE CONSTITUTITVE MODE

the underlying nonlinear problem. It has been shown that this undesirable effect is not satisfactorily
solved when using the Newton-Cotes integration scheme in place of a more standard Gauss integra-
tion scheme. On the other hand, when allowing for a certain “small” displacement jump along the
interface by reducing the interface stiffness the correct (smooth) representation of interfacial tractions
is recovered. Similar and perhaps an even more clean effect can be achieved with a sufficiently fine
finite element mesh. It has been numerically proven that refining the finite element mesh offers an
elegant way for avoiding numerical problems associated with ill-conditioning of the global (structural)
stiffness matrix.

(a) (b) (c)

Figure 15.5: Influence of finite element mesh on the solution convergence characteristics: a) coarse
mesh, b) medium mesh, c) fine mesh

To confirm the above statements we considered the embedded cantilever wall in Fig. 15.3. The
analysis was performed for three different meshes with a variable degree of refinement as shown in
Fig. 15.5. The soil was excavated in two stages up to a depth of 6,5 m. The normal stiffness Kn = 1000
[MN/m3] was used in all analyses. The shear stiffness, on the other hand, was assigned the maximum
value for which the analysis was successfully completed. These values are stored in Table 15.3.

mesh max Ks [MN/m3] Kn [MN/m3]

a 60 1000
b 80 1000
c 175 1000

Table 15.3: Maximum allowable shear interface stiffness Ks to reach convergence

When attempting to proceed with the third excavation step we experienced the loss of convergence
even when using a very low shear stiffness Ks = 5 [MN/m3]. This result, however, cannot be attributed
to poor behavior of the interface elements but rather to a loss of overall stability due to the evolution
of a critical slip surface. The need for a support system is therefore obvious. Henceforth, all analyses
were performed assuming an anchored cantilever wall supported by ground anchors as schematically
shown in Fig. 15.3. The results presented in Figs. 15.6 and 15.7 and also stored in Tables 15.4 - 15.7
were derived by considering the finest mesh and a point-to-point anchor (only a free length is modeled).

Distributions of bending moments in Fig. 15.6 together with their maximal values listed in Ta-
bles 15.4 and 15.6 clearly demonstrate the significance of high values of normal interface stiffness on
the reliable prediction of bending moments especially when compared with the results provided by
GEO5 Sheeting verification, see also Tables 15.4 and 15.5. Fortunately, the high value of Kn is likely to
have a smaller influence on the stability of the numerical solution as opposed to the shear stiffness Ks.
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Figure 15.6: Influence of initial stiffness of interface elements (Ks,Kn in [MN/m3]): a) 2nd stage, b)
3rd stage, c) 4th stage

Moreover, the results in Table 15.6 indicate that even a relatively low value of Ks needed to maintain
a smooth convergence of the numerical solution allows for acceptable predictions. One explanation
arises from the fact that once at yielding the shear interface traction does no longer depend on the
initial elastic stiffness Ks as evident from Eq. (15.11).

Table 15.4: Maximum values of bending moments - influence of elastic stiffnesses
Stiffness 2nd stage 3rd stage 4th stage
Ks Kn M [kNm] M [kNm] M [kNm] M [kNm] M [kNm] M [kNm] M [kNm]
[MN/m3] field anchor field anchor 1 field 1 anchor 2 field 2
10 5 16.02 22.78 -57.20 27.84 -30.94 -9.27 -48.71
10 10 13.26 25.68 -47.63 29.03 -24.05 -0.34 -37.93
10 100 10.90 26.58 -34.90 28.00 -17.82 10.08 -24.87
100 100 10.96 26.78 -34.80 27.75 -18.35 9.44 -25.64
100 1000 10.68 26.60 -32.86 27.44 -17.37 10.76 -23.71

Table 15.5: Maximum values of bending moments - influence of normal stiffness Kn

Stiffness 2nd stage 3rd stage 4th stage
Ks Kn M [kNm] M [kNm] M [kNm] M [kNm] M [kNm] M [kNm] M [kNm]
[MN/m3] field anchor field anchor 1 field 1 anchor 2 field 2
10 5 16.02 22.78 -57.20 27.84 -30.94 -9.27 -48.71
10 10 13.26 25.68 -47.63 29.03 -24.05 -0.34 -37.93
10 50 11.38 26.71 -36.74 28.27 -18.55 9.06 -26.43
10 100 10.90 26.58 -34.90 28.00 -17.82 10.08 -24.87
10 1000 10.90 26.33 -33.09 27.64 -17.19 10.90 -23.39

Table 15.6: Maximum values of bending moments - influence of shear stiffness Ks

Stiffness 2nd stage 3rd stage 4th stage
Ks Kn M [kNm] M [kNm] M [kNm] M [kNm] M [kNm] M [kNm] M [kNm]
[MN/m3] field anchor field anchor 1 field 1 anchor 2 field 2
5 1000 11.12 26.04 -33.13 27.58 -17.13 11.04 -23.22
10 1000 10.90 26.33 -33.09 27.64 -17.19 10.90 -23.39
50 1000 10.73 26.60 -32.88 27.53 -17.27 10.80 10.76
100 1000 10.68 26.60 -32.86 27.44 -17.37 10.76 -23.71
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Influence of shear strength parameters of interface model

Unlike the elastic stiffnesses Ks and Kn, the interface strength parameters c and ϕ can be derived
from standard laboratory experiments. For preliminary designs theses values are often sought in terms
of fractions of the strength parameters of the adjacent soil, recall Table 15.1,

c = δc · csoil ϕ = δϕ · ϕ.

Fig. 15.7 provides a certain notion as to the influence of δc,ϕ on the degree of soil-structure interaction.
Clearly, the higher the value of δ ≤ 1 the stronger the interface resistance, which essentially increases
the resistance of the ground below excavation and consequently also the bending moments. Obviously,
there is a family of construction materials which require different values of the reduction parameter
δ. While δ = 1 might be acceptable for concrete, for steel the value of δ = 0.3 would be perhaps more
appropriate.
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Figure 15.7: Influence of shear strength parameters (Ks,Kn in [MN/m3]): a) 2nd stage, b) 3rd stage,
c) 4th stage

Influence of initial elastic modulus of soil

It is well documented that the soil stiffness may have a considerable influence not only on the surface
settlement behind the wall but also on the behavior of the wall itself. This can be seen from Table 15.7
summarizing the results from two analyses with variable stiffness of the soil.

Table 15.7: Maximum values of bending moments - influence of shear stiffness Ks

Stiffness 2nd stage 3rd stage 4th stage
Soil Ks M [kNm] M [kNm] M [kNm] M [kNm] M [kNm] M [kNm] M [kNm]

Modulus [MN/m3] field anchor field anchor 1 field 1 anchor 2 field 2
E 50 11.12 26.04 -33.13 27.58 -17.13 11.04 -23.22
3E 100 11.12 26.04 -33.13 27.58 -17.13 11.04 -23.22

GEO5 Sheeting 11.12 26.04 10.68 26.60 -32.86 27.44 -17.37



Chapter 16

Water flow models

To better understand the application of water flow models in steady state and transient seepage
problems we start from the formulation of constitutive model analogous to Hooke’s law used in the
previous chapters. In seepage analysis such a constitutive model is known as Darcy’s.

x

GWT

H h=H

z

Figure 16.1: Coordinate system

As a point of departure, consider the coordinate system in Fig. 16.1 and define the total (pieso-
metric) head h in terms of the pressure head hp = p/γw (recall that the pore pressure p is positive
when in compression) and the elevation head he as

h = hp + he =
p

γw
+ z, γw = ρwg ≈ 10[kNm−3] (16.1)

The generalized form of Darcy’s law describing the flow in a porous medium then reads [65, 50, 45]

nSvws = −KrKsat∇h, vws = vw − vs (16.2)

where, vr stores the components of the velocity vector of a given phase r = w, s and Ksat [ms−1] is
the permeability matrix for S = 1 (fully saturated soil). Limiting attention to an orthotropic material
the permeability matrix is diagonal and in two-dimensional space pertinent to Fig. 16.1 is written in
terms of directional permeabilities as

Ksat =

[
kx,sat 0

0 kz,sat

]
(16.3)

Note that in GEO5 FEM the porosity n is calculated from the initial void ratio adopting Eq. (2.4).
Table 16.1 stores the basic parameters needed in the description of seepage in a fully saturated medium.

Table 16.1: Material parameters to define flow in fully saturated medium

Symbol Units Description

kx,sat [m/day] Saturated permeability along x-axis
kz,sat [m/day] Saturated permeability along z-axis
ein [-] Initial void ratio
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Several relationships are available in the literature to define the dimensionless relative permeability
Kr ∈ 〈0, 1〉 for the modeling of unsaturated flow. The models implemented in GEO5 FEM are:

hTZ

K  = 1r

rK  = 1/R

hp

hp

min

rlog K
1

K

hp

r

(a) (b)

Figure 16.2: Variation of permeability with pore fluid pressure: a) Log-linear model [51, 65] , b)
Gardner’s and van Genuchten’s model [26, 82]

16.1 Log-linear model

Table 16.2 lists material parameters needed by the Log-linear model.

Table 16.2: Parameters of Log-linear model

Symbol Units Description

R [-] Reduction factor (sufficiently large number)
hTZ [m] Pressure head transition zone
hmin
p [m] Minimum pressure head

Sr [-] Residual (irreducible) degree of saturation
b [-] Model parameter

When the soil is assumed to be above the phreatic surface (ground water table) the permeability
is reduced by a large factor R. A transition zone between the fully saturated (S = Kr = 1) and
fully unsaturated (S,Kr → 0) soil is then represented by the pressure head transition zone hTZ [m].
Introducing such a zone not only supports the laboratory observations but also stabilizes the required
iterative algorithm typically based on the modified Newton-Raphson scheme with the permeability
matrix being kept constant during iterations. According to Fig. 16.2(a) the relative permeability Kr

is then given by

Kr(hp) = 10
(hp−hmin

p ) logR

hTZ , hmin
p ≤ 0 (16.4)

where hmin
p is the minimum pressure head associated with Ssat = 1 in GEO5 FEM (typically hmin

p = 0).
In transient flow analysis the evolution of degree of saturation S is assumed in the form

S = Sr + (Ssat − Sr) Θ (16.5)

S = (1−Θ)Sr, GEO5 FEM (16.6)

Θ = Kb
r (16.7)

where Θ is the normalized water content, see e.g. [82], b is a fitting parameter, and Sr represents
an irreducible limit of saturation defined as the value of S for which capacity, the gradient dS/dhp,
becomes zero. The two parameters b and Sr can be deduced from the soil water retention curve [82].
A linear relationship between Θ and Kr with b = 1 was considered for example in Warrick [84]. Note
that unlike van Genuchten’s model described in Section 16.3 Eq. (16.7) fails to predict zero capacity
at hp → 0, see also Figs. 16.3(c) and 16.4(g,h,i).
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16.2 Gardner’s model

Table 16.3 lists material parameters needed by Gardner’s model.

Table 16.3: Parameters of Gardner’s model

Symbol Units Description

a [1/m] Model parameter
Sr [-] Residual (irreducible) degree of saturation
b [-] Model parameter

A somewhat simpler variant of Eq. (16.4) plotted in Fig. 16.2(b) was introduced by Gardner already
in 1958 [26] in the form

Kr(hp) = eahp = 10ahp log e (16.8)

where a [m−1] is the model parameter. Parameters b and Sr needed in transient flow analysis are
decribed in Section 16.1, see Eqs. (16.5) - (16.7).

16.3 Van Genuchten’s model

Table 16.4 lists material parameters needed by the Van Genuchten model.

Table 16.4: Parameters of van Genuchten’s model

Symbol Units Description

α [1/m] Model parameter
n [-] Model parameter (do not match with porosity n in Eq. (16.2))
Sr [-] Residual (irreducible) degree of saturation

The van Genuchten model [82] is the most advanced water flow model implemented in GEO5 FEM.
It suggests the variation between the relative permeability and the pore fluid pressure, see graphical
representation in Fig. 16.2(b), in the form

Kr(hp) =

{
1− (−αhp)n−1 [1 + (−αhp)n]−m

}2

[1 + (−αhp)n]m/2
, hp < 0 (16.9)

where α > 0 [m−1], n > 1 [-], m = 1− 1/n are model parameters to be estimated from observed soil
water retention data. In van Genuchten’s model [82] the normalized water content Θ in Eq. (16.5) is
provided by

Θ = [1 + (−αhp)n]−m, hp < 0 (16.10)

16.4 Comparing performance of individual water flow models

Individual models are compared in Figure 16.3. The following material and model parameters were
assumed: Ssat = 1.0, Sr = 0.1, a = 5 [m−1], R = 1000, hmin

p = 0, hTZ = 1.4 [m], n = 2, α =
2 [m−1]. Parameters a,R, hTZ and α were selected to match the relative permeability provided by
Equations (16.4) - (16.9) as close as possible. Clearly, the Gardner and Log-linear models are essentially
equivalent.

In addition, Figures 16.4 help to identify the influence of these parameters on the corresponding
model performance. Regarding this, it has been suggested in [72] that for example in estimation of
ground water table via steady state water flow analysis the choice of a particular model does not play a
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significant role. This could be exploited in situations where a highly nonlinear variation of Kr does not
allow for a smooth convergence of the iteration process. On the contrary, reasonable predictions, both
in terms of the overall flux and location of ground water table, can be found with the application of the
most simple Gardner’s model with a suitably adjusted value of a (e.g., a ≈ 1) resulting in considerably
more favorable convergence characteristics, compare distributions in Fig. 16.4(a) for a = 1 and a = 5.
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Figure 16.3: Comparison of various models: a) relative permeability, b) degree of saturation, c)
capacity ( dS/ dhp)
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Figure 16.4: Influence of model parameters - Relative permeability: a) Gardner, b) Log-linear, c) van
Genuchten; Degree of saturation: d) Gardner, e) Log-linear, f) van Genuchten; Capacity dS/dhp: g)
Gardner, h) Log-linear, i) van Genuchten



Chapter 17

Governing equations of finite element
method, Finite element types,
Earthquake, Consolidation, Water flow

17.1 Governing equations of finite element method

This section provides a brief introduction to finite element method (FEM) aiming to introduce some
basic definitions associated with the solution of a general nonlinear problem at a structural level. Such
an issue arises with the application of any of the plasticity models introduced in the previous Sections.
Further details can be found in one of the famous FEM books, e.g., [36, 6, 10].

Implementation in GEO5 FEM grounds on the principle of virtual displacements. Because the
material response is expected to be nonlinear, we present this principle in incremental (linearized)
form as

δEi = δEe (17.1)

δEi =

∫
Ω
δ∆εT∆σ dΩ = δ∆rT

∫
Ω

BTDB dΩ︸ ︷︷ ︸
K

∆r + δ∆rT
∫

Ω
BT∆σin dΩ (17.2)

δEe =

∫
Ω
δ∆uT∆X dΩ +

∫
Γt

δ∆uT∆t dΓ = δ∆rT
∫

Ω
NT∆X dΩ + δ∆rT

∫
Γt

NT∆t dΓ (17.3)

where δEi is a virtual work of internal forces, δEi is a virtual work of external forces, Ω and Γt stand
for an analysis domain and a portion of external boundary with the prescribed tractions, respectively,
X is a vector of body forces (e.g., bulk weight of soil), t represents applied surface tractions (e.g.,
surcharge distributed over the terrain boundary), σin is an initial stress (e.g., prestress in anchors,
stress due to thermal effects, etc.), N is a matrix of standard nodal shape functions and B is a geometric
matrix to approximate the distribution of displacements u and strains ε in an analysis domain via
nodal displacements r as

u(x) = N(x)r (17.4)

ε(x) = B(x)r (17.5)

and D is the elastoplastic (algorithmic) tangent stiffness matrix consistent with integration of local
constitutive equations pertinent to a given material model as described in subsequent chapters. Be-
cause Eq. (17.1) must be satisfied for an arbitrary kinetically admissible virtual displacements δr and
strains δε we get

K∆r = ∆f , K =
Ne
A
e=1

Ke, ∆f =
Ne
A
e=1

∆f e (17.6)

where K is the tangent stiffness matrix at a structural level, ∆r collects the increment of nodal
displacements and ∆f represents the increment of external load. The symbol A represents standard
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localization step of element quantities (e) into their structural counterparts with Ne being the total
number of elements.

Figure 17.1 provides a graphical representation of various types of elements used in the current
two-dimensional version of GEO5 FEM in standard stress (static) and earthquake (dynamic) analyses,
where u, v are the nodal displacements and ϕ is the nodal rotation. Elements used with consolidation
and water flow analyses are presented separately in the corresponding sections.

