téléphone: 04 72 11 28 57

www.soilboring.fr

Conception de l'ouvrage de soutènement

Données d'entrée

Projet

Date: 02.11.2005

Paramètres

(saisie pour l'étude actuelle)

Calcul des pressions

Calcul de la pression active : Théorie de Coulomb (norme CSN 730037)

Calcul de la pression passive : Théorie de Caquot-Kerisel

Calcul du séisme : Mononobe-Okabe Méthode de vérification : états limites

Coefficient de réduction des paramètres des sols						
Situation de calcul permanente	Situation de calcul permanente					
Coefficient de réduction de l'angle du frottement interne :	$\gamma_{m\phi} =$	1,10 [–]				
Coefficient de réduction de la cohésion :	γ _{mc} =	1,40 [–]				
Coefficient de réduction du Coefficient de Poisson :	$\gamma_{mv} =$	0,90 [–]				
Coefficient de réduction du poids volumique du sol derrière la structure :	$\gamma_{m\gamma} =$	1,00 [–]				
Coefficient de réduction du poids volumique du sol devant la structure :	$\gamma_{m\gamma} =$	1,00 [–]				

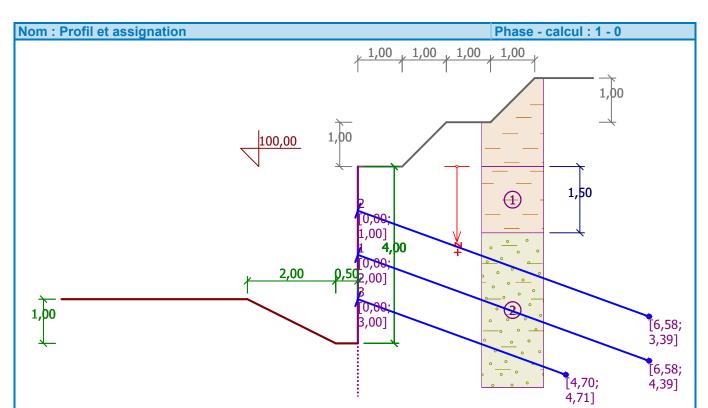
Paramètres de base des sols

Num.	Nom	Echantillon	Фef [°]	c _{ef} [kPa]	γ [kN/m³]	γsu [kN/m³]	δ [°]
1	Třída S5	· · · ·	29,00	5,00	18,00	10,00	17,50
2	Třída F8 ,konzistence tuhá		15,00	5,00	20,50	10,50	15,00

Paramètres des sols

Třída S5

Poids volumique : $\gamma = 18,00 \text{ kN/m}^3$


Třída F8, konzistence tuhá

Poids volumique : $\gamma = 20,50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Etat de contraintes}: & \text{effective} \\ \text{Angle de frottement interne}: & \phi_{\text{ef}} = 15,00 \ ^{\circ} \\ \text{Cohésion du sol}: & c_{\text{ef}} = 5,00 \ ^{\circ} \\ \text{Angle de frot. structure-sol}: & \delta = 15,00 \ ^{\circ} \\ \text{Poids volumique du sol saturé}: & \gamma_{\text{sat}} = 20,50 \ \text{kN/m}^{3} \end{array}$

Coupe géologique et assignation des sols

Num.	Couche [m]	Sol assigné	Echantillon
1	1,50	Třída F8 ,konzistence tuhá	
2	-	Třída S5	· · ·

Géométrie de la structure

Le sol devant le mur a été excavé en profondeur 4,00 m.

Profil du fond de fouille

Num.	Coordonnées x [m]	Profondeur z [m]
1	0,00	0,00
2	-0,50	0,00
3	-2,50	-1,00
4	-3,50	-1,00

L'origine [0,0] se trouve au fond de fouille. Orientation +z vers le bas.

Ancrages saisis

Num.	Nouv.	Profondeur	Long.	Scellement	Inclin.	Distance entre	Force
	ancrage	z [m]	l [m]	l _k [m]	α [°]	b [m]	F [kN]
1	Oui	2,00	7,00	0,00	20,00	1,00	11,88
2	Oui	1,00	7,00	0,00	20,00	1,00	43,31
3	Oui	3,00	5,00	0,00	20,00	1,00	47,58

Profil du terrain

Num.	Coordonnées x [m]	Profondeur z [m]
1	0,00	0,00
2	1,00	0,00
3	2,00	-1,00
4	3,00	-1,00
5	4,00	-2,00

Num.	Coordonnées	Profondeur
Nulli.	x [m]	z [m]
6	5,00	-2,00

L'origine [0,0] se trouve dans le coin en haut à droite de la structure. Orientation +z vers le bas.

Effet de l'eau

La nappe phréatique est en dessous de la structure.

