Calcul des pentes renforcées

Données d'entrée

Projet

Date: 28.10.2015

Paramètres

Standard- coefficients de sécurité

Matériaux et normes

Structures en béton : EN 1992-1-1 (EC2)

Coefficients EN 1992-1-1: standard

Calcul des murs

Calcul de la pression active : Théorie de Coulomb (norme CSN 730037)

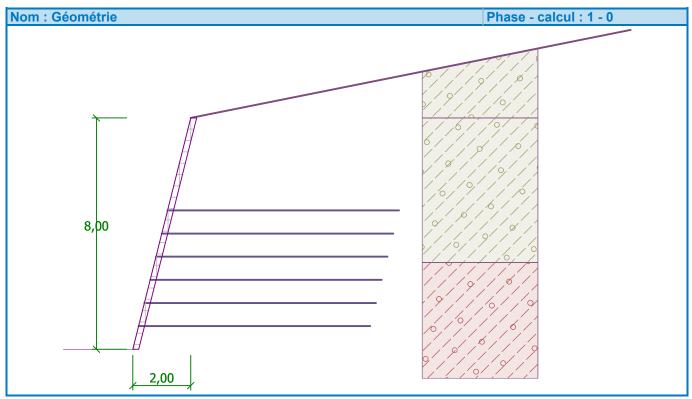
Calcul de la pression passive : Théorie de Caquot-Kerisel

Calcul du séisme : Mononobe-Okabe Forme du coin de sol : calculer comme incliné

Excentricité admissible : 0,333

Stabilité interne : Standard - surface de glissement plane

Méthode de vérification : coefficients de sécurité


Coefficients de sécurité							
Situation de calcul permanente							
Coefficient de sécurité au renversement :	SF _o =	1,50	[-]				
Coefficient de sécurité au glissement :	SF _s =	1,50	[-]				
Coefficient de sécurité de la capacité portante du sol de fondation :	SF _b =	1,50	[-]				
Coefficient de sécurité au glissement le long du géosynthétique :	SF _{sr} =	1,50	[-]				
Coefficient de sécurité de la résistance à la rupture du géosynthétique :	SF _{st} =	1,50	[-]				
Coefficient de sécurité de la résistance à l'arrachement du géosynthétique :	SF _{po} =	1,50	[-]				
Coefficient de sécurité de la rupture de la jointure :	SF _{con} =	1,50	[-]				

Calcul de la stabilité

Méthode de vérification : coefficients de sécurité

Coefficients de sécurité						
Situation de calcul permanente						
Coefficient de sécurité : SF _s = 1,50 [–]						

Géométrie de la structure

Matériau

Matériau de l'enrobage

Poids volumique $\gamma = 23,00 \text{ kN/m}^3$ Résistance au cisaillement $R_s = 0,00 \text{ kPa}$

Types des renforcements

Num.	Nom	Type du renforcement	Typ. lign.					Coeff	
				T _{ult} [kN/m]	R _t [kN/m]	C _{ds} [–]	C _i [–]		
1	Fortrac R 400/50-30	Fortrac R 400/50-30		400,00	120,59	0,60	0,70		

Détails des renforcements

1. Fortrac R 400/50-30

Résistance caractéristique à court terme $T_{ult} = 400,00 \text{ kN/m}$ Résistance de calcul à long terme $R_t = 120,59 \text{ kN/m}$ Total de l'incertitude du modèle $FS_{UNC} = 1,50$

Coefficients de réduction calculés Durée de vie : 120 ans

Creep $RF_{CR} = 1,83$

Liaison chimique : pH 4.0-9.0

Effet chimique/biologique de l'environnement RF_D = 1,14

Taille des grains : $D_{90} \le 40 \text{ mm}$

Rupture du géosynthétique par compactation RF_{ID} = 1,06

Armature

Num.	Nombre	Type du renforcement	Dist. des renforc.	Haut. du premier renforc.	Géométrie des renforcements
	des enforcements		h _r [m]	h[m]	
1	6	Fortrac R 400/50-30	0,80	0,80	long. des renforcements identique