Figure 17.1: List of finite elements implemented in GEO5 FEM

17.2 Finite elements for soil and compatible structural members

The following section provides a brief overview of finite elements implemented in GEO5 FEM. The
presented elements can be divided into two groups: two-dimensional plane strain or axisymmetric
elements (3-node and 6-node triangular elements, 4-node and 8-node quadrilateral elements) and
special elements such as the 2-node rod element to model anchors props, and geotextiles, 2-node
and 3-node beam elements to model supporting walls, tunnel linings or foundations and the 4-node
and 6-node interface elements to model relative movement of the structure with respect to the soil.
Typically, such finite elements are constructed within the framework of isoparametric formulation,
which means that the same interpolation functions are used to approximate geometry as well as the
displacement field in standard analysis, excess pore pressure in consolidation, or pressure head in water
flow analysis. Because all primary variables can be are treated identically, we limit attention to the
approximation of displacement field via nodal displacements a potentially also nodal rotations in the
case of beam elements.
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17.2.1 2-node rod element

The 2-node rod element with the linear interpolation of the displacement field is shown in Fig. 17.2.
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Figure 17.2: 2-node rod element

Kinematics

The local displacement ul written in terms of the global degrees of freedom, two for each node,
re = {u1, v1, u2, v2}T reads

ul = N1 (u1 cosα+ v1 sinα)︸ ︷︷ ︸
ul1

+N2 (u2 cosα+ v2 sinα)︸ ︷︷ ︸
ul2

(17.7)

where the isoparametric element shape functions N1, N2 are given by

N1 =
1

2
(1− ξ)

N2 =
1

2
(1 + ξ)

Element stiffness matrix

Taking the derivative of Eq. (17.7) with respect to the local x axis gives the axial strain in the form

ε = Br (17.8)

where the (1× 4) matrix B attains the following form

B =
1

L
{− cosα,− sinα, cosα, sinα} (17.9)

where L is the element length. To conclude the derivation of the element stiffness matrix we introduce
the constitutive law in the form

σ = Eε (17.10)

where E is the Young modulus. Finally, making use of Eq. (17.2) on the element level provides the
element stiffness matrix Ke as

Ke =
EA

L


cosα cosα cosα sinα − cosα cosα − cosα sinα
cosα sinα sinα sinα − cosα sinα − sinα sinα
− cosα cosα − cosα sinα cosα cosα cosα sinα
− cosα sinα − sinα sinα cosα sinα sinα sinα

 (17.11)

where EA/L represents the element axial stiffness; A is the the element cross-sectional area.
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Figure 17.3: a) 2-node and 3-node beam elements, b) Stress resultants

17.2.2 2-node and 3-node beam elements

The 2-node and 3-node beam elements with three degrees of freedom (two translations and one rota-
tion) in each node appear in Fig. 17.3(a).

Kinematics

In plane strain or axisymmetric analysis the beam elements can be introduced to represent, e.g., a
retaining wall or a circular foundation slab. The generalized stress resultants shown in Fig. 17.3(b)

σT = {nx,mz, qy, nθ,mθ} (17.12)

are then assumed per 1m run. While the first three components appear only in the plane strain
analysis, the other two arise when axisymmetric conditions apply. In particular, nx,mz, qy represent
the membrane (normal) force, bending moment and shear force, whereas nθ and mθ are the circum-
ferential (hoop) membrane force and circumferential (hoop) bending moment. For an isotropic beam
element the above stress resultants are related to the generalized strains, that now involve extension
and curvatures of the middle surface, through the material stiffness matrix D in the form


nx
mz

qy
nθ
mθ

 =
Eh

1− ν2



1 0 0 ν 0

0
h2

12
0 0

νh2

12

0 0
k(1− ν)

2
0 0

ν 0 0 1 0

0
νh2

12
0 0

h2

12





dul

dx

− dϕz
dx

−ϕz +
dvl

dx
vl sinα− ul cosα

ρ

−θ cosα

ρ


(17.13)

where h is the plate thickness and ρ is the circumferential radius. The material parameters E, ν
stand as usual for Young’s modulus and Poisson’s ratio. The constant k can be determined from the
condition that the work of the actual stresses must be equal to the work of the averaged stresses.
Note that for a rectangular cross-section, k = 5/6. Further details are available in [10]. Finally,
the unknown functions in the local displacement field ul =

{
ul, ϕz, v

l
}

T stand for the longitudinal
displacement, rotation about the z-axis and vertical displacement given in the local coordinate system,
respectively. For plane strain analysis the last two rows in Eq. (17.13) are not included.

The components of the local displacement field follow from the standard finite element approxi-
mation using the element shape functions and the nodal degrees of freedom

ul = Nrl (17.14)
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Table 17.1: Shape functions for 2-node beam element

Node i Function Ni

1 1− ξ

2 ξ

3
1

L(1 + 2κ)

[
6ξ − 6ξ2

]
4

1

1 + 2κ

[
(1 + 2κ)− 2(2 + κ)ξ + 3ξ2

]
5

1

L(1 + 3κ)

[
−6ξ + 6xi2

]
6

1

1 + 2κ

[
−2(1− κ)ξ + 3ξ2

]
7

1

1 + 2κ

[
(1 + 2κ)− 2κξ − 3ξ2 + 2ξ3

]
8

L

1 + 2κ

[
−(1 + κ)ξ + (2 + κ)ξ2 − ξ3

]
9

1

1 + 2κ

[
2κξ + 3ξ2 − 2ξ3

]
10

L

1 + 2κ

[
κξ + (1− κ)ξ2 − ξ3

]

2-node beam element: Detailed derivation of the finite element matrices for the 2-node beam
element is given in [10]. Here we present only the most essential part. In particular, the matrix N in
Eq. (17.14) assumes the form

N =

 N1 0 0 N2 0 0
0 −N3 N4 0 −N5 N6

0 N7 −N8 0 N9 −N10

 (17.15)

where individual shape functions are listed in Table 17.1. The variable κ that appears in individual
terms of the shape functions is given by

κ =
6EIz
kµAL2

(17.16)

where k is the shear correction factor, Iz is the moment of inertia with respect to z axis and µ is the
elastic shear modulus. The finite element representation of the strain field

εT =

{
dul

dx
,− dϕz

dx
,−ϕz +

dvl

dx
,
vl sinα− ul cosα

ρ
,−θ cosα

ρ

}
(17.17)
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calls for the introduction of the strain matrix B. Using Eq. (17.15) and taking into account the
transformation of coordinates from the local to the global coordinate system it is easy to see that

B =



CN ′1 SN ′1 0 CN ′2 SN ′2 0

−SN ′3 CN ′3 −N ′4 −SN ′5 CN ′5 −N ′6

−S(N3 +N ′7) C(N3 +N ′7) −N4 −N ′8 −S(N5 +N ′9) C(N5 +N ′9) −N6 −N ′10

N1

ρ
0 0

N2

ρ
0 0

0
CN3

ρ
−CN4

ρ
0

CN2

ρ
−CN1

ρ


(17.18)

where

C = cos(α), S = sin(α), N ′i =
1

J

dNi

dξ
(17.19)

The angle α in the above equation is defined in Fig. 17.3 and the Jacobian J follows from Eq. (17.26).
The current radius is given by

ρ =
2∑
i=1

Nixi (17.20)

Table 17.2: Shape functions for 3-node beam element

Node i Regular function Ni Substitute function N i

1
1

2
ξ(ξ − 1)

1

2
(
1

3
− ξ)

2
1

2
ξ(ξ − 1)

1

2
(
1

3
+ ξ)

3 (1− ξ2)
2

3

3-node beam element: Assuming the standard isoparametric shape functions listed in Table 17.2
to approximate the displacement field gives the matrix N in the form

N =

 N1 0 0 N2 0 0 N3 0 0
0 N1 0 0 N2 0 0 N3 0
0 0 N1 0 0 N2 0 0 N3

 (17.21)

Next, recall the representation of the strain field (17.17) and use Eq. (17.21) to arrive at

B =



CN ′1 SN ′1 0 CN ′2 SN ′2 0 CN ′3 SN ′3 0

0 −N ′1 0 0 −N ′2 0 −N ′3 0

−SN ′1 CN ′1 N1 −SN ′2 CN ′2 N2 −SN ′3 CN ′3 N3

N1

ρ
0 0

N2

ρ
0 0

N3

ρ
0 0

0 0 −CN1

ρ
0 0 −CN2

ρ
0 0 −CN3

ρ


(17.22)
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The standard B matrix was again augmented to account for the transformation of coordinates. Param-
eters C, S,N ′i receive the same meaning as in Eq. (17.19) with the Jacobian J found from Eq. (17.27).
For the circumferential strain terms the current radius r now becomes [65]

ρ =
3∑
i=1

N ixi (17.23)

In addition, substitute shape functions N i were used to define the variation of ϕ in the definition of

shear strain −ϕz +
dvl

dx
to avoid shear force locking. Note that the substitute shape functions coincide

with the regular shape functions at the reduced Gaussian integration points. Details can be found
in [21, 65].

Element stiffness matrix

Derivation of the stiffness matrix follows Eq. (17.2). After applying standard numerical integration,
e.g., the Gaussian quadrature with rj being the location of an integration point and wj the associated
weight, the result becomes

• Plane strain analysis

Ke =

N∑
j=1

wjB
T(ξj)DB(ξj)J (17.24)

• Axisymmetric analysis

Ke =
N∑
j=1

wjB
T(ξj)DB(ξj)ρ(ξj)J (17.25)

where the Jacobian J reads

J = L for 2− node element (17.26)

J =
L

2
for 3− node element (17.27)

Locations of integration points within parent elements also shown in Fig. 17.3 are stored in Table 17.3.

Table 17.3: Integration points for 2-node and 3-node beam elements

Integration 2-node beam 3-node beam

point coordinate ξ weight w coordinate ξ weight w

1 0.211324865 0.5 -0.774596669241483 5/9

2 0.788675131 0.5 0.0 8/9

3 0.774596669241483 5/9

17.2.3 Plane 3-node and 6-node triangular elements

This section presents derivation of element stiffness matrix of 3-node and 6-node triangular isopara-
metric elements plotted in Fig. 17.4. These are the only triangular elements implemented in GEO5
FEM.
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Figure 17.4: 3-node and 6-node triagular elements

Kinematics

The displacement interpolation functions are listed in Table 17.4. The element degrees of freedom
(two translational degrees of freedom for each node) are

rT = {u1, v1, u2, v2, u3, v3} 3− node elem (17.28)

rT = {u1, v1, u2, v2, u3, v3, u4, v4, u5, v5, u6, v6} 6− node elem (17.29)

The displacement field inside the element is uniquely described by the above nodal parameters

u =
n∑
i=1

Niui, v =
n∑
i=1

Nivi (17.30)

where n is the number of element nodes.

Element stiffness matrix

The components of the strain tensor follow from Eq. (17.5). The element stiffness matrix is then
defined by Eq. (17.2). Here, the integral is again evaluated by the Gaussian quadrature so that

• Plane strain analysis

Ke =

N∑
j=1

wjB
T(ξj , ηj ,

1

J
)DB(ξj , ηj ,

1

J
)J(ξj , ηj) (17.31)

• Axisymmetric analysis

Ke =

N∑
j=1

wjB
T(ξj , ηj ,

1

J
)DB(ξj , ηj ,

1

J
)ρ(ξj , ηj)J(ξj , ηj) (17.32)

where wj is the weight for a given integration point j, N is the number of integration points and J is
the Jacobian of the transformation given by

J(ξ, η) =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
(17.33)

The linear 3-node element is integrated at one integration point, while N = 7 is assumed for the
quadratic 6-node element, see Fig. 17.4. Locations of integration points within parent elements are
stored in Tables 17.5 and 17.6. Further details on the evaluation of the element stiffness matrix can
be found in [10].
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Table 17.4: Interpolation functions for 3-node and 6-node triangular elements

Node Function Included only if node i

i Ni is defined

i = 4 i = 5 i = 6

1 1− ξ − η −1

2
N4 −1

2
N6

2 ξ −1

2
N4 −1

2
N5

3 η −1

2
N5 −1

2
N6

4 4ξ(1− ξ − η)

5 4ξη

6 4η(1− ξ − η)

Table 17.5: Integration points for a 3-node triangular element

Integration Coordinate Coordinate Weight

point ξ η w

1 1/3 1/3 1/2

Table 17.6: Integration points for a 6-node triangular element

Integration Coordinate Coordinate Weight

point ξ η w

1 0.1012865073235 0.1012865073235 0.06296959027240

2 0.7974269853531 0.1012865073235 0.06296959027240

3 0.1012865073235 0.7974269853531 0.06296959027240

4 0.4701420641051 0.0597158717898 0.06619707639425

5 0.4701420641051 0.4701420641051 0.06619707639425

6 0.0597158717898 0.4701420641051 0.06619707639425

7 0.3333333333333 0.3333333333333 0.11250000000000
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17.2.4 Plane 4-node and 8-node quadrilateral elements

This section presents derivation of element stiffness matrix of 4-node and 8-node quadrilateral isopara-
metric elements plotted in Fig. 17.5. These are the only quadrilateral elements implemented in GEO5
FEM.
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Figure 17.5: 4-node and 8-node quadrilateral elements

Kinematics

The displacement interpolation functions are listed in Table 17.7. Similarly to triangular elements we
consider only translational degrees of freedom, two for each node, so that

rT = {u1, v1, u2, v2, u3, v3, u4, v4} 4− node elem (17.34)

rT = {u1, v1, u2, v2, u3, v3, u4, v4, u5, v5, u6, v6, u7, v7, u8, v8} 8− node elem (17.35)

The displacement field inside the element is again uniquely described by the above nodal parameters

u =

n∑
i=1

Niui, v =

n∑
i=1

Nivi (17.36)

where n is the number of element nodes.

Element stiffness matrix

In analogy to triangular elememts the components of the strain tensor follow from Eq. (17.5) and the
element stiffness matrix is then provided by Eq. (17.2). Here, the integral is again evaluated by the
Gaussian quadrature, which, however, takes a slightly different form in comparison to Eqs. (17.31)
and (17.32)

• Plane strain analysis

Ke =
N∑
i=1

N∑
j=1

wiwjB
T(ξi, ηj ,

1

J
)DB(ξi, ηj ,

1

J
)J(ξj , ηj) (17.37)

• Axisymmetric analysis

Ke =

N∑
i=1

N∑
j=1

wiwjB
T(ξi, ηj ,

1

J
)DB(ξi, ηj ,

1

J
)ρ(ξi, ηj)J(ξi, ηj) (17.38)
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where wi, wj are the weights for a given integration point i, j. The Jacobian J follows from (17.33),
see [10] for further details. The 2 × 2 (N = 2) and 3 × 3 (N = 3) Gaussian integration rules are
considered for 4-node and 8-node elements, respectvely. Locations of integration points within parent
elements are stored in Table 17.8.

Table 17.7: Interpolation functions for 4-node and 8-node quadrilateral elements

Node Function Included only if node i

i Ni is defined

i = 5 i = 6 i = 7 i = 8

1
1

4
(1 + ξ)(1 + η) −1

2
N5 −1

2
N8

2
1

4
(1− ξ)(1 + η) −1

2
N5 −1

2
N6

3
1

4
(1− ξ)(1− η) −1

2
N6 −1

2
N7

4
1

4
(1 + ξ)(1− η) −1

2
N7 −1

2
N8

5
1

2
(1− ξ2)(1 + η)

6
1

2
(1− η2)(1− ξ)

7
1

2
(1− ξ2)(1− η)

8
1

2
(1− η2)(1 + ξ)

Table 17.8: Integration points for a 4-node and 8-node quadrilateral element

Integration Coordinate Weight

order ξ, ηi wi

2× 2 ± 0.577350269189626 1.0

3× 3 ± 0.774596669241483 0.555555555555555

0.0 0.888888888888888
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17.2.5 4-node and 6-node interface elements

This section presents the derivation of the element stiffness matrix for the 4-node and 6-node interface
elements that are compatible with the previously discussed 3-node and 6-node triangular elements.
Both elements are displayed in Fig. 17.6.
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Figure 17.6: 4-node and 6-node interface elements

Kinematics

In the finite element framework the global displacements are approximated using the standard element
shape functions listed in Table 17.9. Referring to Fig 17.6 the displacement field for the 4-node interface
element receives the form

utop = N1u3 +N2u4 (17.39)

ubot = N1u1 +N2u2

vtop = N1v3 +N2v4

vbot = N1v1 +N2v2

In the compact form the global nodal degrees of freedom ui, vi are

rT = {u1, v1, u2, v2, u3, v3, u4, v4} (17.40)

Similarly for the 6-node interface element we get

utop = N1u4 +N2u5 +N3u6 (17.41)

ubot = N1u1 +N2u2 +N3u3

vtop = N1v4 +N2v5 +N3v6

vbot = N1v1 +N2v2 +N3v3

and
rT = {u1, v1, u2, v2, u3, v3, u4, v4, u5, v5, u6, v6} (17.42)

Element stiffness matrix

The stress-displacement relationship of the interface model assumes the form{
τ
σ

}
= D

{
[[u]]l

[[v]]l

}
(17.43)

where [[u]]l and [[v]]l represent the relative displacements of the top and bottom of the interface element
in the local coordinate system, Fig. 17.6. For isotropic linear elastic behavior the interface material
stiffness matrix D takes the form

D =

[
Ks 0
0 Kn

]
(17.44)
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Table 17.9: Interpolation functions for 4-node and 6-node interface elements

Node Function Included only if

i Ni node 3 is defined

1
1

2
(1− ξ) −1

2
N3

2
1

2
(1 + ξ) −1

2
N3

3 (1− ξ2)

where Ks and Kn are the elastic shear and normal stiffnesses, respectively. They can be related to
the interface shear and Young’s moduli Gint, Eint as

Ks =
Gint
t

Kn =
Eint
t

where t represents the interface thickness. It should be noted here that setting the interface stiffnesses
Ks,Kn to low values may lead to excessively large elastic displacements. However, if the elastic
parameters are too large (attempt to model a perfect bond), then the numerical ill-conditioning may
occur. This is usually manifested by the oscillation of interface stresses. It has been argued that
such unwanted oscillatory behavior can be reduced by using the Newton-Cotes integration scheme
(integration points coincide with the element nodes) when computing the element stiffness matrix [24,
34]. On the contrary, the results presented in [22] suggest that the use of the Newton-Cotes integration
scheme has no benefit over the Gaussian quadrature.