Paramètres du calcul de la phase

Situation de calcul : permanente

Vérification n° 1

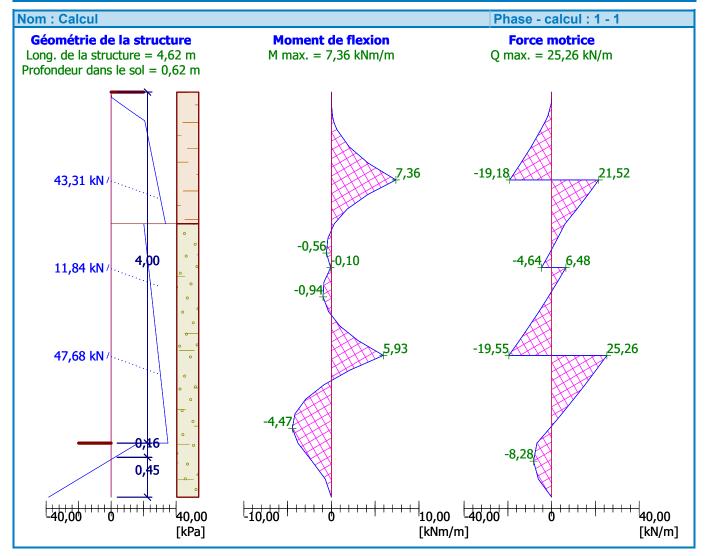
Conception du soutènement ancré et installé en pointe librement

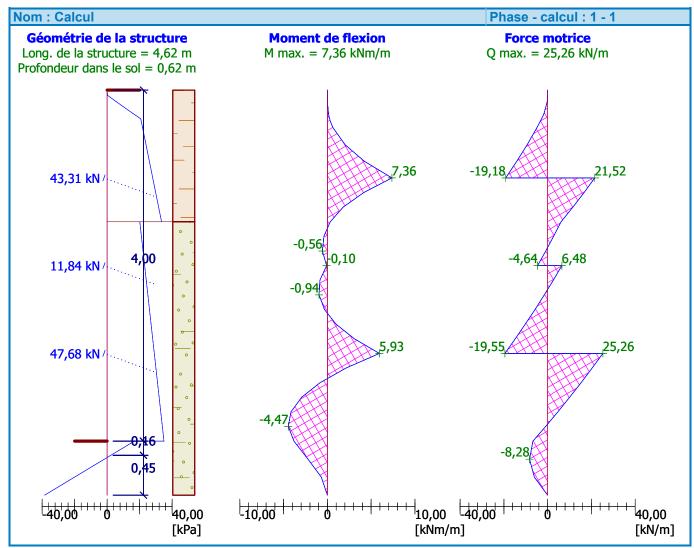
Coefficient de réduction de la pression passive = 0.99

Pression dimensionnante minimale a été considérée dans le calcul de la pression active.

Profondeur calculée du point zéro u = 0,16 m

Valeur maximale de la force motrice = 25,26 kN/m
Valeur maximale du moment = 7,36 kNm/m
Profondeur nécessaire de la structure dans le sol = 0,62 m
Long. totale de la structure = 4,62 m


Forces des ancrages


Num.	Profondeur z [m]	Force de l'ancrage [kN]
1	2,00	11,84
2	1,00	43,31
3	3,00	47,68

Diagrammes de la pression et des efforts internes appliqués à la structure

Profondeur [m]	Press. totale [kPa]	Force mot. [kN/m]	Moment [kNm/m]
0.00	0.00	0.00	-0.00
0.01	0.04	-0.00	0.00
0.01	0.04	-0.00	0.00
0.06	0.25	-0.01	0.00
0.13	5.84	-0.23	0.01
0.27	15.98	-1.69	0.12
0.29	17.76	-2.07	0.16
0.32	20.15	-2.64	0.23
0.33	20.72	-2.79	0.25
0.33	20.72	-2.79	0.25
0.35	21.01	-3.35	0.34
0.42	21.78	-4.86	0.62
0.43	21.88	-5.05	0.67
0.43	21.88	-5.05	0.67
0.62	23.93	-9.37	2.02
0.81	25.99	-14.08	4.23
1.00	28.04	-19.18	7.36
1.00	28.04	21.52	7.36
1.17	29.86	16.69	4.17