Détails de l'armature

Armature numéro 1

Type du renforcement : Fortrac R 400/50-30

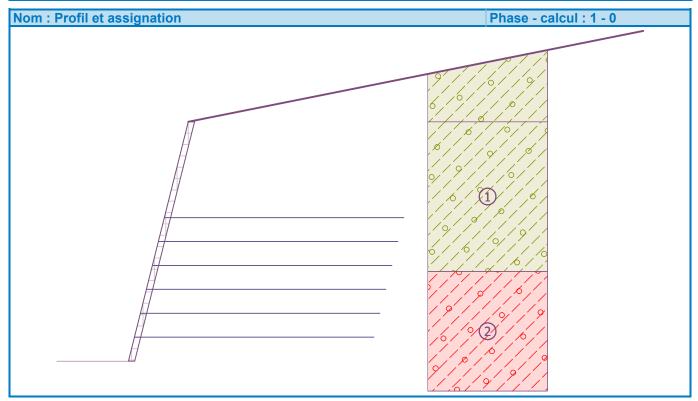
Nombre des renforcement 6

Géométrie des renforcements: long. des renforcements identique

Long. des renfor. : 8,00 m

Numéro	Origine	Fin	Fin Hauteur à partir du bas	
de renforcement	l ₁ [m]	l ₂ [m]	h[m]	l[m]
1	-1,80	6,20	0,80	8,00
2	-1,60	6,40	1,60	8,00
3	-1,40	6,60	2,40	8,00
4	-1,20	6,80	3,20	8,00
5	-1,00	7,00	4,00	8,00
6	-0,80	7,20	4,80	8,00

Paramètres des sols


Soil No. 1

Poids volumique : γ = 19,00 kN/m³ Angle de frottement interne : ϕ_{ef} = 29,00 ° Cohésion du sol : ϕ_{ef} = 8,00 kPa Angle de frot. structure-sol : δ = 10,00 ° Poids volumique du sol saturé : ϕ_{ef} = 19,00 kN/m³

Soil No. 2

Coupe géologique et assignation des sols

Num.	Couche [m]	Sol assigné	Echantillon
1	5,00	Soil No. 1	7///
2	-	Soil No. 2	

Profil du terrain

L'inclinaison du terrain derrière la structure est de 1: 5,00 (angle d'inclinaison est 11,31°).

Effet de l'eau

La nappe phréatique n'est pas considérée.

Pression à l'avant de la structure

Pression à l'avant de la structure non prise en compte.

Paramètres du calcul de la phase

Situation de calcul : permanente

Vérification n° 1

Somme des forces appliquées à la structure

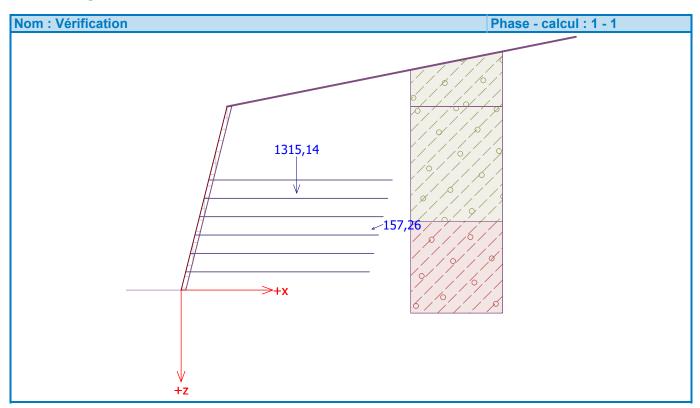
Nom	F _{hor}	Point d'application	ion F _{vert} Point d'application		Partiel
	[kN/m]	z [m]	[kN/m]	x [m]	coefficient
Poids	0,00	-4,22	1315,14	5,04	1,000
Pression active	144,89	-2,65	61,13	8,30	1,000