The global degrees of freedom in Eqs. (17.40) and (17.42) are related to local displacements in the
form {

[[u]]l

[[v]]l

}
= Br (17.45)

where the matrix B is written as

B = [−TB1 − TB2 TB1 TB2] 4− node elem (17.46)

B = [−TB1 − TB2 − TB3 TB1 TB2 TB3] 6− node elem (17.47)

and

T =

[
cosα sinα
− sinα cosα

]
Bi =

[
Ni 0
0 Ni

]
(17.48)

The element stiffness matrix Ke then follows from

Ke =
L

2

∫ 1

−1
BTDB dr (17.49)

where L is the element length.
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17.2.6 Solution strategies

As typical for the analysis of nonlinear problems a standard step by step incremental procedure (the
total load can be split into a set of increments) is adopted. Equation (17.6)1 then receives the form

Ki
j∆u

i
j = ∆f ij (17.50)

where the scripts i and j stand for the current load increment and the current iteration step, re-
spectively. Schematic representation of this procedure is evident from Fig. 17.7, in which ∆λ is the
coefficient of proportionality and the term F − R represents a vector of out-of-balanced forces. It
arises as a direct consequence of the nonlinear behavior. Here, the attention is limited to standard
plasticity only.

F R,

F.∆λ

R 

u

F

=

u∆u∆ 1 2

∆ f0

∆ f1 = F − R

i

i i

i

iii

1

i
i K

i

K
0

Figure 17.7: Incremental procedure: reason for out-of balanced forces

The GEO5 FEM software offers two methods to solve the system of nonlinear equations:

1. Newton-Raphson method

2. Arc-length method

As indicated in Figs. 17.8 and 17.9 both methods are implemented in three potential variants:

1. FULL - tangent stiffness matrix K is updated after each iteration step (default setting)

2. STEP - tangent stiffness matrix K is updated after each load step

3. NONE - the elastic stiffness matrix K = Kel is used

Newton-Raphson method

To shortly introduce this method we accord our attention to FULL Newton-Raphson method plotted
in Fig. 17.8(a). When referring to imbalance forces the basic equations to be solved in nonlinear

F R,

F.∆λ

u∆

λ − ∆ size of the
load step

u − displacementu1 u2u0

∆

R − 

F − load

internal
forces

forces

surcharge

imbalancef − 

K
K

0
1

equilibrium
iteration of

= F − R

F R,

F.∆λ

u0 u2u1

u∆

F − load

u − displacement

K 0

K 0

R − 

∆

iteration of

equilibrium

internal
forces

f − 

surcharge

λ − ∆ size of the
load step

imbalance
forces = F − R

F R,

F.∆λ

u∆

u0 u1 u2 u − displacement

λ − ∆ size of the 
load step F − load

K
el

∆

R − 
equilibrium

internal
forces

forces

iteration of

surcharge

imbalancef − 

= F − R

(a) (b) (c)

Figure 17.8: Newton-Raphson method: a) update full, b) update step, c) update none

analysis are

F i −Ri = 0 (17.51)
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where F i is the vector of externally applied nodal forces at the end of the i-th loading step and Rk is
the vector of nodal forces found from the element stresses such that

Ri =
Ne
A
e=1

∫
Ωe

BTσie dV (17.52)

Figure 17.8 suggests that Eq. (17.51) might not in general be fulfilled at every step of the solution
process, because the nodal forces Ri depend nonlinearly on the nodal displacements. Therefore, an
iteration is required within a given load increment. The iterative procedure as shown in Fig. 17.8(a)
arises from the consistent linearization of the nonlinear response of the finite element equations at
iteration j−1. The consistently linearized tangent stiffness matrix is therefore formed at the beginning
of every iteration step. The resulting iterative scheme reads

ri0 = ri−1, Ri
0 = Ri−1 =⇒ ∆f0 = F i − F i−1 + ∆f i−1

ε (17.53)

∆f j−1 = F i −Ri
j−1 (17.54)

Ki
j−1∆rj = ∆f j−1 (17.55)

rij = rij−1 + ∆rj (17.56)

Vector ∆f i−1
ε represents the out-of-balance forces found at the end of the previous loading increment

that are linked to the selected solution accuracy ε, see Section 17.2.7.

Note that the Newton-Raphson method is a locally convergent method. Consequently, the method
might not converge if the load increment is too large. In such a case, the load increment is progressively
reduced depending on the “analysis settings”.

Arc-length method

In situations where we seek for the unknown collapse load, e.g., stability analysis of earth slopes, the
Newton-Raphson method introduced in the previous sections may experience rather poor behavior.
This can be attributed to the fact that the solutions by the Newton-Raphson method and closely
related techniques are driven by load increments. The difficulty that arises around the collapse point
can be overcome when driving the solution by displacement increments. This is the essential ingredient
of the Arc-length method discussed hereafter. In particular, the method fixes both the loading and
displacement at the end of the current load increment by introducing a scalar multiplier that controls
the magnitude of the applied load. The load multiplier λ now becomes an additional unknown and
calls for the introduction of an additional equation for its determination. There exist several constraint
equations in the literature employed for the evaluation of λ. In what follows the constraint equations
that arise from the so-called spherical (Crisfield) and linearized arc-length methods are reviewed.
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Figure 17.9: Arc-length method: a) update full, b) update step, c) update none

For illustration, we limit out attention to FULL Spherical Arc-length method proposed by Cr-
isfield [20]. The basic idea behind the Arc-length method is best understood from Fig. 17.9(a). A
fundamental assumption of the method is that the load vector varies proportionally during the analy-
sis. To that end, suppose that the solution process is split into several construction stages and denote
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the external load applied up to the beginning of the current construction stage s as s−1F . The to-
tal load sF = s−1F + F represents a certain “reference” or expected load vector at the end of the
current load stage s and F is the corresponding reference load increment applied at the beginning
of the s-stage. The goal now becomes to determine a fraction λ of the applied load F such that the
vector of out-of-balanced forces ∆f = g converges again to zero in some appropriate measure ε, see
Section 17.2.7. Individual vectors and parameters introduced in Fig. 17.9 are:

• F – total load applied in a given solution stage.

• sF = s−1F + F – total load expected at the end of a given solution stage.

• s−1F – load applied up to stage (s− 1).

• λstart – fraction of F at the beginning of a new load increment.

• λij = λistart + ∆λij – fraction of F at the end of the j-th iteration within the i-th load increment.

• Rstart = λistartF + s−1F – internal forces at the beginning of a new load increment.

• gj – out-of-balanced forces at the end of the j-th iteration.

• ĝj = gj−1 + δλjF – load increment in the j-th iteration.

The starting point of the method is an incremental expression of a differential of the arc-length that
provides the additional constraint equation given by

η2∆rj
T∆rj + β2∆λ2

jF
TF = ∆L2 (17.57)

where

• ∆L – represents a radius of a spherical hyper-surface in (r, λ) (standard Arc-length method
as introduced by Crisfield in [20]; when setting β = 0 → ∆L becomes a radius of a cylinder
(Cylindrical ALM). This parameter is an a priori set step length and serves to evaluate the cor-
responding fraction of the current load increment ∆λ. Note that the selection of this parameter
is essential for the success of the solution. By default, β = 0 in GEO5 FEM.

• β – is a scalar parameter describing the ratio of selected scales for λ and r.

• η – is a scalar parameter which comes from the line search method, see Section 17.2.8

With the help of Eq. (17.57) the graphical representation of the iterative procedure displayed in
Fig. 17.8(a) can be put forward in mathematical terms as follows. Suppose you wish to determine
δrj , in the i-th load increment. Referring to Fig. 17.8(a) we have

δrj = K−1(rj−1)
(
gj−1 + δλjF

)
(17.58)︷ ︸︸ ︷

s−1F + λj−1F︸ ︷︷ ︸−Rj−1

mechanical part of the total applied load

= K−1(rj−1)gj−1︸ ︷︷ ︸
δwj

+δλj K−1(rj−1)F︸ ︷︷ ︸
δvj

, (17.59)

δrj = δwj + δλjδvj =⇒ ∆rj = ∆rj−1 + δrj (17.60)

Next, set
∆λj = ∆λj−1 + δλj (17.61)

and introduce Eq. (17.61) into Eq. (17.57) to get

∆L2 = η2 {∆rj−1 + δwj + δλjδvj} T {∆rj−1 + δwj + δλjδvj}
+ β2 {∆λj−1F + δjF } T {∆λj−1F + δjF } (17.62)
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Rearranging the above equation to collect the terms δλj with the same power gives

a2δλ
2
j + a1δλj + a0 = 0, (17.63)

where

a2 = η2δvj
Tδvj + β2F TF (17.64)

a1 = η2
(
{∆rj−1 + δwj} Tδvj + δvj

T {∆rj−1 + δwj}
)

︸ ︷︷ ︸
2δvj

T {∆rj−1 + δwj}

+2∆λj−1β
2F TF (17.65)

a0 = η2 {∆rj−1 + δwj} T {∆rj−1 + δwj}+ ∆λ2
j−1β

2F TF −∆L2 (17.66)

Two cases are possible when solving Eq. (17.63) for unknown δλj .

• Both roots δλ1
j , δλ

2
j are real, or

• both roots δλ1
j , δλ

2
j are imaginary, see [10].

When the latter possibility occurs, the computation must be restarted with a shorter step ∆L. As for
the real roots it is necessary to choose which one to use. The one which maximizes the angle ϑ found
from

cosϑ =
∆rT

j−1∆rj

∆L
(17.67)

is typically used. A complete algorithm requires determining a starting value of ∆L0. The magnitude
of ∆L0 must be either prescribed manually, or depending on the prior history of iterations the value
of ∆L found at the end of stage s− 1 can be used as a initial value of the arc-length step in the stage
s or it can be estimated from the prescribed load increment ∆λ0. The latter procedure is presented
next. To begin set

δλ0 = 0 δw0 = 0

and write

δr0 = ∆r0 = ∆λ0K−1(rstart)F (17.68)

From Eq. (17.63) it follows that

a0 = a1 = 0

a2 = η2∆r0
T∆r0 + ∆λ2

0β
2F TF −∆L2

0 = 0︷ ︸︸ ︷
∆λ0δv1︷ ︸︸ ︷
K−1(rstart)F

Finally, solving for ∆L0 from Eq. (17.63) we get

∆L0 = ∆λ0

√
η2δv1

Tδv1 + β2F TF (17.69)

The subsequent magnitude of ∆L depends on the history of iteration and may either increase or be
reduced if convergence difficulties are encountered.

Several modifications are available depending on the “analysis setting”. To this end, the interested
reader is refereed to [10]. In addition, it worth pointing out certain drawbacks as well as advantageous
when using the Arc-length method in geotechnical engineering.

Drawbacks: recall that the application of Arc-length method requires the load to change proportionally.
This means that a load increment or a portion of the total applied load can be written as

∆F = ∆λF

F j = λjF
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Although in static problems such requirement does not usually cause any trouble, it becomes a severe
limitation in the time dependent problems such as consolidation. In particular, this method becomes
inappropriate when assigning different time histories to various loads within a single construction
stage. Such a task can be satisfactorily solved only with the Newton-Raphson method.

Advantages: the Arc-length method is particularly useful in problems that involve the search for the
collapse load as typical of stability problems. Note that in stability problems the load leading to
instability is not known a priori.

17.2.7 Convergence criteria

An additional ingredient of the successful implementation of iterative methods are realistic convergence
criteria to terminate the iterative process. In particular, at the end of each iteration step, it should
be checked whether Eq. (17.51) is satisfied within the preset convergence criteria, e.g., given by√√√√√√

(∆rj)T∆rj
j∑

m=1

(∆rm)T∆rm

≤ εd, (17.70)

√
(∆f j)

T∆f j
(∆f0)T∆f0

≤ εf , (17.71)

√√√√√√
(∆uj)T∆f j−1

|
i∑

m=1

(∆rm)T∆f0|

≤ εe, (17.72)

where εd, εf , εe are the preset displacement, out-of-balance forces and energy convergence tolerance,
respectively. The first criterion naturally requires the displacement at the end of iteration to be found
within a certain tolerance, while the second criterion is a measure of the state of equilibrium at the
end of the iteration given in terms of out-of-balance forces. The precision can also be measured by
the work of out-of-balance forces on the current displacement increment as suggested by the third
criterion. This is a rather appealing criterion as it is written in terms of both the displacements and
forces. Similar convergence criteria are proposed in [6].

Note that the selection of values for individual tolerances may be crucial for the success of com-
putation. Setting these tolerances to too large values may lead to inaccurate results, while selecting
rather small values may result in time consuming iterative process in search for unnecessary accuracy.
Also note that there is no guarantee that the process will converge either due to the excessive number
of iterations or due to the divergence. Therefore, an appropriate divergence check to terminate the
iterative process and then restarting should be built into the solver, so that it is possible to repeat a
failed increment with a shorter step.

In particular, the solution is started with some preset increment of the applied load. If the solution
diverges or fails to converge for a given number of step iterations, the load increment is reduced and
the solution is restarted from the last converged step. The divergence can be checked, e.g., against
the out-of-balance forces. If the norm of out-of-balance forces increases in two successive iterations,
the iterative process is thought to diverge, the iteration is terminated and the solution is restarted.
Similarly, if the number of iterations needed for the convergence is less than a certain preset number,
the load increment can be increased to accelerate the solution process. This option, however, should
be used with caution. All the mentioned options to control an iterative process are defined in the
“analysis settings”.

The above criteria apply to standard stress analysis. In flow analysis, for example, the vector r
corresponds to values of nodal excess pore pressures and the energy error is not activated.
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17.2.8 Line search method

Principal idea behind the line search method is to find a scaling factor η of the current increment of
the displacement field ∆rij such that the stationarity of the total energy functional is preserved at the

end of each iteration step. Suppose that a new displacement rij at the end of the iteration step j is
expressed as

rij = rij−1 + η∆rj (17.73)

Recall Eq. (17.56) in which η is assumed to be equal to one. Next, introducing Eq. (17.73) into the
stationary condition of the total potential energy at the end of the j-th step gives

δΠ(rij(η)) = δΠ(rij−1 + η∆rj) =
∂Π(rij(η))

∂rij(η)

∂rij
∂η

δη = 0 (17.74)

Because

∂Π(rij(η))

∂rij(η)
= ∆f j(η) (17.75)

∂rij
∂η

= ∆rj (17.76)

we get

δΠ(rij(η)) = ∆f j(η)∆rjδη = 0 (17.77)

Thus the stationary condition (17.74) corresponds to the condition of zero work of out-of-balance forces
on the displacement increment ∆rj . Eq. (17.77) does not need to be solved exactly. An estimate of

η
1

η

s(1)

s(0)

Figure 17.10: Line search method

the scaling parameter η can be found from a simple linear interpolation as displayed in Fig. 17.10.
The first estimate of η is then provided by

η1 =
−s(0)

s(1)− s(0)
(17.78)

A recursive application of Eq. (17.78) then leads to a more accurate value of η, see Fig. 17.10,

ηk+1 = ηk
−s(0)

s(i)− s(0)
(17.79)

The iterations in Eq. (17.79) are usually terminated when the ratio

|sk+1|
|s0|

< 0.8,

is reached. Clearly, the line search method can either dampen (η < 1) or accelerate (η > 1) the speed
of the analysis. The latter option, however, is not recommended. Details can be found in [20]. By
default, the GEO5 FEM software locates the scaling parameter according to Eq. (17.78) .
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17.2.9 Stress return mapping

Chapters devoted to individual models describe procedures that allow us to maintain the stress point
either below or on the yield surface formulated in the general stress space σ as

f(σ,κ) ≤ 0 (17.80)

where κ represents certain parameters which drive evolution of the yield surface (either expansion or
contraction) with the evolution of plastic strains. The yield surface is thus a boundary between elastic
and plastic response.