Profondeur	Press. totale	Force mot.	Moment
[m]	[kPa]	[kN/m]	[kNm/m]
1.33	31.67	11.57	1.82
1.50	33.49	6.14	0.34
1.50	20.07	6.14	0.34
1.67	21.06	2.71	-0.40
1.83	22.06	-0.88	-0.56
2.00	23.05	-4.64	-0.10
2.00	23.05	6.48	-0.10
2.17	24.04	2.56	-0.86
2.33	25.04	-1.53	-0.94
2.50	26.03	-5.79	-0.34
2.67	27.02	-10.21	0.99
2.83	28.02	-14.79	3.08
3.00	29.01	-19.55	5.93
3.00	29.01	25.26	5.93
3.17	30.00	20.34	2.13
3.33	30.99	15.26	-0.84
3.50	31.99	10.01	-2.94
3.67	32.98	4.59	-4.16
3.83	33.97	-0.99	-4.47
4.00	34.97	-6.73	-3.82
4.00	16.78	-6.73	-3.82
4.21	-1.67	-8.28	-2.22
4.41	-20.12	-6.05	-0.69
4.62	-38.57	0.00	0.00

Vérification n° 2

Conception du soutènement ancré et installé en pointe librement

Coefficient de réduction de la pression passive = 1,00

Pression dimensionnante minimale a été considérée dans le calcul de la pression active.

Profondeur calculée du point zéro u = 0,16 m

Valeur maximale de la force motrice = 25,20 kN/m
Valeur maximale du moment = 7,36 kNm/m
Profondeur nécessaire de la structure dans le sol = 0,61 m
Long. totale de la structure = 4,61 m

Forces des ancrages

Num.	Profondeur z [m]	Force de l'ancrage [kN]
1	2,00	11,88
2	1,00	43,31
3	3,00	47,58

Diagrammes de la pression et des efforts internes appliqués à la structure

Profondeur	Press. totale	Force mot.	Moment
[m]	[kPa]	[kN/m]	[kNm/m]
0.00	0.00	0.00	0.00
0.01	0.04	-0.00	0.00
0.01	0.04	-0.00	0.00
0.06	0.25	-0.01	0.00
0.13	5.84	-0.23	0.01
0.27	15.98	-1.69	0.12
0.29	17.76	-2.07	0.16
0.32	20.15	-2.64	0.23
0.33	20.72	-2.79	0.25
0.33	20.72	-2.79	0.25
0.35	21.01	-3.35	0.34
0.42	21.78	-4.86	0.62
0.43	21.88	-5.05	0.67
0.43	21.88	-5.05	0.67
0.62	23.93	-9.37	2.02
0.81	25.99	-14.08	4.23
1.00	28.04	-19.18	7.36
1.00	28.04	21.51	7.36
1.17	29.86	16.69	4.18
1.33	31.67	11.56	1.82
1.50	33.49	6.13	0.34
1.50	20.07	6.13	0.34
1.67	21.06	2.70	-0.40
1.83	22.06	-0.89	-0.55
2.00	23.05	-4.65	-0.09
2.00	23.05	6.52	-0.09
2.17	24.04	2.59	-0.85
2.33	25.04	-1.50	-0.95
2.50	26.03	-5.75	-0.35
2.67	27.02	-10.18	0.98
2.83	28.02	-14.76	3.05
3.00	29.01	-19.51	5.91
3.00	29.01	25.20	5.91
3.17	30.00	20.28	2.12
3.33	30.99	15.20	-0.84
3.50	31.99	9.95	-2.94
3.67	32.98	4.54	-4.15
3.83	33.97	-1.04	-4.44
4.00	34.97	-6.79	-3.79
4.00	16.59	-6.79	-3.79
4.20	-1.86	-8.28	-2.20
4.41	-20.31	-6.03	-0.68
4.61	-38.77	0.00	-0.00

Calcul de la stabilité de pente

Données d'entrée

Projet

Paramètres

(saisie pour l'étude actuelle)

Calcul de la stabilité

Calcul du séisme : Standard

Méthode de vérification : calcul selon EN1997

Approche de calcul : 2 - réduction de la charge et de la résistance

Coefficient de réduction de la charge (F)									
Situation de calcul permanente									
		Défavor	ables	Favora	ables				
Charge permanente :	γ _G =	1,35	[–]	1,00	[-]				
Charge variable :	γ _Q =	1,50	[–]	0,00	[-]				
Action de l'eau :	$\gamma_{W} =$	1,35	[-]						

Coefficient de réduction de la résistance (R)					
Situation de calcul permanente					
Coefficient de réduction de la résist. sur la surface de glissem. :	γ _{Rs} =	1,10	[-]		

Interface

Num.	Placement de l'interface		Coordonn	ées des poin	its de l'inte	erface [m]	
Num.	Placement de l'interface	x	Z	x	z	x	Z
1		-15,00	97,00	-3,50	97,00	-1,50	96,00
	1	-1,00	96,00	-1,00	100,00	0,00	100,00
		1,00	100,00	2,00	101,00	3,00	101,00
		4,00	102,00	15,00	102,00		
2		-1,00	96,00	-1,00	95,00	0,00	95,00
	ΓĪ	0,00	98,50	0,00	100,00		
3		0,00	98,50	15,00	98,50		