Vérification du mur entier

Vérification de la résistance au renversement

Moment résistant $M_{res} = 7131,86 \text{ kNm/m}$ Moment de renversement $M_{ovr} = 384,16 \text{ kNm/m}$

Coefficient de sécurité= 18,56 > 1,50


Résistance du mur au renversement ADMISSIBLE

Vérification de la résistance au glissement

Force horizontale résistante H_{res} = 890,59 kN/m Force horizontale sollicitante H_{act} = 144,89 kN/m

Coefficient de sécurité = 6,15 > 1,50 Résistance du mur au glissement ADMISSIBLE

Vérification globale - MUR ADMISSIBLE

Capac. port. du sol de fondation

Forces appliquées au centre de la base de la fondation

Num.	Moment [kNm/m]	Effort normal [kN/m]	Force mot. [kN/m]	Excentricité [–]	Contrainte [kPa]
1	-1242,64	1376,27	144,89	0,000	172,03

Forces standardes appliquées au centre de la base de fondation (calcul du tassement)

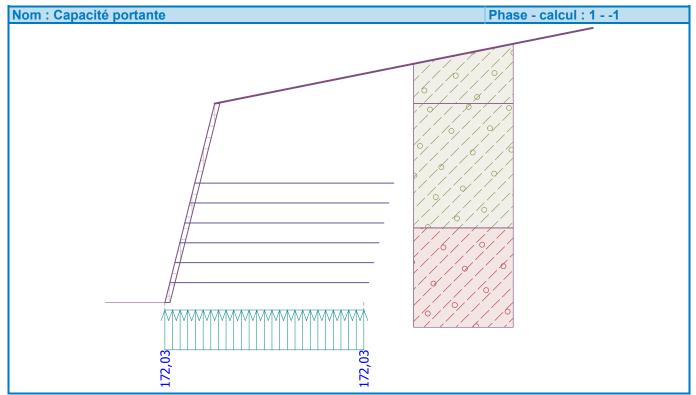
Num.	Moment [kNm/m]	Effort normal [kN/m]	Force mot. [kN/m]
1	-1242,64	1376,27	144,89

Vérification de la capacité portante du sol de fondation

Vérification de l'excentricité

Excentricité max. de l'effort normal e = 0,000Excentricité maximale permise $e_{alw} = 0,333$

Excentricité de l'effort normal ADMISSIBLE


Vérification de la capacité portante de la base de la fondation

Contrainte maximale à la base de la fondation σ = 172,03 kPa Capac. port. du sol de fondation R_d = 300,00 kPa

Coefficient de sécurité= 1,74 > 1,50

Capac. port. du sol de fondation ADMISSIBLE

Vérification globale- capacité portante du sol de fondation ADMISSIBLE

Vérification du glissement sur l'armature n° 1

Somme des forces appliquées à la structure (vérification du géosynthétique à l'utilisation maximale)

the state of the s					•
Nom	F _{hor}	Point d'application	F _{vert}	Point d'application	Partiel
	[kN/m]	z [m]	[kN/m]	x [m]	coefficient
Pression active	117,26	-2,11	51,44	8,56	1,000
Poids	0,00	-3,95	1257,09	5,12	1,000
Renforcement	-0,06	-0,80	0,00	8,20	1,000
Renforcement	-0,12	-1,60	0,00	8,40	1,000
Renforcement	-0,15	-2,40	0,00	8,60	1,000
Renforcement	-0,17	-3,20	0,00	8,80	1,000
Renforcement	-0,18	-4,00	0,00	9,00	1,000