∆σ

∆ε

εplσ =    (ε −      )E

∆σ

E

∆σ

εpl εel

σ

ε

tr

ε

=   ∆εE

E

1

E=   ∆ε
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Figure 17.11: Stress return mapping: a) stress-strain law, b) von Mises yield surface in principal
stress space, c) elastic predictor - plastic corrector steps presented in deviatoric, d) iteration process
at material point

As an example we may consider the most simple von Mises yield criterion plotted in Fig. 17.11(b,c).
For points located on the yield surface the constitutive law (1.40) modifies as

σ = D(ε− εpl) (17.81)

where εpl is an accumulated plastic strain, see Fig. 17.11(a). Calculation of plastic strain is usually
carried out following standard elastic predictor - plastic corrector approach as evident in Fig. 17.11(c).
We see that after completing the elastic step we arrive at a state of stress lying outside the yield surface.
Note that the circle represents projection of the von Mises yield surface into a deviatoric plane. Such
a stress state is not admissible and the plastic corrector step has to be applied to bring the stress back
to the yield surface. This step in general may call for the solution of a nonlinear problem constructed
at a material point. In Fig. 17.11(d) this step is hidden within the bubble. Mathematically, we may
write the stress at the end of the i + 1 load increment and j-th iteration performed at a structural
level, recall Fig. 17.7, as

σi+1
j = σi + ∆σj = σi + D

∑
∆εj −D∆εplj = σtr −D∆εplj (17.82)

where σi satisfies equilibrium condition (17.51), σtr is called the trial stress derived at the end of the

elastic predictor step associated with the j-th iteration and ∆εplj is the corresponding plastic strain
increment to be predicted via the plastic corrector step. This procedure is presented for individual
material models in subsequent chapters. This step also drives the calculation of the algorithmic tangent
stiffness matrix Ki+1

j .
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17.3 Earthquake analysis

The previous section described some of the solution strategies associated with the analysis of a general
nonlinear problem while limiting attention to a static loading. However, modeling the response of a
structure subjected to earthquake requires introduction of inertia forces and more advanced boundary
conditions. This topic is addressed next (Section 17.3.1) providing also the basic theoretical grounds
to the solution of an eigenvalue problem (Section 17.3.2), generation of artificial accelerograms (Sec-
tion 17.3.3), and formulation of a material damping (Section 17.3.4). The entire solution process is
finally summarized in Section 17.3.5.

17.3.1 Governing equations of finite element method accounting for seismic events

The basic equation describing the vibration of a discrete system with N degrees of freedom written
as, compare with Eq. (17.6)1,

Mr̈(t) + Cṙ(t) + Kr(t) = F (t) (17.83)

Equation (17.83) represents a system of N second order differential equations of motion, where ṙ =
dr

dt

and r̈ =
d2r

dt2
represent the velocity and acceleration in the direction of the i-th degree of freedom

(i = 1, . . . , N). In the framework of the finite element method (FEM), the N × 1 vector r stores the
components of unknown nodal displacements. The N ×N matrices M, C and K stand for the mass,
damping and stiffness matrix, respectively. The N × 1 vector F stores the nodal components of the
external actions.

Henceforth, we limit attention to seismic actions caused by earthquake in the form of prescribed
acceleration of underground longitudinal (pressure P) and transverse (shear S) waves. It is assumed
that these waves travel from the bottom boundary of the FEM model towards the terrain surface. The
resulting acceleration field in space and time ü(x, t)1 can be conveniently expressed as a sum of the
acceleration prescribed to all nodes of the numerical model a(t) and a component üR(x, t) relative to
a(t) as

ü(x, t) = a(t) + üR(x, t) (17.84)

How to introduce a(t) into analysis

The overall displacement at an arbitrary point of the model is equal to the sum of the displacement uu
corresponding to a wave traveling upwards and the displacements ud associated with a wave traveling
downwards

u(x, t) = uu(x, t) + ud(x, t) (17.85)

The seismic motion is typically monitored on the free surface. Such a motion is denoted as the outcrop
motion, see Fig. 17.12. To correctly predict the acceleration measured on the terrain (target motion)
requires the acceleration a(t), prescribed on the bottom boundary, be suitably adjusted to the recover
the corresponding outcrop motion for given types of layers representing the subsoil.

Considering the monitoring point m1 and the bottom boundary in the bedrock (point a1) or at
the soil-bedrock interface (point a2) would probably allow us to assume aa1,2 ≈ ü1.2 Providing the
bottom boundary is located at points b1 a b2, the value of displacement ub1,2 may considerably differ
from both u1 and u2, i.e. ab1,2 6= ü1,2. For point m2 one may even expect aa1,2 6= ü2. To correctly
adjust the prescribed acceleration a(t) so that the predicted motion approximates the target motion
with sufficient accuracy, it is possible to employ the SHAKE software [71]. Further details are available
in [55].

1In the case of 2D analysis the vector u = {u, v} represents displacements in the direction of coordinate axes x, y.
2The speed of a seismic wave is proportional to the stiffness of a soil/rock layer through which it propagates. In the

rock layer the wave velocity can be of the order of magnitude higher in comparison to the soft soil layer.
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Figure 17.12: Prescribing acceleration

Definition of boundary conditions on model bottom boundary

Given the fact that on free surface the amplitude of the upcoming wave equals the one of the reflected
wave allows us to write the overall displacement on the terrain surface as twice the displacement of the
upcoming wave u(x, t) = 2uu(x, t). For a general point within a soil body one may adopt Eq. (17.85).
If limiting attention to the bottom boundary this equation receives the form

u(x, t)|x=xBB = uI(x, t)|x=xBB + uO(x, t)|x=xBB (17.86)

where BB denotes the bottom boundary of the numerical model, uI and uO represent the incoming
wave (wave entering the model) and outgoing wave (wave leaving the model), respectively.

The above relations will be now exploited to define the prescribed acceleration a depending on
the choice of the boundary conditions specified on the bottom boundary of the numerical model.
The GEO5 FEM program allows the user to define two types of boundary conditions, i.e., fixed and
absorbing (quiet) boundary conditions.
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Figure 17.13: a) Fixed (kinematic) boundary conditions, b) Absorbing (traction) boundary conditions
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Fixed boundary conditions

The fixed boundary condition can be safely used only in the case when the bottom boundary is found
at soft soil/stiff rock interface. Then the incoming wave is “fully” reflected back into the model.
Taking into account Eqns. (17.86) and (17.84) gives

u(x, t) = u(t)|x=xBB + uR(x, t), uR(x = xBB, t) = 0, a(t) = ü(t)x=xBB (17.87)

As evident from Fig. 17.13(a) the value of a relative displacement at the bottom boundary BB is equal
to zero. Therefore, the fixed boundary conditions are prescribed along this boundary. The magnitude
of the prescribed acceleration a thus corresponds to the total motion at BB given by Eq. (17.85).
Recall that for the monitoring point m1 and the bottom boundary located at point a2 in Fig. 17.12 it
is possible to consider the outcrop motion as the prescribed motion, i.e., a ≈ ü1.

Absorbing boundary conditions

Consider Fig. 17.13(b) with the bottom boundary within a layer below the AA interface. In accord
with Eqns. (17.85) and (17.84) the value of the displacement at an arbitrary point of the layer bounded
by the AA and BB interfaces is given by

u(x, t) = uI(x, t) + uO(x, t) = uIBB(t) + uR(x, t) (17.88)

where uIBB represents the incoming wave at the bottom boundary BB. Because this interface is found
within a homogeneous layer the outgoing wave must freely pass this interface. The theoretical model
assumes an infinite half-space below this interface. Therefore, the outgoing wave will never return and
must be on the BB boundary fully damped. The outgoing wave uO

uO(x, t) = uIBB(t) + uR(x, t)− uI(x, t) (17.89)

satisfies on the BB boundary the radiation condition
∂uO(x, t)

∂x
∂vO(x, t)

∂y


x=xBB

=


1

cs
0

0
1

cp




duO(x, t)

dt
dvO(x, t)

dt


x=xBB

(17.90)

where cp a cs represent the velocities of the propagating P and S waves and are provided by

cp =

√
Eoed
ρ

, cs =

√
G

ρ
(17.91)

where ρ,Eoed, G are the density, the oedometric modulus and the shear modulus of a given subsoil layer.
With reference to Eqns. (17.88) and (17.84) it is, however, necessary to express condition (17.90) in
terms of a relative displacement uR. Approach described in [86] introduces a static boundary condition
in the form

{
px = τxy
py = σy

}
x=xBB

=

[
G 0
0 Eoed

]
∂uR(x, t)

∂x
∂vR(x, t)

∂y


x=xBB

=

[
ρcs 0
0 ρcp

]
duR(x, t)

dt
− duIBB(t)

dt
dvR(x, t)

dt
− dvIBB(t)

dt


x=xBB

(17.92)

A graphical representation of this conditions is seen in Fig. 17.13(b) as a dashpot with the viscosity
ρcs and ρcp, respectively. Given Eqns. (17.88) and (17.84) the prescribed acceleration reads

a(t) = üIBB(t) (17.93)
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Thus if limiting attention to the monitoring point m1 in Fig. 17.12 and the bottom boundary at point
a1 it appears possible to consider the prescribed acceleration to the half of the outcrop motion, i.e.,
a ≈ 1

2 ü1. It is also worth noting that the definition of absorbing boundary conditions assumes that the
layer immediately above the BB boundary behaves linearly elastic. Therefore, the nonlinear response
should be allowed for the top layers only.
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Figure 17.14: Comparing response of homogeneous layer generated by fixed and absorbing boundary
conditions

For illustration, we compare in Fig. 17.14 the response of a homogeneous 50 m thick layer with
either fixed or absorbing boundary conditions subjected to the prescribed horizontal acceleration.
Clearly, when the fixed boundary conditions are used the outgoing wave is trapped in the model.
Thus for and undamped system the vibration will continue infinitely long. On the other hand, the
absorbing boundary will damp the outgoing wave and once the prescribed acceleration ceases, the
vibration gradually stops. Further details regarding the influence of boundary conditions on the
subsoil response can be found in [61, 62].

Definition of boundary conditions along lateral boundaries

Suppose that both geometrical and material properties of the subsoil do not change in the horizontal
direction, see Fig. 17.15. The response of such a system to the prescribed seismic action will be the
same along any vertical section. This corresponds to so called Free field conditions. Such a task can
be solved with the help of a one-dimensional (1D) Free field column (FF) model.
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Figure 17.15: 2D infinite strip of subsoil and 1D Free field model
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Solving such a task using a two-dimensional (2D) model truncated in the horizontal direction by
lateral boundaries (LB), see Fig. 17.15, calls for introducing suitable boundary conditions along these
boundaries to force the response predicted by the 2D model be identical to that of the 1DFF model. In
a special case of horizontal motion generating S waves only, the use of standard kinematic conditions in
Fig. 17.15 would be sufficient. However, this is no longer possible when the P and S waves interact. In
this general case, the static (traction) boundary condition in terms of the prescribed vertical tractions
corresponding to the shear stress τFFxy provided by the 1DFF analysis proved useful, see Fig. 17.16.

(a)

(b)

Figure 17.16: Boundary conditions on lateral boundaries assuming a) fixed and b) absorbing boundary
conditions on bottom boundary. 1D Free field column model and 2D model

Providing the Free field conditions are disturbed due to, e.g., excavation (Fig. 17.15), the part of
the motion, corresponding to the difference between the real incoming wave and the one produced
by the FF analysis, will have to be damped. This is achieved similarly to the absorbing boundary
conditions on the BB boundary (Section 17.3.1) by introducing radiation (static) boundary conditions
as displayed in Fig. 17.163. For more details the interested reader is referred to [86]. A detailed study
of the influence of boundary conditions prescribed on lateral boundaries is discussed in [61].

Assuming the fixed boundary conditions and a 2D analysis, Fig. 17.16(a), yields the resulting form
of Eq. (17.83) as

MüR + CMu̇R +KuR + CLBu̇R|x=0,L

= −Mü0 − CMu̇0 + CLBu̇FFR |x=0,L −Rτ |x=0 +Rτ |x=L (17.94)

where u0 = u(xBB). For absorbing boundary conditions, Fig. 17.16(b), we get

MüR + CMu̇R +KuR + CBBu̇R|y=0 + CLBu̇R|x=0,L

= −MüIBB − CMu̇IBB + CBBu̇IBB|y=0 + CLBu̇FFR |x=0,L −Rτ |x=0 +Rτ |x=L (17.95)

The damping matrix will thus split into the contribution due to material damping (CM) and the
influence of absorbing boundary conditions along the BB (CBB) and LB (CLB) boundaries, respectively.

3Waves approaching the LB boundary in a certain angle not equal to 90◦ will be damped only partially.
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The load vector F (t) corresponds to the action of inertia forces, the first term on the right hand side
of Eqns. (17.94) and (17.95).

Direct integration of equations of motion

To determine unknown displacements r requires integrating Eq. (17.83) in time4. The GEO5 FEM
program employs the implicit Newmark method, which gives the following relationship between dis-
placements, velocities, and accelerations at i+1 integration step (i+1 load increment in static analysis
assumed in Section 17.1) providing they are known at step i [11, 37]

ri+1 = ri + ∆tṙi +
∆t2

2

[
(1− 2β)r̈i + 2βr̈i+1

]
(17.96)

ṙi+1 = ṙi + ∆t
[
(1− γ)r̈i + γr̈i+1

]
(17.97)

where ∆t represents the time step and β, γ the method parameters to specify the displacement and
velocity vectors, respectively. In light of standard incremental solution in static analysis we modify
Eqns.(17.96) and (17.97) by introducing the increment of the displacement vector ∆r = ri+1 − ri as

r̈i+1 = b1∆r − b2ṙi − b3r̈i (17.98)

ṙi+1 = b4∆r − b5ṙi − b6r̈i (17.99)

ri+1 = ri + ∆r (17.100)

where parameters b1 − b6 are provided by

b1 =
1

β∆t2
, b2 =

1

β∆t
, b3 =

1− 2β

2β
,

b4 =
γ

β∆t
, b5 =

γ

β
− 1, b3 =

γ − 2β

2β
∆y

(17.101)

Adopting the above equations renders the incremental form of Eq. (17.83)

(b1M + b4C + Kj) ∆r = F i+1 + (b2M + b5C) ṙi + (b3M + b6C) r̈i −Rj (17.102)

where F i+1 represents the loading at i+ 1 integration step and Rj (R0 = Ri) is the vector of internal
nodal forces in the j-th iteration of a given step. The parameters β, γ can be chosen such that
the method is stable. Providing the stability does not depend on the size of ∆t the method is
unconditionally stable. It then holds [37]

2β ≤ γ ≤ 1

2
(17.103)

One of the most widely used methods is the average acceleration method obtained by setting

β =
1

4
, γ =

1

2
(17.104)

This setting is also generally recommended.
Apart from stability, one should also be concerned with the accuracy of integration. In [37]

two specific accuracy measures are introduced to address numerical dissipation and dispersion. The
measure of numerical dissipation is the algorithmic damping ratio ξ̄ = ξ + AD and the measure of
dispersion is the relative period error RPE = (T − T)/T. The parameter ξ is the material damping
ratio, see Section 17.3.4), AD represents the amplitude decay attributed to the selected numerical
integration scheme, T is the real period of vibration and T is the period associated with the discrete
system. Providing γ = 0.5, we get AD=0. In such a case, the amplitude decay, if not assuming the
absorbing boundary conditions, will be caused by the material damping only (the matrix CM, e.g., in
Eq. (17.94)) driven by the value of ξ.

4In GEO5 FEM we solve Eq. (17.94) or (17.95) for unknown displacements uR.
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However, in the solution of a discrete system it is often desirable to have AD 6= 0 to filter out
high-frequency modes, which are artifacts of the discretization into finite elements, while keeping good
accuracy in the load modes. To that end, the algorithm introduced in [28] and termed the α-method
deserves particular attention. This method modifies the original Eq. (17.102) as

[b1M + (1 + α)b4C + (1 + α)Kj ] ∆r = (17.105)

F i+1 + [b2M + ((1 + α)b5 + α) C] ṙi + [b3M + (1 + α)b6C] r̈i −Rj

where ti+α = ti+1 +α∆t. For α = 0 we recover Eq. (17.102). The method to be unconditionally stable
and second order accurate requires

α ∈
[
−1

3
, 0

]
, β =

1− α2

4
, γ =

1− 2α

2
(17.106)

Clearly, increasing α decreases the amount of numerical damping. For α = 0 we get γ =
1

2
, i.e. AD=0.

Both the average acceleration method and α-method are unconditionally stable. The selected
integration time step thus determines the accuracy, or vice versa. To a large extent, this is affected
by material properties and the type of finite element mesh (type and size of the element, local mesh
refinement). Thus in general settings, to define an optimal time step is not an easy task.