Paramètres des sols - état de contraintes effectif

Num.	Nom	Echantillon	Фef [°]	c _{ef} [kPa]	γ [kN/m³]
1	Třída S5		29,00	5,00	18,00

Num.	Nom	Echantillon	Фef [°]	c _{ef} [kPa]	γ [kN/m³]
2	Třída F8 ,konzistence tuhá		15,00	5,00	20,50

Paramètres des sols - soulèvement hydraulique

Num.	Nom	Echantillon	γsat [kN/m³]	γs [kN/m³]	n [-]
1	Třída S5	,	20,00		
2	Třída F8 ,konzistence tuhá		20,50		

Paramètres des sols

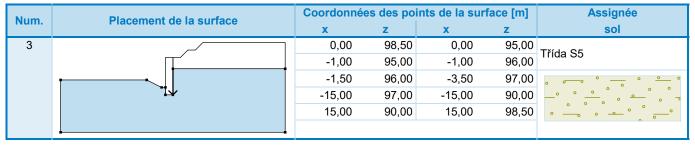
Třída S5

Poids volumique : $\gamma = 18,00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Etat de contraintes}: & \text{effective} \\ \text{Angle de frottement interne}: & \phi_{\text{ef}} = 29,00 \,\,^{\circ} \\ \text{Cohésion du sol}: & c_{\text{ef}} = 5,00 \,\,\text{kPa} \\ \text{Poids volumique du sol saturé}: \, \gamma_{\text{sat}} = 20,00 \,\,\text{kN/m}^{3} \end{array}$

Třída F8 ,konzistence tuhá

Poids volumique : $\gamma = 20,50 \text{ kN/m}^3$


 $\begin{array}{lll} \text{Etat de contraintes:} & \text{effective} \\ \text{Angle de frottement interne:} & \phi_{\text{ef}} = 15,00 \,\, ^{\circ} \\ \text{Cohésion du sol:} & c_{\text{ef}} = 5,00 \,\, \text{kPa} \\ \text{Poids volumique du sol saturé:} & \gamma_{\text{sat}} = 20,50 \,\, \text{kN/m}^{3} \end{array}$

Corps rigides

N	lum.	Nom	Echantillon	γ [kN/m³]
	1	Matériau du mur		23,00

Assignation et surfaces

Num.	Placement de la surface	Coordonné	es des po	ints de la sur	face [m]	Assignée
Nulli.	Tracement de la surface	X	Z	x	Z	sol
1	,	15,00	98,50	15,00	102,00	Třída F8 ,konzistence tuhá
	T	4,00	102,00	3,00	101,00	Tilda Fo ,kolizistelice tulla
		2,00	101,00	1,00	100,00	
	1	0,00	100,00	0,00	98,50	
2		-1,00	95,00	0,00	95,00	Matériau du mur
		0,00	98,50	0,00	100,00	Materiau du mui
		-1,00	100,00	-1,00	96,00	
	1					

Ancrages

Num.	Origine		•	Long. et inclin. / coordonnées		iamètre/sur	Module d'élast.	Effort trac. limit.	Agit	Force
Nulli.	x [m]	z [m]	l [m] / x [m]	α [°] / z [m]	b [m]	d [mm] / A [mm ²]	E [MPa]	F _c [kN]	en ompressic	F [kN]
1	-1,00	98,00	I = 7,00	α = 20,00	1,00	d =			Non	0,00
2	-1,00	99,00	I = 7,00	α = 20,00	1,00	d =			Non	0,00
3	-1,00	97,00	I = 5,00	α = 20,00	1,00	d =			Non	0,00

Eau

Type : Pas d'eau Fissure de traction

La fissure de traction n'est pas saisie.

Séisme

Le séisme n'est pas considéré.

Paramètres du calcul de la phase

Situation de calcul: permanente

Résultats (Phase de construction 1)

Calcul 1

Surface de glissement circulaire

Paramètres de la surface de glissement									
Centre :	x =	-1,06	[m]	Angles	α ₁ =	-39,89	[°]		
	z =	103,89	[m]	Angles :	α ₂ =	77,85	[°]		
Rayon :	R =	8,98	[m]						
Surface de glissement après l'optimisation.									

Vérification de la stabilité de pente (Bishop)

Sommation des forces actives : $F_a = 376,40 \text{ kN/m}$ Sommation des forces passives : $F_p = 626,92 \text{ kN/m}$ Moment de glissement : $M_a = 3380,08 \text{ kNm/m}$ Moment résistant : $M_p = 5117,98 \text{ kNm/m}$

Utilisation: 66,0 %

Stabilité de pente ADMISSIBLE