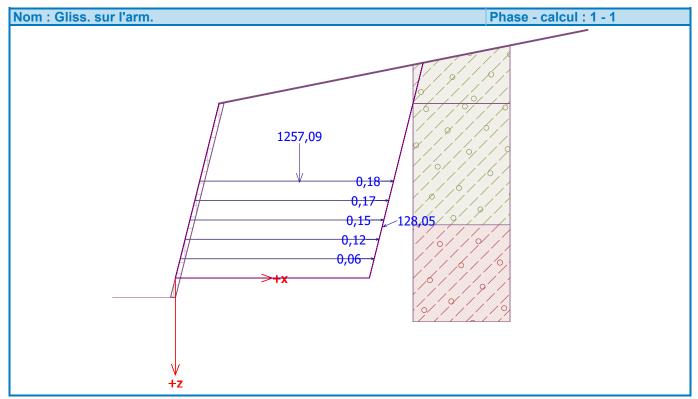
Vérification de la résistance au glissement le long du géosynthétique à l'utilisation maximale (géosynthétique n°: 1)

Inclin. de la surface de glissement = 76,00 ° Effort normal total appliqué sur le = 1308,54 kN/m

renforcement

Coefficient de réduction du glissement sur le = 0,60

géosynthétique


Résistance du mur = 0,00 kN/m Capacité portante totale des renforcements = 0,68 kN/m Résistance du géosynthétique = 453,29 kN/m

Vérification de la résistance au glissement :

Force horizontale résistante $H_{res} = 453,97 \text{ kN/m}$ Force horizontale sollicitante $H_{act} = 117,26 \text{ kN/m}$

Coefficient de sécurité = 3,87 > 1,50

Glissement du géosynthétique ADMISSIBLE

Calcul de la stabilité interne n° 1

Forces et capacités portantes calculées des géosynthétiques

. 0.000	ordes et apacites portantes carcarees des geosynthetiques						
Num.	Nom	F _x	Profondeur	R _t	Utilisation	Tp	Utilisation
Num.		[kN/m]	z[m]	[kN/m]	[%]	[kN/m]	[%]
1	Fortrac R 400/50-30	-26,50	7,21	120,59	32,96	926,29	4,29
2	Fortrac R 400/50-30	-14,32	6,41	120,59	17,82	787,60	2,73
3	Fortrac R 400/50-30	-11,36	5,60	120,59	14,13	657,22	2,59
4	Fortrac R 400/50-30	-11,76	4,80	120,59	14,63	519,29	3,40
5	Fortrac R 400/50-30	-10,13	4,00	120,59	12,60	422,71	3,60
6	Fortrac R 400/50-30	-21,41	3,20	120,59	26,63	334,82	9,59

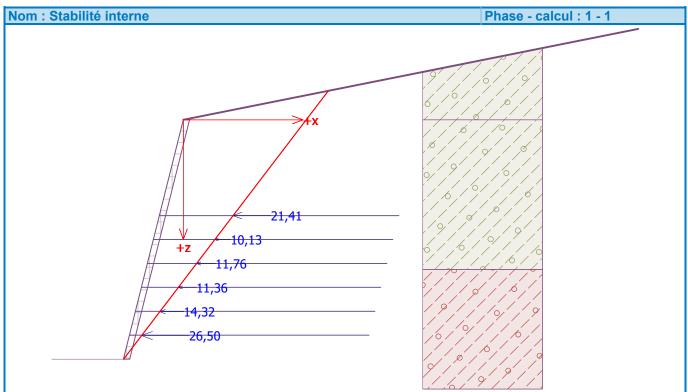
Vérification de la résistance à la rupture (Géosynthétique n°1)

Résistance à la rupture $R_t = 120,59 \text{ kN/m}$

Force du géosynthétique $F_X = 26,50 \text{ kN/m}$

Coefficient de sécurité= 4,55 > 1,50

Résistance du géosynthétique à la rupture ADMISSIBLE


Vérification de la résistance à l'arrachement (Géosynthétique n°6)

Résistance à l'arrachement $T_p = 334,82 \text{ kN/m}$ Force du géosynthétique $F_x = 21,41 \text{ kN/m}$