For conditionally stable Newmark method (γ ≤ 1

2
, β ≤ γ), the time step ∆t must comply with

the following condition [37]

∆t ≤ ∆tcrit, ∆tcrit =
Ωcrit

ωeq
(17.107)

Ωcrit =
ξ
(
γ − 1

2

)
+
[
γ
2 − β + ξ2

(
γ − 1

2

)2] 1
2

γ
2 − β

(17.108)

where Ωcrit is the critical sampling frequency and ωeq is the maximum natural frequency of the discrete
system, which can be bounded by the maximum frequency of individual elements5. Perhaps the most
widely used unconditionally stable Newmark method is the central difference scheme (β = 0, γ = 1

2
and for ξ = 0 is Ωcrit = 2). For the diagonal mass and damping matrices, this method is explicit.
To minimize the period error it is recommended to combine the diagonal mass matrix (lumped mass
matrix) with the central scheme, while the consistent mass matrix should be used with the average
acceleration method [37]. Because the GEO5 FEM program assumes the consistent mass matrix for
all types of elements, the use of central difference scheme is not recommended.

The list of ∆tcrit for the 1D linear and quadratic rod elements considering both the lumped and
consistent mass matrices is available, e.g. in [37]. Further examples can be found in [7].

To conclude, point out that in the case of earthquake the maximum time step depends on the
acceleration record, which in general assumes sampling in the interval of ∆t ∈ [0.005, 0.01] s.

17.3.2 Solution of eigenvalue problem

The GEO5 FEM program allows for the determination of eigenvalues (natural frequencies) and eigen-
vectors (mode shapes) of a discrete problem by solving the generalized eigenvalue problem of an
undamped system in the form

(M− λαK)φα = 0, λα = ω2
α (17.109)

where φα is the eigenvector associated with the eigenvalue λ (natural frequency ωα). During analysis,
the eigenvectors are normalized with respect to the mass matrix as

φα =
φα[

φT
αMφα

] 1
2

unit

[
1√
t

]
(17.110)

5It is seen that for γ =
1

2
, the viscous damping has no effect on stability.
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For the sake of visual presentation, the eigenvectors are further scaled by the maximum total nodal
displacement (k-node number, Nn-total number of nodes) as

φα =
φα
Amaxα

[−], Amaxα = maxNnk=1

(√
(φxα,k)

2 + (φyα,k)
2
)

(17.111)

The GEO5 FEM program solves Eq. (17.109) for the selected number of the lowest eigenvalues using
standard method of subspace iteration [11, 37, 10]. To solve this task one may choose either the Jacobi
method or the Gram Schmidt orthogonalization method. In each iteration step, the Jacobi method
solves the reduced eigenvalue problem. This analysis is, however, very effective and the total number
of required global iterations is typically less than when using the Gram Schmidt orthogonalization
method. However, the Jacobi method does not guarantee that the first K eigenvalues will always be
found.

S + P S P

Figure 17.17: Kinematic boundary conditions available for solving the eigenvalue problem

When solving the eigenvalue problem the GEO5 FEM program allows the user to consider three
types of kinematic boundary conditions, see Fig. 17.17. The first case (S+P) does not account for
a specific vibration mode. On the contrary, the second and the third option makes preference of a
horizontal (S) and vertical (P) vibration mode, respectively. Nevertheless, it is recommended to make
a visual check prior to selecting the desired vibration mode, e.g., for the calculation of parameters
of material damping described in Section 17.3.4. An additional hint for choosing the vibration mode
might the Modal participation factor and Modal effective mass.

Modal participation factor

We limit our attention to 2D plane-strain analysis with no account for rotational degrees of freedom.
The modal participation factor Γα,i for mode α in the direction (i ≡ x or i ≡ y) is given by

Γα,i =
{φα}T [M] {Ii}

mα
unit

[√
t
]

(17.112)

and indicates how strongly the motion in the direction of the coordinate axis x, y is represented in
the eigenvector {φα}. The vector {Ii} is the influence vector associated with either the horizontal
(i ≡ x, {Ix}T = {1, 0, 1, 0, . . . , 1, 0}) or vertical (i ≡ y, {Iy}T = {0, 1, 0, 1, . . . , 0, 1}) component of the
vibration. The generalized mass mα is written as

mα = {φα}T [M] {φα} [−] (17.113)

Because the eigenvectors in GEO5 FEM are normalized with respect to the mass matrix, we get
mα = 1.

Modal effective mass

Another parameter representing participation of a given eigenvector in either horizontal or vertical
component of the vibration is the modal effective mass

mα,i = (Γα,i)
2mα unit [t] (17.114)

This parameter can be adopted to determine the minimum number of eigenvectors to be used in
application of modal analysis to solve Eq. (17.83). It holds that the sum of modal effective masses
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mα,i of all modes in any particular direction (i ≡ x or i ≡ y) is equal to the total mass, except for
the mass associated with kinetically constrained degrees of freedom. The program provides the total
modal effective mass in either direction as

TMEMi =

M∑
α=1

mα,i (17.115)

where M is the number of adopted (determined) modes. The minimum number of eigenvectors is
typically determined such as the TMEMi value exceeds the 90% of the total mass. If this value is
considerably smaller than the total mass, it means that the modes that have a significant participation
in that direction, have not been extracted.

17.3.3 Response spectrum - generation of artificial accelerograms

To describe a seismic motion we generally use accelerograms, i.e., the time variation of ground ac-
celeration. In 2D analysis, such a motion considers two components of the acceleration vector. One
component serves to describe motion in the horizontal direction, the other one in the vertical direction.
The Eurocode 8 (EC8) allows us, for the description of seismic motion, to adopt artificial, real, or
simulated accelerograms.

The real accelerograms follow from the measurements of real earthquakes by seismographic stations
installed all over the world. Simulated accelerograms are obtained by simulating both the source of
a seismic activity and mechanism of transport of seismic waves. However, the interest of structural
engineers is usually shifted towards artificial accelerograms. This is why we address this issue in the
next subsections in more details.

Elastic response spectrum

The elastic response spectrum of an accelerogram is represented by the graph of a function a(T )
the value of which is defined as the maximum acceleration of a harmonic oscillator with a single
degree of freedom having the natural period T and being exited by this accelerogram. The physical
model adopted to compute the response spectrum is plotted in Fig. 17.18. Each oscillator i with the
mass mi, the spring stiffness ki, and the coefficient of viscous damping ci has the natural frequency
ω0,i =

√
ki/mi and the coefficient of proportional damping ξi = ci/(2

√
miki). Providing its base

is exited by the acceleration, the corresponding mass will move with the acceleration ai(t). The
maximum absolute value of ai(t) represents the value of response spectrum Se(ai) plotted as a function
of Ti = 2π/ω0,i. An example of the design response spectrum appears in Fig. 17.19.

Figure 17.18: Principle of computation of elastic response spectrum: harmonic oscillators with various
natural frequencies exited by accelerogram a0(t) and monitored response ai(t)

Artificial accelerograms

An artificial accelerogram has to be generated such as to correspond to the elastic response spectrum
with the viscous damping ξ = 0.05 defined in the Eurocode 8. This standard further determines
the minimum duration of the acceleration and minimum number of accelerations used to address the
response of a structure to seismic actions.
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Figure 17.19: Comparing design response spectrum defined by EC8 and response spectrum extracted
from generated accelerogram, adopted from [62]

The algorithm to generate artificial accelerograms is taken from [46] and assumes the following
steps:

1. The Fourier spectrum with constant spectral amplitudes and random phase shifts is generated.

2. The Fourier transform is then used to get the corresponding time variation of acceleration.

3. For this accelerogram, the elastic response spectrum of single degree of freedom systems with
frequencies corresponding to frequencies used in the Fourier spectrum is computed.

4. The contribution of the design elastic response spectrum specified by EC8 and the contribution
due to the generated accelerogram are computed for each frequency.

5. Spectral amplitudes of the original Fourier spectrum are adjusted based on the contributions
acquired in the previous step. The phase shifts remain the same.

6. The steps 2–5 are repeated for the adjusted Fourier spectrum until the calculated response
spectrum matches the design elastic response spectrum due to EC8 up to an error less than
10 %, see Fig. 17.19.

The accelerogram obtained from this algorithm complies with the EC8 conditions, but it is sta-
tionary and lacks characteristic stages typical of real measured accelerograms, see the stationary
distribution in Fig. 17.20. For this accelerogram to contain an amplification stage, a region of strong
motion followed by a gradual decay, it is necessary to multiply the stationary accelerogram by an
envelope function E (t) [13]

E(t) = atbe−ct (17.116)
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Figure 17.20: Comparing stationary and non-stationary (modulated) artificial accelerograms, adopted
from [62]

with coefficients

a =

(
e

εTw

)b
(17.117)

b =
−ε lnµ

1 + ε(ln ε− 1)
(17.118)

c =
b

εTw
(17.119)

where Tw is the specific earthquake duration. The parameter ε determines at what time instant of Tw
the envelope function attains its maximum value. The parameter µ determines the reduction factor
of the envelope function at time Tw with respect to its maximum value.

The accelerogram is generated such to get zero velocity and displacement at time Tw, while zero
initial velocity and displacement contained already by the stationary accelerogram are retained. The
impact of the application of envelope function on the time variation of the generated acceleration
is illustrated in Fig. 17.20, compare stationary and non-stationary accelerograms. Further details
regarding the response spectrum and accelerograms in connection to EC8 are available in [57, 42]. For
details on the use of envelope function the interested reader is referred to [46].

17.3.4 Introducing material damping

The most simple approach to constructing the damping matrix CM, adopted also in GEO5 FEM, is
based on the assumption of proportional damping. In such a case it holds

ΦTCMΦ = 2Ωd (17.120)

where Φ is the modal matrix the columns of which are represented by individual eigenvectors of the
vibrating system, recall Section 17.3.2. The matrix Ωd is diagonal with the components ωdi = ξiωi,
where ωdi denotes the damped frequency and ξi is the coefficient of proportional damping associated
with the natural frequency ωi. Then, the eigenvectors are orthogonal also to the damping matrix CM.
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In the case of modal decomposition the solution of Eq. (17.83) splits into the system of n independent
differential equations, where n is the number of used eigenvectors. This considerably simplifies the
analysis.

Formulation of proportional damping (17.120) is very simple, but it assumes the knowledge of the
coefficients of proportional damping ξi for all the frequencies. This can hardly be achieved in practice.
Additional hypothesis allowing for the determination of all ξi on the basis of just a few constants
is therefore needed. In this regard, it is convenient to consider in most practical applications the
Rayleigh damping which assumes the damping matrix CM in the form of a linear combination of the
mass and stiffness matrices as

CM = αM + βK (17.121)

where α, β are the parameters of proportional damping6. The fact that the eigenvectors in GEO5
FEM are normalized with respect to the mass matrix provides upon multiplying Eq (17.121) from the
left by ΦT and from the right by Φ

2Ωd = αI + βΩ2 −→ 2ωdi = 2ξiωi = α+ βω2
i (17.122)

where I is the identity matrix. The spectral matrix Ω is similar to Ωd diagonal and collects on the
diagonal the squares of natural frequencies.

It is evident from Eq. (17.122) that to determine parameters α, β it is sufficient to know two
eigenfrequencies ωi and their corresponding coefficients ξi. If we accept that both frequencies ωa and
ωb are damped by the same coefficient of proportional damping, i.e., ξa = ξb = ξ, we get

α =
2ξωaωb
ωa + ωb

, β =
2ξ

ωa + ωb
(17.123)

However, most often we have at our disposal only one value of the coefficient of proportional
damping for the lowest natural frequency ω1. If we accept the hypothesis that this frequency is
damped the least, then using Eq. (17.122) gives

dξ

dωi
=

1

2

(
− α

ω2
i

+ β
)

= 0 (17.124)

Introducing ωi = ω1 into Eq. (17.124) yields

α = ω2
1β (17.125)

Back substitution for α from Eq. (17.125) into Eq. (17.122) finally provides

α = ξ1ω1 , β =
ξ1

ω1
(17.126)

Further details can be found in [11].

Example of calculating α, β

Details regarding the presented example including the geometry of the numerical model and material
properties of individual layers of subsoil are available in [62]. Hence, we provide only a brief description
of the potential way of calculating the parameters of Rayleigh damping α, β.

Eurocode 8 offers a single values of proportional damping ξ = 0.05 (5%) only. The presented
example will show, how strongly are individual natural frequencies damped in dependence on the
way of calculating the parameters α, β. For illustration, we consider a simple model displyed in
Fig. 17.21(a). The impact of material damping is best evaluated on the basis of fixed boundary
conditions on the BB boundary (FBB). To allow for relating the natural frequencies of the system to
the prescribed acceleration we shall consider the accelerogram in Fig. 17.14 generated on the grounds
of the design reponse spectrum plotted in Fig. 17.21(b), recall Section 17.3.3.

6These parameters should not be confused with the parameters α, β, γ introduced in Section 17.3.1.
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Figure 17.21: a) Subsoil model, b) Response spectrum

This accelerogram introduces the horizontal (shear) seismic waves only. Thus to determine the first
few natutral frequencies, we considered the kinematic boundary conditons on the lateral boundaries
in accordance with Fig. 17.21(a), recall also Section 17.3.2 and Fig. 17.17. To identify purely shear
dominated mode shapes we employed the Modal participation factor Γα,x.

The following three variants of the calculation of parameters α, β are presented for illustration:

1. The least damped is the first natural frequency. The parameters α, β follow from Eq. (17.126).

2. The least damped frequecies are found between the first and third7 natural frequency. The third
natural frequency was adopted according to recommendations presented in [17]. The parameters
α, β follow from Eq. (17.123).

3. The least damped frequencies are found between the first and the the most dominant fre-
quency ωRS of the design response spectrum, see Fig. 17.21(b). The parameters α, β follow
from Eq. (17.123).

Table 17.10: Parameters of Rayleigh damping for ξ = 5%, adopted from 17.10

Damping ω α β

Typ 1 ω1 0.1875 0.0133

Typ 2 ω1 + ω3 0.3143 0.0043

Typ 3 ω1 + ωRS 0.2888 0.0061

The resulting values of natural frequencies and parameters α, β are summarized in Table 17.10. A
graphical representation of the amount of damping is provided in Fig. 17.22. Clearly, only the chosen
frequncies are damped with ξ = 5%. Apart from identifying the domain of the least damped frequecies
we also observe that particularly high frequecies of the design spectrum are damped the most8.

Finally, to judge the influence of material damping we compare the influnce of fixed and absorbing
(ABB) bounary conditions on the response of a homogeneous layer exited by the horizontal seismic
waves generated from the design response spectrum in Fig. 17.21(b). For simplicity, we consider
the Free field column analysis depicted in Fig. 17.21(a). The resulting distributions of the relative
horizontal displacement at point A are seen in Fig. 17.23. The impact of material damping is evident
and in the case of FBB conditions it repersents the only way how to bring he vibrating system to
rest once the applied acceleration ceases. For ABB conditions, the material damping does not play a
significant role.

7More specifically, the third frequency from the list of purely shear mode shapes.
8The abscissa represents natural periods T =

2π

ω
.
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Figure 17.22: Proportional damping ratio as a function natural period
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Figure 17.23: Comparing response of homogeneous layer assuming fixed and absorbing boundary
conditions to evaluate influnce of material damping

17.3.5 Solution process

It is clear from the previous text that earthquake analysis requires a certain sequence of calculations.
In particular:

1. Static analysis in a given stage to get the initial stress state prior to application of dynamic
load (prescribed acceleration).

2. Solution of the eigenvalue problem to acquire natural frequencies and mode shapes.
The program determines the first M eigenfrequencies ω1 < ω2 < . . . < ωM , where M is the
required number set by the user. Depending on the solution setting it may happen that not
all requested eigenfrequencies are extracted or some of them are missed. When employing the
Jacobi method the program searches for more frequencies than requested so that the number
frequencies found typically exceeds the number specified by the user. The program offers a table
collecting not only all converged frequencies but also the ones found with the error larger than the
one specified in the solution setting. The maximum error associated with the highest frequency
is provided. The table also lists for each eigenfrequency the Modal participation factor and
Modal effective mass identifying which of the basic vibration modes (vibration either horizontal
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or vertical directions) prevails in the given eigenvector. A visual check is available by animating
the particular eigenvector.

The extracted eigenfrequencies can be used to determine the parameters α, β of the Rayleigh
damping when specifying the coefficient of proportional damping ξ in the material setting. The
solution process can be terminated after completing the eigenvalue analysis to verify, either
visually or numerically, the expected range of frequencies used in the calculation of α, β, recall
Section 17.3.4.

3. Free field column analysis. The Free field column analysis provides the time variation of
traction boundary conditions prescribed on lateral boundaries of the computational model, see
Section 17.3.1. On both boundaries, the analysis is carried out simultaneously. The material
models in individual layers, boundary conditions on the BB boundary, the prescribed accelera-
tion, and the initial time step comply with the 2D analysis. The results of this analysis cannot
be visualized.

4. Two-dimensional earthquake analysis pertinent to given calculation stage. The anal-
ysis provides a time variation of all quantities. These can be presented in an arbitrary time step,
visualized step by step or animated.

17.4 Consolidation

Section 2.1 opened the discussion to the modeling of ground water pressure and its action on a soil body.
Undrained conditions in particular assumed impermeable external boundaries of a computational
model which resulted in an instantaneous development of an excess pore pressure in a body if subjected
to loading. Switching to permeable boundaries then allows for a gradual dissipation of this excess pore
pressure arriving finally at drained conditions, when the pore pressure is no longer affected by the soil
body deformation. The transition from undrained to drained conditions in addressed in the theory of
consolidation.

The presented theoretical formulations and their implementation in GEO5 FEM grounds on several
simplifying assumptions:

• Attention is accorded to a primary consolidation manifested by the reduction of pore space due
to loading while pushing water out of pores.

• The soil body is assumed to be fully saturated, i.e., using the notation introduced in Section 2.1
we consider p = pw, pg = 0, and S = 1 both below and above the ground water table (GWT),
see Fig. 17.24(b). With this simplification we arrive at a one phase flow in a fully saturated
medium.

• The pore pressure distribution at the beginning and at the end of consolidation is the same.
The the steady state pore pressure is prescribed as the initial pore pressure, i.e., pin = pss.
It can be obtained either by specifying the ground water table or by running the steady state
flow analysis with given flow boundary conditions as illustrated in Fig. 17.24(a). The interested
reader is referred to Section 17.5 for more details.

• During consolidation the boundary conditions are, however. limited to either zero flux (closed
boundary) or zero excess pore pressure (open boundary) boundary conditions. This is schemat-
ically demonstrated in Fig. 17.24(b).

• The excess pore pressure pex rather then the actual pore pressure p = pss + pex is the primary
unknown to be determined during consolidation. This is because the change in p expressed in

terms of the time derivative ṗ = ṗex, ṗss = 0, where ṗ =
dp

dt
.

Figure 17.24 shows the flow boundary conditions adopted in steady state seepage analysis and
consolidation, respectively. Therein, Γq represents the boundary with the prescribed flux q whereas Γp
stands for the boundary with the prescribed pore pressure. Further details are provided in Section 17.5.
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Figure 17.24: Example of flow boundary conditions adopted in the consolidation analysis: a) steady
state step to generate the initial steady state pressure pss, b) consolidation step to generate the time
dependent variation of excess pore pressure pex.

To simplify further reading we briefly review some of the notation introduced previously in Sec-
tion 2.1 and Chapter 16:

• Biot coefficient α provided by Eq. (2.11) in terms of the bulk modulus of the porous skeleton
Ksk and the bulk modulus of water Kw in the form

α = 1− Ksk

Km
< 1

• Biot modulus M introduced in Eq. (2.15) in terms of the porosity n, the bulk modulus of the
solid grains Km and the bulk modulus of water Kw as

1

M
=
α− n
Km

+
n

Kw

• Terzaghi’s concept of effective stresses given by Eq. (2.10) is now presented also in the rate form

σ = σeff − 3mp = σε − α3mp, σ̇ε = Depε̇ (17.127)

σ̇ = Depε̇− α3mṗex, ṗss = 0 (17.128)

• Darcy’s flow is now presented in a slightly different form given the fact that the relative perme-
ability S = 1,Kr = 1. Thus combining Eqs. (16.1) and (16.2) we get the flux q = nvws in terms
of the permeability matrix Ksat, recall Eq. (16.3), and the bulk weight of water γw in the form

q = −Ksat

γw
(∇pss + γwz)︸ ︷︷ ︸
qss

−Ksat

γw
∇pex︸ ︷︷ ︸

qex

= −Ksat

γw
(∇p+ γwz) (17.129)

We now proceed with the formulation of fundamental equations governing the one phase flow in a
fully saturated medium.

17.4.1 Flow - mass conservation law

In general, the mass conservation law or the equation of continuity for one phase flow in a fully
saturated medium attains the following form, see for example [50, 72],

1

M
ṗ+ αε̇v + ∇T

(
−Ksat

γw
∇(p+ γwz)

)
= m(t) (17.130)

where εv is the volumetric strain and m represents any internal sources (m > 0) and/or sinks (m < 0),
e.g., the volume of water removed per unit time from a unit volume of soil due to evaporation or due
to plant water uptake. Next, suppose that the source term m(t) = 0. As already pointed out

p = pss + pex, ṗ = ṗex or ∆p = ∆pex (17.131)
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This gives the steady state condition in the form

∇T

(
−Ksat

γw
∇(pss + γwz)

)
= 0 (17.132)

Eq. (17.130) then simplifies

1

M
ṗex + αε̇v + ∇T

(
−Ksat

γw
∇pex

)
= 0 (17.133)

It is interesting to point out that writing the time derivative ȧ as ȧ =
∆a

∆t
, then multiplying through

by ∆t, and letting ∆t → 0 yields Eq. (2.15) derived already for undrained conditions for time t = 0
in Section 2.1 from pure volume averaging.

Solving Eq. (17.133) requires introduction of boundary conditions as mentioned already with ref-
erence to Fig. 17.24 The Neumann (prescribed normal flux qn on Γq) and the Dirichlet (prescribed
pore pressure p on Γp) boundary conditions can in general be written as

nT

(
Ksat

γw
∇(p(t) + γwy)

)
+ qn(t) = 0 on Γq, Neumann b.c. (17.134)

p(t)− p(t) = 0 on Γp, Dirichlet b.c (17.135)

However, the present implementation is limited to either closed or open boundaries only. Thus the fol-
lowing boundary conditions apply when solving Eq. (17.133) in the consolidation step, recall Fig. 17.24,

nT

(
Ksat

γw
∇pex(t)

)
= 0 on Γq (17.136)

pex(t) = 0 on Γp (17.137)

Time discretization of equation (17.133)

In the present implementation in GEO5 FEM the time derivatives in Eq. (17.133) are approximated
employing the fully explicit Euler backward integration scheme which, in light of potentially nonlinear
analysis, gives

ṗex =
pexi+1,j+1 − pexi

∆t
=

pexi+1,j + ∆p− pexi
∆t

=
∆p

∆t
+
pexi+1,j − pexi

∆t
(17.138)

ε̇ =
εi+1,j+1 − εi

∆t
=
εi+1,j + ∆ε− εi

∆t
=

∆ε

∆t
+
εi+1,j − εi

∆t
(17.139)

where

pexi+1,j+1 = pexi+1,j + ∆p, pi+1,j+1 = pexi+1,j+1 + pss (17.140)

εi+1,j+1 = εi+1,j + ∆ε (17.141)

i − stands for the i-th integration step (load increment)

j − stands for the j-th iteration within the i-th integration step

Equation (17.133) then becomes

1

∆tM
∆p+

α3mT

∆t
∆ε+ ∇T

(
−Ksat

γw
∇(∆p)

)
=

− 1

∆tM
(pexi+1,j − pexi )− α3mT

∆t
(εi+1,j − εi)−∇T

(
−Ksat

γw
∇pexi+1,j

)
(17.142)

Note that in general the permeability matrix Ksat might be function of the current void ratio e(εv),
see for example [41]. This option, however, is not implemented in the current version of GEO5 FEM.
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17.4.2 Mechanics - momentum balance

In analogy to mass balance equation (17.130) we write the Cauchy equations of equilibrium driving
the state of deformation of a soil body as

∂σ̇ + Ẋ = 0 (17.143)

where σ̇ is the rate of total stresses and X is the vector of body forces. In soil mechanics, a typical
example of a vertical component of X in static analysis is the soil density.

The corresponding Neumann and Dirichlet boundary conditions are now the prescribed surface
tractions and displacements on external boundaries of a computational model, respectively.

Time discretization of equation (17.133)

Adopting Eqs. (17.138) and (17.139) gives the time derivative of total stresses at (i + 1) integration
step in the form

σ̇|i+1 =
1

∆t
Dep∆ε− α3m

∆t
∆p+

1

∆t
Dep(εi+1,j − εi)−

α3m

∆t
(pexi+1,j − pexi ) (17.144)

17.4.3 Finite element discretization

Unlike formulations outlined in Section 17.1, where the generalized displacements (displacements and
rotations) were considered as the only primary variables, we now search for a simultaneous evolution
of displacements and excess pore pressure both in time and space.

To this end, we invoke the principal of virtual work presented in Section 17.1 in the form Eq. (17.1)
to get the discretized version of the continuity and equilibrium equations. In the framework of finite
element method we start from finite element discretization of both displacements u and excess pore
pressure pex in terms of their nodal representations ru and rp (or their increments ∆ru,∆rp) to get

pex = Nprp, ∆p = Np∆rp (17.145)

u = Nuru, ∆u = Nu∆ru (17.146)

ε = Buru, ∆ε = Bu∆ru (17.147)

where indexes (p, u) identify the approximations associated with the excess pore pressure and dis-
placements, respectively.

Finite element discretization of equation (17.142)

Introducing the above approximations together with the flow type of Neumann boundary conditions,
Eq. (17.136), in Eq. (17.1) gives the discretized form of Eq. (17.142) as

(C + ∆tH) ∆rp + Q∆ru = −∆tHrpi+1,j − C(rpi+1,j − r
i
p)−Q(rui+1,j − rui ) (17.148)

where

C =
Ne
A
e=1

∫
Ωe

1

M
(Np)TNp dΩ, Compressibility matrix (17.149)

H =
Ne
A
e=1

∫
Ωe

(Bp)T
Ksat

γw
Bp dΩ, Permeability matrix (17.150)

Q =
Ne
A
e=1

∫
Ωe

(Np)T3mTBu dΩ, Coupling matrix (17.151)
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The right hand side of Eq. (17.148) can be written as

Pf i+1,j = + ∆t
Ne
A
e=1

∫
Ωe

(Bp)Tqi+1,j dΩ︸ ︷︷ ︸
−∆tHrpi+1,j

−
Ne
A
e=1

∫
Ωe

1

M
(Np)T(pexi+1,j − pexi ) dΩ︸ ︷︷ ︸
C(rpi+1,j−r

p
i )

−
Ne
A
e=1

∫
Ωe

(Np)Tα3mT(εi+1,j − εi) dΩ︸ ︷︷ ︸
Q(rui+1,j−rui )

. (17.152)

Note that at equilibrium, converged solution (one step in case of linear analysis), the vector Pf should
be equal to zero.

Finite element discretization of equation (17.143)

The principal of virtual work, Eq. (17.1), together with Eq. (17.144) now gives the discrete system of
equations of equilibrium in the form

KT∆ru −QT∆rp = −KT (rui+1,j − rui ) + QT(rpi+1,j − r
p
i ) + ∆F (17.153)

where

KT = Ki+1,j =
Ne
A
e=1

∫
Ωe

(Bu)TDep
i+1,jB

u dΩ, Stiffness matrix (17.154)

QT =
Ne
A
e=1

∫
Ωe

(Bu)T3mNp dΩ, Coupling matrix (17.155)

∆F = F i+1 −
Ne
A
e=1

∫
Ωe

(Bu)Tσi dΩ︸ ︷︷ ︸
F i=KTrui −QTrpi

, Vector of applied load (17.156)

With reference to Eq. (17.51) and similarly to Eq. (17.152) we may write the right hand side of
Eq. (17.153) as

Mf i+1,j = F i+1 −MRi+1,j (17.157)

MRi+1,j =
Ne
A
e=1

∫
Ωe

(Bu)Tσi+1,j dΩ︸ ︷︷ ︸
KTrui+1,j−QTrpi+1,j

where σi+1,j represents the current vector of total stresses given by

σi+1,j = (σε)i+1,j − 3αm(pss + pexi+1,j) (17.158)

17.4.4 Coupled system of equations

Combining Eqs. (17.148), (17.153), (17.152) and (17.158) provides the incremental form of the coupled
consolidation, with limitation to one-phase flow in a fully saturated medium, as[

−Ki+1,j QT

Q C + ∆tH

]{
∆ru

∆rp

}
=

{
−(Mf i+1,j)
Pf i+1,j

}
(17.159)
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The updated variables at i+ 1 load increment and j + 1 iteration are

rpi+1,j+1 = rpi+1,j + ∆rp, rui+1,j+1 = rui+1,j + ∆ru (17.160)

At the beginning of each iteration within a given time integration step we have

rpi+1,0 = rpi , rui+1,0 = rui , qi+1,0 = qi, σi+1,0 = σi (17.161)

Thus at the beginning of each new time integration step we receive the right hand side of Eq. (17.159)
in the form

f i+1,0 =

{
−(F i+1 − F i)

∆tANee=1

∫
Ωe

Bp
Tqi dΩ = −∆tHrip

}
(17.162)

Solving the coupled system of equations (17.159) requires, apart from the application of Dirichlet
boundary conditions (prescribed nodal excess pore pressures and displacements) also the introduction
of initial conditions, i.e., the distribution of initial stress and steady state pore pressure at the onset of
consolidation at time t = 0. In GEO5 FEM this step is performed in the 1st computational stage. The
consolidation analysis is carried out from the 2nd stage on. At time t = 0 (beginning of consolidation)
the initial conditions are

pin = pss, pex|t=0 = 0 (rp0 = 0) (17.163)

σ|t=0 = σ1st stage (17.164)

17.4.5 Limiting cases - undrained and drained conditions

It is interesting to show that the limiting cases representing the beginning (time t = 0) and the
end (time t → ∞) of consolidation essentially correspond to the undrained and drained conditions
discussed already in Section 2.1.

Undrained conditions from Eq. (17.159)

Consider Eq. (17.159) together with the specific format of Eq. (17.152) (remember that pex|t=0 =
0,∆ε = 0) and let ∆t→ 0. This gives[

−K QT

Q C

]{
∆ru

∆rp

}
=

{
−(Mf)

0

}
(17.165)

This system of coupled equations can be solved by first solving the 2nd equation of system (17.165)
for pore pressures rp in terms of displacements ru as (compare with Eq. (2.15))

∆rp = −C−1Q∆ru = −
Ne
A
e=1

(

∫
Ωe

αM3mTBu dΩ)ru (17.166)

Substitution from (17.166) back into the 1st equation of system (17.165) yields(
K + QTC−1Q

)
︸ ︷︷ ︸

Keff

∆ru = Mf (17.167)

or (compare with Eq. (2.17))

Ne
A
e=1

(

∫
Ωe

(Bu)T
(

D + α2M9mmT
)

Bu dΩ)ru = Mf (17.168)



17.4. CONSOLIDATION 233

Drained conditions from Eq. (17.159)

First rewrite Eq. (17.159) as[ −K QT

Q

∆t

C

∆t
+ H

]{
∆ru

∆rp

}
=

 −(Mf)
Pf

∆t

 (17.169)

and let ∆t→∞ to get[
−K QT

0 H

]{
∆ru

∆rp

}
=

{
−(Mf)

Pf = ANee=1

∫
Ωe

(Bp)Tq dΩ

}
(17.170)

This system of equations is already decoupled and can be split into the solution of two independent
problems

• Steady state water flow (see Section 17.5 for more details)

H∆rp = Pf (17.171)

• Mechanical problem with known distribution of pore pressures found from the solution of steady
state water flow

K∆ru = (Mf) + QT∆rp (17.172)

17.4.6 Types of finite elements

The strain-displacement relation calls for a different order of interpolation for strains and displace-
ments. Clearly, the displacements should be approximated by an order of higher polynomial degree
than the strains. Equation (17.128), or its discretized version Eq. (17.144), further suggests the same
order of approximation for strains and pore pressure. To comply with these requirements, the GEO5
FEM program offers two types of elements both with quadratic interpolation of displacements and
linear interpolation of pore pressure, see Fig. 17.25.
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Figure 17.25: Element types used in consolidation analysis with GEO5 FEM

17.4.7 Example of one-dimensional consolidation

To test implementation of the presented theoretical grounds into GEO5 FEM we perform analysis of a
simple one-dimensional (1D) consolidation problem which allows us to compare numerical predictions
with analytical solution.

Analytical solution

Although the analytical solution to 1D consolidation, also implemented in GEO5 Settlement, is gen-
erally available in literature, see for example [45], we briefly address this issue here for the sake of
clarity.