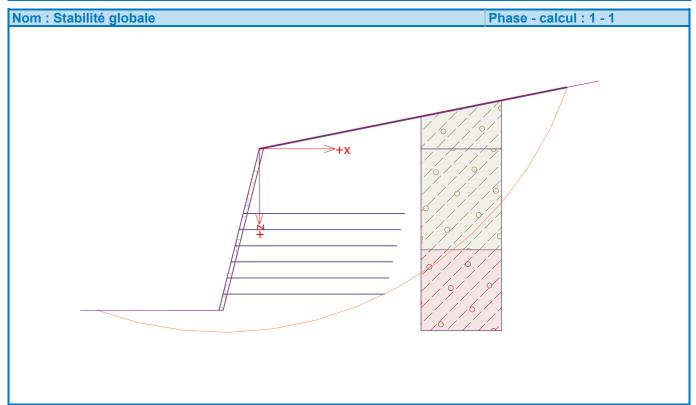
Coefficient de sécurité= 15,64 > 1,50

Résistance du géosynthétique à l'arrachement ADMISSIBLE

Vérification globale - géosynthétique ADMISSIBLE

Calcul de la stabilité globale n° 1

Paramètres de la surface de glissement


(la surface de glissement pour l'optimisation)

Centre S = (-1,85;-9,05) m Rayon r = 18,14 m Angle α_1 = -19,96 ° α_2 = 70,70 °

Vérification de la stabilité des pentes (Bishop)

FS = 1,79 > 1,50

Stabilité des pentes ADMISSIBLE

Calcul de la stabilité de pente

Données d'entrée

Projet

Paramètres

Standard- coefficients de sécurité

Calcul de la stabilité

Calcul du séisme : Standard

Méthode de vérification : coefficients de sécurité

Coefficients de sécurité					
Situation de calcul permanente					
Coefficient de sécurité : SF _s = 1,50 [–]					

Interface

Num.	Placement de l'interface		Coordonn	ées des poin	ts de l'inte	erface [m]	
ivaiii.	r lacement de l'interrace	х	Z	X	Z	X	Z
1		-34,67	-8,00	-2,00	-8,00	0,00	0,00
		24,00	4,80	38,67	4,80		
2		0,00	0,00	0,19	-0,05		
3		-2,00	-8,00	-1,81	-8,05	-1,05	-5,00
		0,19	-0,05	38,67	-0,05		

Paramètres des sols - état de contraintes effectif

Num.	Nom	Echantillon	Фef [°]	c _{ef} [kPa]	γ [kN/m³]
1	Soil No. 1		29,00	8,00	19,00
2	Soil No. 2		30,00	12,00	21,00

Paramètres des sols - soulèvement hydraulique

Num.	Nom	Echantillon	γsat [kN/m³]	γ _s [kN/m³]	n [–]
1	Soil No. 1		19,00		
2	Soil No. 2		21,50		

Paramètres des sols

Soil No. 1

Poids volumique : $\gamma = 19,00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Etat de contraintes}: & \text{effective} \\ \text{Angle de frottement interne}: & \phi_{\text{ef}} = 29,00 \ ^{\circ} \\ \text{Cohésion du sol}: & c_{\text{ef}} = 8,00 \ \text{kPa} \\ \text{Poids volumique du sol saturé}: & \gamma_{\text{sat}} = 19,00 \ \text{kN/m}^{3} \end{array}$

Soil No. 2

Poids volumique : $\gamma = 21,00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Etat de contraintes}: & \text{effective} \\ \text{Angle de frottement interne}: & \phi_{\text{ef}} = 30,00 \ ^{\circ} \\ \text{Cohésion du sol}: & c_{\text{ef}} = 12,00 \ \text{kPa} \\ \text{Poids volumique du sol saturé}: & \gamma_{\text{sat}} = 21,50 \ \text{kN/m}^{3} \end{array}$

Corps rigides

Num.	Nom	Echantillon	γ [kN/m³]
1	Couvercle		23,00
2	Matériau de l'enrobage		23,00