For simplicity, attention will be further accorded to constant loading q(t) = −σz(t) = const,
where σz is the total stress in a given soil layer with the thickness H, see Fig. 17.26. The soil is
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− σzq = 

H

z
p(z,t)

p = 0

dp/dz = 0

z

Figure 17.26: One-dimensional consolidation – soil layer permeable at z = 0

considered to be permeable at the top base z = 0. This corresponds to the flow boundary condition
of the Dirichlet type with the zero excess pore pressure prescribed over the entire time domain, i.e.,
pex = pex(t, z = 0) = 0, recall Eq. (17.135) or Eq. (17.137). We shall further assume that both the
solid grains and pore water are incompressible, i.e., α = 1,M → ∞. These assumptions then yield a
simplified version of equation of continuity (17.133) in the form

ε̇v =
Ksat

γw

∂2pex

∂z2
(17.173)

and because α = 1 and σz(t) = const we get

σ̇m = σ̇effm − ˙pex = 0 (17.174)

Next suppose that the kinematic boundary conditions comply with the oedometric test to arrive at

εx = εy = 0 (17.175)

εv = εz =
σeffz

Eoed
(17.176)

Combining Eqs. (17.173)–(17.176) gives after some manipulations

ṗex = cv
∂2pex

∂z2
(17.177)

where the coefficient of consolidation cv is given in terms of oedometric modulus Eoed by

cv =
KsatEoed

γw
(17.178)

The flow boundary conditions in Fig. 17.26 indicated that at time t = 0 the whole loading is taken by
pore water promoting the initial conditions in the form

σeffz (z, t = 0) = 0→ εz(z, t = 0) = 0, w(z, t = 0) = 0 (17.179)

The solution of Eq, (17.177) is then provided by

p(z, t) = 2q
∞∑
n=0

1

N
sin

Nz

H
exp (−N2T ) (17.180)

where
N = (2n+ 1)

π

2
(17.181)

and T is the reduced time written as

T =
cvt

H2
(17.182)
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The strain-displacement relation together with constitutive equation (17.176)

εz =
∂uz
∂z

=
σeffz

Eoed
=
p− q
Eoed

, p = pss + pex

provide the time evolution of settlement w(t) in the form

w(z = 0, t) =

∫ H

0

q − p
Eoed

dz = wss(z = 0)W (t) (17.183)

W (t) =

(
1−

∞∑
n=0

2

N2
exp (−N2T )

)
(17.184)

where function W (t) is termed the degree of consolidation and

wss(0) = qH/Eoed (17.185)

represents the terrain settlement at the end of consolidation at t→∞, i.e., the steady state.

Numerical solution and discussion

To be consistent with analytical solution we consider a linearly elastic material model with material
parameters listed in Table 17.11.

Table 17.11: Material parameters
Eoed [MPa] Ksat [m/den] ν [–] M [MPa] α [–] γw [kN/m3]

10 10−3 ≈0,0 103 1 10

The geometrical model including the loading and flow boundary conditions is plotted in Fig. 17.27(a),
where (N) represents an impermeable boundary, i.e., the Neumann boundary conditions with the pre-
scribed zero normal flux (qn = 0). On the other hand, the letter (P) indicates permeable boundary
allowing for free outflow, i.e., the Dirichlet boundary conditions with the zero prescribed excess pore
pressure (pex = 0). Note that in GEO5 FEM this is the default setting for all boundaries so it is up
to the user to specify the impermeable (N) boundaries manually. The kinematic boundary conditions,
zero horizontal displacements along vertical edges and zero vertical displacements along the horizontal
base, are evident in Fig. 17.27(d). As for the initial conditions at time t = 0 we set both stresses and
steady state pore pressure to zero (σ(t = 0)0, pss = 0).

H
=

1
m

B=0.1m

q=10kPa

N

P

N N

(a) (b) (c) (d)

Figure 17.27: 1D consolidation: a) geometry, loading and flow boundary conditions, b,c) finite ele-
ment mesh, d) kinematic boundary conditions and evolution of excess pore pressure - 1) undrained
conditions, 2) T= 10−6, 3) T= 0.1, 4) T= 1
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Figure 17.28 shows evolution of excess pore pressure both in space and time for two types of
meshes in Fig. 17.27(b,c) predicted numerically as well as analytically. The vertical dashed line
identifies the solution at time t = 0 when the entire load is taken by pore water. This state is
represented by the excess pore pressure distribution in Fig. 17.27(a1) obtained via standard analysis
with undrained conditions confirming the correctly determined value of pex(t = 0) = 10 kPa. However,
when running consolidation analysis the smallest time to display available results is given by the initial
time step which was set to ∆t = 10−5 [day] in our simulation. The corresponding results appear in
Fig. 17.27(a2). We observe some differences localized in the vicinity of the top boundary where pex = 0
is prescribed. This can partly be attributed to numerical solution and partly to a relatively course
meshes. This numerical error, relevant for the smallest reduced time T = 10−6 only, is also clearly
evident in Fig. 17.28 for both meshes. This error gradually disappears with increasing time and for
larger reduced times the numerical and analytical results essentially coincide.
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Figure 17.28: Distribution of excess pore pressure – numerical vs. analytical solution: a) triangular
mesh, b) quadrilateral mesh

Almost perfect match between numerical and analytical predictions is also seen for terrain settle-
ment w(t, z = 0) in Fig. 17.29(a) asymptotically arriving at the steady state solution wss(t→∞, z = 0)
given by Eq. (17.185).
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Figure 17.29: a) Terrain settlement w, b) evolution of total stress σtotz , effective stress σeffz and excess
pore pressure pex at selected points

Figure 17.29(b) finally illustrates time evolution of total (σtotz ) and effective (σeffz ) vertical stresses
at selected points shown in Fig. 17.27(c) in dependence on the dissipation of excess pore pressure (pex).
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It is seen that with increasing time all excess pore pressure in the entire domain is gradually dissipated
while effective stresses are approaching the total stress in correspondence with Eq. (17.127). It is also
evident that the conventional assumption about the constant total stress is more or less fulfilled. This,
however, is no longer valid when considering a multi-dimensional analysis as demonstrated for example
in [72]. In this regard, the application of analytical solution of 1D consolidation in 2D space, such as
the one implemented in GEO5 Settlement, should be approached with care.

17.5 Water flow analysis

Section 17.4.1 introdudced the mass conservation law in terms of contnuity equation (17.130) to
describe the flow of water in a fully saturated (degree of saturation S = 1 in the entire domain)
deformable porous medium. When allowing for water flow through a partially saturated medium
(region with positive pore pressure representing suction and S < 0) this equation receives an advanced
format in terms of the bulk moduli of the solid phase (Km) and water (Kw), the porosity n, and Biot
parameter α, recall Section 2.1,

(α− n)S

Km
(Ṡp+ Sṗ) +

nS

Kw
ṗ+ αSdiv(vs) + nṠ + div (−KrKsat∇h(p)) = m(t) (17.186)

Taking this equation as a point of departure and then neglecting the skeleton deformation and the
compressibility of pore fluid (divvs = 0,Km →∞,Kw →∞) in Eq. (17.186) we arrive at the general
version of Richards’ equation for unsaturated flow in the absence of internal sources in the form

nṠ + div (−KrKsat∇h) = 0 in Ω (17.187)

In analogy to Section 17.4.1 solving Eq. (17.187) calls for the introduction of hydraulic boundary
conditions. These are either imposed fluxes (Neumann or natural boundary conditions) or prescribed
changes in pore fluid pressure (Dirichlet or essential boundary conditions). They are essentially anal-
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Figure 17.30: a) Hydraulic boundary conditions, b) Infiltration, sources and sinks

ogous to prescribed traction and displacement boundary conditions mentioned, e.g., in Section 17.4.2.
In particular, see Fig. 17.30(a), we have (the seepage boundary conditions on Γs are treated separately
in Section 17.5.5)

• Imposed flux density qn normal to the boundary Γq; n is the outward unit normal, qn is assumed
positive when in the direction parallel to n (outflow), see Fig. 17.30 and Eq. (16.2))

nT(nvws) = −nT (KrKsat∇h) = qn on Γq (17.188)

• Prescribed pore pressure p or total head h on the boundary Γp

p = p or h = h on Γp (17.189)

Apart from the boundary flux density qn [m/s] the program GEO FEM allows for introducing the
point sources or sinks Q [m3s−1]. The sign convention, evident from Fig. 17.30 is identical with the
boundary flux.
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17.5.1 Temporal discretization of Equation (17.187)

Defining the specific water content capacity C = dS/dhp [m−1], so that Ṡ = Cḣ, provides the
so called h-based version of the Richards equation. On the contrary, introducing the pore fluid
diffusivity D = K/C [m2s−1] allows us to write Eq. (17.187) solely in terms of the degree of saturation.
Although both versions require to deal with a single variable only, they experience certain drawbacks
when solved numerically. While the h-based formulation is known to fail in preserving mass in some
applications, the S-based formulation although mass-conservative cannot be adopted for describing
the fully saturated flow [18, 35].

To overcome these difficulties Celia et al. [18] proposed a fully explicit mass-conservative scheme to
solve the original mixed form of Richards’ equation (17.187) directly by adopting the modified Picard
iteration scheme to get

n
Si+1,j+1 − Si

∆t
−∇TKr(h

i+1,j
p )Ksat∇hi+1,j+1 = 0 (17.190)

where i stands for a given time (load) increment and j represents the current iteration step. Next,
write Si+1,j+1 with the help of Taylor’s series expansion as

Si+1,j+1 = Si+1,j +

(
dS

dhp

)i+1,j (
hi+1,j+1
p − hi+1,j

p

)
(17.191)

and define

∆h = hi+1,j+1
p − hi+1,j

p = hi+1,j+1 − hi+1,j(
dS

dhp

)i+1,j

= Ci+1,j

Si+1,j+1 = Si+1,j + Ci+1,j∆h

Ki+1,j = Ki+1,j
r Ksat

Substituting the above terms into Eq. (17.190) then gives

1

∆t
nCi+1,j∆h−∇TKi+1,j∇(∆h) = ∇TKi+1,j∇hi+1,j − 1

∆t
n(Si+1,j − Si) (17.192)

17.5.2 Finite element approximation of Equation (17.192)

Note that a closed form solution of Eq. (17.192) together with boundary conditions (17.188) and (17.189)
is not generally available. A natural step is therefore to rewrite Eq. (17.192) in the context of the
principle of virtual work. To do so, we begin with the dervation of principal of virtual work, Eq. (17.1),
pertinent to the present task by first combining Eqns. (17.192) and (17.188) to get

1

∆t

∫
Ω
δh
(
nCi+1,j

)
∆hdΩ−

∫
Ω
δh
[
∇TKi+1,j∇(∆h)

]
dΩ

−
∫

Ω
δh
[
∇TKi+1,j∇hi+1,j

]
dΩ +

1

∆t

∫
Ω
δh
[
n(Si+1,j − Si)

]
dΩ

+

∫
Γq

δh
[
nTKi+1,j∇(∆h+ hi+1,j) + qi+1

n

]
dΓ = 0 (17.193)

Next, integrating Eq. (17.193) by parts and realizing that δh = 0 on Γp gives

1

∆t

∫
Ω
δh
(
nCi+1,j

)
∆hdΩ +

∫
Ω

(δ∇h)TKi+1,j∇(∆h) dΩ =

−
∫

Ω
(δ∇h)TKi+1,j∇hi+1,j dΩ− 1

∆t

∫
Ω
δh
[
n(Si+1,j − Si)

]
dΩ

−
∫

Γq

δh qi+1
n dΓ (17.194)
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This equation now can be solved easily using the finite element method. In such a case the distribution
of the total head can be approximated using standard element shape functions from Sections 17.2.3
or 17.2.4 as

∆h =
n∑
i=1

Ni∆ri = N∆r (17.195)

where ∆ri represents the increment of nodal total heads and n is the number of nodes. The finite
element equations derived by substituting for ∆h from Eq. (17.195) into Eq. (17.194) and taking into
account the boundary conditions (17.189) now become

1

∆t
C11 + H11

1

∆t
C12 + H12(

1

∆t
C12 + H12

)T 1

∆t
C22 + H22


i+1,j {

∆r
0

}
(17.196)

=

{
f i+1
ext

0

}
−

 H11 H12

(H12)T H22

i+1,j {
ri+1,j

ri+1

}
− 1

∆t

{
Si+1,j

1

Si+1,j
2

}

Point out that the 2nd equation allows us to calculate fluxes at nodes with the prescribed nodal
pressure heads ri+1 (notice analogy with reactions at nodes with prescribed displacements). The first
equation thus gives the unknown nodal increments of total head ∆r at the end of the current time
step as [

1

∆t
Ci+1,j

11 + Hi+1,j
11

]
∆r = f i+1

ext −Hi+1,j
12 ri+1 −Hi+1,j

11 ri+1,j − 1

∆t
Si+1,j

1 (17.197)

where the matrices Ci+1,j
11 and Hi+1,j

12 read (Ne stands for the number of elements)

Ci+1,j
11 =

Ne
A
e=1

∫
Ωe

NT(nCi+1,j)N dΩ (17.198)

Hi+1,j
11 =

Ne
A
e=1

∫
Ωe

BTKi+1,jB dΩ (17.199)

Si+1,j
1 =

Ne
A
e=1

∫
Ωe

NT
[
n(Si+1,j − Si)

]
dΩ (17.200)

For the purpose of numerical stability a diagonal format of the capacity matrix Cdiag is usually
adopted in place of the consistent matrix C given by Eq. (17.198). For low order elements, i.e., 3-node
triangular or 4-node quadrilateral element, the diagonal terms of Cdiag are equal to the sum of all terms
in the corresponding row of C. So these are the only elements available in GEO5 FEM to perform the
transient water flow analysis.

The right hand side of Eq. (17.197) represents a vector of out-of-balanced loads

Ri+1,j = f i+1
ext − f

i+1,j
int (17.201)

where the vector of external loads f i+1
ext is provided by

f i+1
ext = f i+1

q +Qi+1 (17.202)

f i+1
q = −

NE
A
e=1

∫
ΓqE

NTqi+1
n dΓ, qn = Nq

where NE stands for the number of loaded element edges on the boundary. Qi+1 is the vector
of nodal values of prescribed sources and/or sinks, which may correspond to injection or pumping
rates representing for example the effect of injection or extraction wells as shown schematically in
Fig. 17.30(b). Similarly, prescribing the nodal intensities qi+1 allows for simulating pore fluid flows
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across a boundary of the finite element mesh, e.g., infiltration rate as seen in Fig. 17.30(b). In
the simplest case, in which no fluid is transferred across the boundary Γq, the imposed flux density
qn = 0. In comparison with the solution of pure deformation of a soil body these boundary conditions
correspond to prescribed surface tractions.

The vector of generalized internal loads f i+1,j
int can be formally written as

f i+1,j
int =

Ne
A
e=1

∫
Ωe

BTqi+1,j dΩ +
1

∆t
Si+1,j

1 (17.203)

where the flux vector qi+1,j is given by

qi+1,j = Ki+1,jBri+1,j (17.204)

Note that the 1st term on the right hand side of Eq. (17.203) derives from the second two terms on
the right hand side of Eq. (17.197).

17.5.3 Iteration within a given time step

Solving the system of nonlinear equations (17.197) typically employs the Newton-Raphson method.
Assigning rI the initial value of total nodal heads at time t = 0 and defining Ki+1,j the matrix of the
global system of equations (17.197) as

Ki+1,j =
1

∆t
Ci+1,j

11 + Hi+1,j
11

allows us to consider the following three cases:

• 1st loading increment - state at the end of the initializing stage I
(i = j = 0, t0 = 0, t1 = ∆t)

K1(h1
p)∆r = f1

ext −H12(Ksat)r
1, r1 = rI + ∆r

• i+ 1 loading incremen - state at the end of the ith loading step
(j = 0, ti+1 = ti + ∆t)

Ci+1,0 = Ci, Hi+1,0 = Hi, Si+1,0
1 = Si1, ri+1,0 = ri

f i+1,0
int =

Ne
A
e=1

∫
Ωe

BTqi dΩ +
1

∆t
Si1

Ri+1,0 = f i+1
ext − f

i+1,0
int =

(
f i+1
ext − f iext

)︸ ︷︷ ︸
∆f

+
(
f iext − f

i+1,0
int

)
︸ ︷︷ ︸

=ε

Ki+1,0∆r = ∆f + ε, ri+1,1 = ri + ∆r

If ∆f = 0 then the new total head increment is estimated as ∆r0 = (ri − ri−1)
∆ti+1

∆ti
where

∆ti,∆ti+1 represent the two successive time steps.

• i+ 1 loading increment - state at the end of jth iteration step (ti+1 = ti + ∆t)

Ri+1,j+1 = f i+1
ext − f

i+1,j+1
int ,

f i+1,j+1
int =

Ne
A
e=1

∫
Ωe

BTqi+1,j+1 dΩ +
1

∆t
Si+1,j+1

1

Ki+1,j+1∆r = Ri+1,j+1, ri+1,j+2 = ri+1,j+1 + ∆r

Suitable convergence criteria to terminate the iteration process are discussed in Section 17.2.7.
Some useful information on the comparison of various convergence criteria with possible acceleration
of the iteration process particularly in the simulation of infiltration in initially dry soils can be found
in [35].
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17.5.4 Steady state water flow

When the soil saturation S no longer evolves with time (Ṡ = 0), we arrive at the steady state solution
and Eq. (17.187) reduces to

div (−KrKsat∇h) = 0 (17.205)

After discretization, compare with Eq. (17.197) and also with Eq. (17.171), we get

Hj∆r = Rj , Hj =
Ne
A
e=1

∫
Ωe

BTKj
rKsatB dΩ (17.206)

When the permeability matrix KrKsat is constant and the flow is confined (the phreatic surface is
known), the solution of Eq. (17.206) reduces to a single inversion of the matrix H. If, on the other
hand, the flow is unconfined (the phreatic surface is unknown), an iterative scheme must be employed
to solve Eq. (17.206). For example, in the framework of the modified Newton-Raphson method we
proceed as follows. Define a vector of out-of-balanced loads at the beginning of the j-th iteration,
recall Eq. (17.201),

Rj = f ext − f
j
int (17.207)

where

f jint = Hjrj , rj = rj−1 + ∆r ∆r = (Hj−1)−1∆Rj−1 (17.208)

Therefore, at each iteration the increments of total heads are calculated for a given increment of
the out-of-balanced loads found from Eq. (17.207) and added to the total heads. This procedure is
repeated until a certain convergence criterion from Section 17.2.7. is reached. Further details can be
found in [4].

17.5.5 Seepage surface

To introduce the subject consider two examples of a rectangular dam in Fig. 17.31. It is a relatively
complex problem as it involves both a phreatic surface separating saturated and unsaturated zones
inside the dam and a seepage surface on the right hand side of the dam where the characteristic
hydraulic conditions are not known a priori. While qn = 0 is a correct boundary condition above
the point where the phreatic surface touches the seepage surface (S < 1, h < 0 inside the domain),
below this point along the seepage surface the pore fluid pressure becomes zero (it should rather be
in equilibrium with the atmospheric pressure, but that is taken as a reference pressure) since water is
free to flow across the boundary (S = 1, h = y). This problem was studied, e.g., in [4] by changing
the boundary conditions during an iterative solution (either prescribed flux or prescribed total head)
whenever necessary owing to the fact that the exit point is not known in advance.
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Figure 17.31: Example of unconfined flow: modeling of flow through a seepage surface: a) h=0.2m,
b) h=0

Switching from one type of boundary condition to the other may cause substantial difficulty in
coding the finite element program. While the flux boundary condition Eq. (17.188) is automatically
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satisfied by the weak formulation the imposed total head boundary condition , Eq. (17.189), reduces the
number of active degrees of freedom. An elegant way to deal with these seepage boundary conditions
was suggested in [2] by formulating special seepage interface elements in the framework of the penalty
method. The main advantage of these elements is the possibility of distinguishing between internal
and external hydraulic conditions. When introduced along a boundary inside the domain it further
allows us to simulate a constant pore pressure jump across the interface.

The use of these special interface elements can be avoided providing the Newton-Cotes integration
scheme is assumed. The seepage boundary conditions apply directly to the boundary nodes and can
be introduced through a nonlinear spring model by defining a point flux through the surface in the
form

Q = kv(h− hext) (17.209)

where kv is a fictitious permeability (a spring constant) that must be sufficiently large to ensure that
h = hext at the boundary nodes where a nonzero external pressure is prescribed. Imposing external
pressures through Eq. (17.209) appears useful when the location of zero external pressure changes
with time, which may occur not only on the downstream face of the dam but also on the upstream
face during filling or drawdown. Since only steady state flow is considered herein the external pressure
does not change with time and can be imposed directly on the respective degrees of freedom. The
seepage surface then becomes adequate only for that part of the boundary where pext = 0 (flow at
atmospheric pressure). The seepage boundary conditions on Γs can then be written as

Q = kv(h− y), if h > y (S = 1) in the domain and pext = 0 (17.210)

Q = 0, if h < y (S < 1) in the domain and pext = 0 (17.211)

where the zero flux boundary condition Eq. (17.211) is generated by setting kv = 0. Note that this
is exactly the same approach as used with tension excluded spring supports in purely mechanical
analyses. The weak form of Eq. (17.205) when combined with Eq. (17.210) becomes

fint +

Ms∑
i=1

kvhi|Γs = fext +

Ms∑
i=1

kvzi|Γs (17.212)

where Ms is the number of nodes on the seepage surface and zi is the z-coordinate of the node i.
This particular approach was employed to solve the two problems in Fig. 17.31. Note that for

boundaries well above the phreatic surface where no seepage is expected it may be more appropriate to
directly prescribe the no flow conditions qn = 0 rather then let this condition be generated through the
seepage surface Eq. (17.211). The results are plotted in Fig. 17.32. The applied boundary conditions
as well as isolines of velocity vx clearly show the difference between the two example problems. The
total discharge through individual boundaries is also shown.

(a) (b)

Figure 17.32: Modeling of seepage surface: distribution of velocity vx (van Genuchten model with
n = 2, α = 2m−1): a) h=0.2m, b) h=0

It is worth noting that the solution is not as much dependent on the penalty stiffness kv as it is
on the parameters of the van Genuchten model and the density of finite element mesh in the vicinity
of the expected exit point. In GEO5 FEM, this point will coincide with a particular node of the finite
element mesh owing to Eq. (17.210) being enforced only in the nodes, recall Eq. (17.212).
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17.5.6 Flow through a thin zone - modeling of interfaces

In many real situations we often need to deal with flow across or along an interface of two layers having
marginally different permeabilities. Although two nodes, one for each layer, are generated along the
common boundary in some commercial codes by default a fully permeable boundary condition is
generally assumed by tying the corresponding total head degrees of freedom of the adjacent nodes.
Treating impermeable or partially permeable boundaries on the other hand requires the introduction
of interface elements into the finite element model. Interface elements can also be used to either
block the flow across an impermeable sheeting wall or to represent a drain by easing flow along the
longitudinal direction of the interface.

A B C

q=0

q=0

p

pb

t

Figure 17.33: Hydraulic boundary conditions on interface

Figure 17.33 shows three particular conditions which may occur when simulating flow through a
thin interfacial zone. Example A represents a fully impermeable boundary. This is the most simple
case when interface elements essentially do not contribute to the governing system of equations which
in turn results into a discontinuous pore pressure field. To enforce pore pressure continuity (pt = pb) in
the case of a fully permeable boundary, example B, it is sufficient to tie the corresponding total head
(pore pressure) degrees of freedom along the interface without actually formulating interface elements
to account for flow. The intermediate boundary conditions (example C), which may include both the
above two extremes, must however be handled by interface elements.
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Figure 17.34: Flow through a thin zone

Figure 17.34 shows a simplified representation of flow both in the longitudinal (s) and normal (n)
directions of a thin interfacial zone with s, n representing the local coordinate system. Since interface
elements have zero thickness we get (for the local coordinate system)

h =
p

γw
(17.213)

Darcy’s law then assumes the following form

nvws = −Ksat∇h = −Ksat

γw
∇p (17.214)
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Because this topic is also common to consolidation described in Section 17.4 and has not be specifically
addressed yet, we start from continuity equation (17.130) which in this particular case reads

n

Kw
ṗ+ ε̇v + div(−Ksat∇h) = 0 (17.215)

The 2× 2 permeability matrix Ksat now reads

Ksat =

[
ks 0
0 kn

]
(17.216)

where ks, kn are the permeabilities in the longitudinal and normal directions, respectively. The corre-
sponding fluxes are given by, see Figure 17.34,

qs = −ks
1

2

∂(ht + hb)

∂s
(17.217)

qn = −kn
ht − hb

d
(17.218)

where d is a virtual thickness of the interface. Similarly we define the velocity components of the solid
phase so that

ε̇v = div(vs) = vss + vsn =
1

2

∂((u̇ss)
t + (u̇ss)

b)

∂s
+

(u̇sn)t − (u̇sn)b

d
(17.219)

Admitting steady state conditions only Equation (17.215) considerably simplifies (note the similarity
with Equation (17.205))

div(−Ksat∇h) = 0 (17.220)

A weak form of Equation (17.220) leads again, after finite element discretization, to Equation (17.206)1

where the B matrix in Equation (17.206)2 is now provided by

• 4-node interface element

B =


1

2J

∂N1

∂r

1

2J

∂N2

∂r

1

2J

∂N1

∂r

1

2J

∂N2

∂r

−N1

d
−N2

d

N1

d

N2

d

 (17.221)

• 6-node interface element

B =


1

2J

∂N1

∂r

1

2J

∂N2

∂r

1

2J

∂N3

∂r

1

2J

∂N1

∂r

1

2J

∂N2

∂r

1

2J

∂N3

∂r

−N1

d
−N2

d
−N3

d

N1

d

N2

d

N3

d

 (17.222)

where Ni are the element shape functions for either 2-node or 3-node rod elements discussed already
in Section 17.2.5, Table 17.9, and J is the Jacobian equal to L for 4-node and L/2 for 6-node interface
elements, respectively, with L being the element length.

An example illustrating the use of interface elements is shown in Figure 17.35. For simplicity a
confined flow through a triangular dam was considered. A sealing membrane at the bottom of the
dam and an impermeable curtain were introduced to simulate drain and flow around an impermeable
wall. Both a membrane and a grout curtain are modeled by interface elements. Their contribution to
the finite element equations then depends on the values assigned to interfacial permeabilities ks, kn.

If no restriction to flow through interface elements is assumed, the interface elements are either
excluded from the finite element mesh or their permeabilities are assigned very high values (1000 times
the permeability of the soil was used in this example) resulting, in both cases, in a continuous pore
pressure distribution. This option is examined in Figures 17.36(a)(b) considering the dam to represent
a fully impermeable concrete block. The part of boundary on the bottom of the dam is then assigned
a zero flux boundary condition qn = 0 by default. When on the other hand the interface elements are
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used to block the flow (impermeable wall) then the values of both ks and kn are set to zero producing a
discontinuous distribution of pore pressures. This is evident from Figures 17.36(d)(e). Compare then
with Figure 17.36(c) where no restrictions to flow were imposed. Intermediate conditions can also be
specified to simulate specific drain conditions by allowing for fluid to flow freely in the longitudinal
direction while blocking the flow in the perpendicular direction. Such conditions were assigned to a
sealing membrane by setting ks = 1000× the soil permeability and kn = 0. The corresponding results
are plotted in Figures 17.36(e)(f). Notice again the discontinuity in the pore pressure isolines.
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Figure 17.35: Modeling of confined interfacial flow: geometry and boundary conditions

(a) (b)

(c) (d)

(e) (f)

Figure 17.36: Modeling of interfacial flow - results: a) impermeable dam, permeable curtain, no
interface elements, b) impermeable dam, permeable curtain - interface elements, c) membrane and
curtain fully permeable, d) permeable membrane and impermeable curtain, e) drain and impermeable
curtain, f) drain and permeable curtain
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17.5.7 Testing implementation of transient flow analysis

The present section summarizes analytical solutions of the one- and two-dimensional Green-Ampt
problem [27] provided in a series of papers by Tracy [78, 79, 80, 81]. Such analytical solutions can be
used not only to check the accuracy of numerical solution of a generally highly nonlinear Richards’
equation but also to compare predictions and stability of numerical solver associated with various
models presented in the previous sections.

Analytical solutions

Graphical representation of the 1D and 2D Green-Ampt problem is shown in Figure 17.37. The soil is
assumed initially dry with pressure head hp = hinp . The rainfall (rather ponding boundary condition)
is then applied to bring the pressure head to zero at the top boundary while maintaining the initial
conditions at the bottom boundary.
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Figure 17.37: Green-Ampt problem - geometry, initial, boundary conditions: (a) 1D, (b) 2D

In the case of 1D problem we consider an initially dry column of soil infiltrated by water. The
corresponding initial and boundary conditions are plotted in Figure 17.37(a).

• Initial conditions

hp(y, 0) = hinp = −20 [m] (17.223)

• Boundary conditions

hp(0, t) = hinp , hp(H, t) = 0 (17.224)

The analytical solution of this problem can be found in Tracy [78, 79] assuming the relative per-
meability Kr and the degree of saturation S for hp < 0 in the form, recall Equations (16.8), (16.5)
and (16.7),

Kr = exp(ahp) (17.225)

S = Sr + (Ssat − Sr)Kr (17.226)

• Steady state solution

hp(y, t→∞) =
1

a
ln

(1− ε) exp
(a

2
(H − y)

) sinh
(a

2
y
)

sinh
(a

2
H
) + ε

 (17.227)

where

ε = exp(ahinp ) (17.228)
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• Transient solution

hp(y, t) =
1

a
ln
[
hp + ε

]
(17.229)

where

hp = (1− ε) exp
(a

2
(H − y)

) sinh
(a

2
y
)

sinh
(a

2
H
) +

2

cH

∞∑
k=1

(−1)k
λk
µk

sin(λky) exp(−µkt)

(17.230)

c =
na

Ksat
(Ssat − Sr) =

a

Ksat
(θs − θr) (17.231)

µk =
1

c

(
a2

4
+ λ2

k

)
(17.232)

λk =
π

H
k (17.233)

The results for H = 6m and H = 50m appear in Figure 17.38. The steady state solution is reached
approximately at the time of t = 6 days for H = 6m and t = 300 days for H = 50m. The adopted
material parameters are listed in Table 17.12.

Table 17.12: Material parameters (recall definitions in Section 2.1 and Chapter 16
θs (Ssat) θr (Sr) n a [1/m] Ksat [m/day]

0.45 (1.0) 0.15 (0.33) 0.45 0.1 0.1
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Figure 17.38: Analytical solution of 1D Green-Ampt problem - pressure head distribution vs depth:
(a) H = 50m, (b) H=6m, (ss stands for steady state conditions)

In the case of 2D problem we consider a rectangular region with initial and boundary conditions
shown in Figure 17.37(b). The variation of the pressure head boundary conditions, Equation (17.236),
applied along the top edge of the soil sample are depicted in Figure 17.39(a).

• Initial conditions
hp(x, z, 0) = hinp = −20 [m] (17.234)

• Boundary conditions

hp(0, y, t) = hp(B, y, t) = hp(x, 0, t) = hinp (17.235)

hp(x,H, t) =
1

a
ln

{
ε+ (1− ε)

[
3

4
sin
( π
B
x
)
− 1

4
sin

(
3π

B
x

)]}
(17.236)
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The analytical solution is again provided by Tracy [78, 79] and is given by

• Steady state solution

hp(x, z, t→∞) =
1

a
ln
[
hss + ε

]
(17.237)

where
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2
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(17.239)
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H
k (17.240)

• Transient solution

hp(x, z, t) =
1

a
ln
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hp + ε

]
(17.241)
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γik =
1

c

(
β2
i + λ2

k

)
(17.243)

The resulting variation of pressure head hp(x = 25m, y, t) appears in Figure 17.39(b). The same
material parameters as in the case of 1D problem were adopted.
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Figure 17.39: a) Pressure head boundary conditions applied at the top of the soil sample, b) Analytical
solution of 2D Green-Ampt problem calculated at x = 25m (ss stands for steady state conditions)

Numerical results

Henceforth we present the results of numerical solution of the Green-Ampt problem. Both 1D and
2D problem was solved with two-dimensional 3-node triangular elements. Note that the GEO5 FEM
program allows for the linear variation of boundary pressure heads only, Figure 17.40. Thus for
numerical calculations, the boundary conditions in Figure 17.39(a) had to be introduced directly into
the finite element source code.
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Figure 17.40: Boundary conditions in GEO5 FEM: a) 1D, b) 2D

In the case of 1D problem the 0, 4 × 6m domain was considered with an average element edge
equal to 0.2m. The 50× 50m domain with element edge equal to ≈ 2.5m was analyzed in the case of
2D problem. Figure 17.41 compares the analytical and numerical results of both problems. The time
step ∆t = 0.1 day was used to solve Equation (17.197). Both predictions match the analytical results
relatively well.
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Figure 17.41: Comparing analytical and numerical results (ss stands for steady state conditions): a)
1D problem (0.4× 6m), b) 2D problem (50× 50m, x = 25m)
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Figure 17.42: a) Relative permeability, b) degree of saturation, c) capacity ( dS/ dhp)

The final set of results compares predictions of the time dependent pressure head evolution at-
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tributed to individual models. The following material and model parameters were assumed: Ssat =
1.0, Sr = 0.33, a = 0.1 [m−1], R = 100, hmin

p = 0, hTZ = 45 [m], n = 2, α = 0.04 [m−1]. Parameters
a, R, hTZ and α were again selected such as to provide the same steady state solution. Since this is
driven by a relative permeability only it is sufficient to enforce the same evolution of Kr(hp), see Fig-
ure 17.42(a). This also renders the same predictions provided by the Gardner and log-linear models.
Thus only the Gardner and van Genuchten models are considered next.

First notice considerable differences in the variation of degree of saturation S(hp) provided by
Equations (16.5) - (16.7) and the associated capacity C(hp) = dS/ dhp terms, respectively. Ex-
pected differences in the pressure head time history predicted by individual equations appear in Fig-
ures 17.43(a)(b) also suggesting a shorter time to reach the steady state solution for the van Genuchten
model in comparison to the Gardner model based formulations for the selected model parameters.
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