Assignation et surfaces

Num.	Placement de la surface	Coordonné	es des poi	nts de la sur	face [m]	Assignée
Num.	Placement de la Surface	x	Z	x	Z	sol
1		38,67	-0,05	38,67	4,80	Soil No. 1
		24,00	4,80	0,00	0,00	SOII INO. I
		0,19	-0,05			10/1/1/1/1/1/
2		38,67	-5,00	38,67	-0,05	Soil No. 1
		0,19	-0,05	-1,05	-5,00	SUII INU. I
3		-1,81	-8,05	-1,05	-5,00	Couvercle
		0,19	-0,05	0,00	0,00	Couvercie
		-2,00	-8,00			
4		-1,05	-5,00	-1,81	-8,05	Soil No. 2
		-2,00	-8,00	-34,67	-8,00	SUII INU. Z
	—	-34,67	-13,05	38,67	-13,05	10/1/////////
		38,67	-5,00			7/////////
						6/9////////////////////////////////////

Renforc.

	Point à	gauche	Point à	droite	Long.	Résistance		Installation
Num.	x [m]	z [m]	x [m]	z [m]	L [m]	R _t [kN/m]	Rés. à l'arrach.	de renforcement
1	-0,80	-3,20	7,20	-3,20	8,00	120,59	$T_p = 67,40 \text{ kN/m}^2$	Solide
2	-1,00	-4,00	7,00	-4,00	8,00	120,59	$T_p = 84,25 \text{ kN/m}^2$	Solide
3	-1,20	-4,80	6,80	-4,80	8,00	120,59	$T_p = 101,11 \text{ kN/m}^2$	Solide
4	-1,40	-5,60	6,60	-5,60	8,00	120,59	$T_p = 124,25 \text{ kN/m}^2$	Solide
5	-1,60	-6,40	6,40	-6,40	8,00	120,59	$T_p = 143,64 \text{ kN/m}^2$	Solide
6	-1,80	-7,20	6,20	-7,20	8,00	120,59	$T_p = 163,04 \text{ kN/m}^2$	Solide

Eau

Type : Pas d'eau Fissure de traction

La fissure de traction n'est pas saisie.

Séisme

Le séisme n'est pas considéré.

Paramètres du calcul de la phase

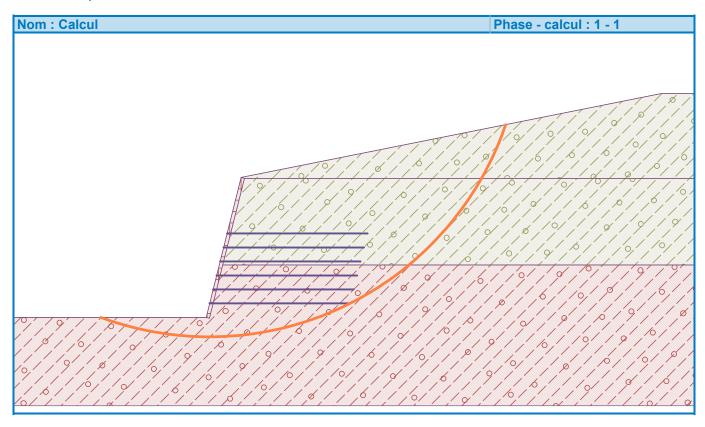
Situation de calcul : permanente

Résultats (Phase de construction 1)

Calcul 1

Surface de glissement circulaire

Paramètres de la surface de glissement						
Contro	x =	-1,82	[m]	Angles	α ₁ =	-20,29 [°]
Centre :	z =	8,78	[m]	Angles :	α ₂ =	71,23 [°]
Surface de glissement après l'optimisation.						


	Р	aramètre	s de la su	ırface de glissement	
Rayon :	R =	17,89	[m]		
Surface de glissement après l'optimisation.					

Forces des renforcements

Renforcement	Force [kN/m]
1	0,00
2	0,00
3	0,00
4	0,00
5	0,00
6	0.00

Vérification de la stabilité de pente (Bishop)

Coefficient de sécurité= 1,79 > 1,50 Stabilité de pente ADMISSIBLE

