Abutment verification

Input data

Project

Date: 29.10.2015

Settings

(input for current task)

Materials and standards

Abutment: EN 1992-1-1 (EC2)

Coefficients EN 1992-1-1: standard

Wall analysis

Active earth pressure calculation : Coulomb

Passive earth pressure calculation : Caquot-Kerisel
Earthquake analysis : Mononobe-Okabe
Shape of earth wedge : Calculate as skew

Allowable eccentricity: 0.333

Verification methodology: Safety factors (ASD)

Safety factors					
Permanent design situation					
Safety factor for overturning :	SF _o =	1,50	[-]		
Safety factor for sliding resistance :	SF _s =	1,50	[-]		
Safety factor for bearing capacity :	SF _b =	1,00	[-]		

Geometry of structure

No.	Coordinate	Depth
NO.	X [m]	Z [m]
1	0,00	1,50
2	0,00	2,50
3	-1,00	4,00
4	-1,00	8,50
5	1,00	8,90
6	1,00	9,90
7	-3,80	9,90
8	-3,80	8,90
9	-1,80	8,50
10	-1,80	1,50
11	-0,80	1,50

The origin [0,0] is located at the most upper right point of the wall. Wall section area = 13,27 m².

Length of bridge abutment = 5,00 m Length of abutment foundation = 5,40 m

Abutment wingwalls - hinged symmetric

Wingwall thickness = 0,40 m
Length of wingwall behind closure wall = 4,00 m
Wingwall height = 4,00 m
Dist. of wingwall cut from c.w. = 2,00 m
Depth of wingwall cut = 4,00 m

Material of structure

Unit weight γ = 23,00 kN/m³

Analysis of concrete structures carried out according to the standard EN 1992-1-1 (EC2).

Concrete: C 20/25

Cylinder compressive strength $f_{ck} = 20,00 \text{ MPa}$ Tensile strength $f_{ctm} = 2,20 \text{ MPa}$

Longitudinal steel: B500

Yield strength $f_{vk} = 500,00 \text{ MPa}$

Soil parameters

Soil No. 1

Unit weight: $\gamma = 19,00 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction : $\phi_{ef} = 29,00^{\circ}$ Cohesion of soil : $\phi_{ef} = 8,00^{\circ}$ kPa Angle of friction struc.-soil : $\phi_{ef} = 8,00^{\circ}$ kPa Soil : $\phi_{ef} = 15,00^{\circ}$ cohesionless

Saturated unit weight : $\gamma_{sat} = 19,00 \text{ kN/m}^3$

Soil No. 2

Unit weight: $\gamma = 19,00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state:} & \text{effective} \\ \text{Angle of internal friction:} & \phi_{\text{ef}} = 29,00\,^{\circ} \\ \text{Cohesion of soil:} & c_{\text{ef}} = 8,00\,\text{kPa} \end{array}$

Angle of friction struc.-soil : δ = 15,00 ° Soil : cohesionless

Saturated unit weight : $\gamma_{sat} = 19,00 \text{ kN/m}^3$

Soil No. 3

Unit weight: $\gamma = 19.00 \text{ kN/m}^3$

Stress-state : effective

Angle of internal friction : $\phi_{ef} = 29,00^{\circ}$ Cohesion of soil : $c_{ef} = 8,00^{\circ}$ kPa Angle of friction struc.-soil : $\delta = 15,00^{\circ}$ cohesionless

Saturated unit weight : $\gamma_{sat} = 19,00 \text{ kN/m}^3$

Soil No. 4

Unit weight: $\gamma = 19,00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state:} & \text{effective} \\ \text{Angle of internal friction:} & \phi_{\text{ef}} = 29,00 \ ^{\circ} \\ \text{Cohesion of soil:} & c_{\text{ef}} = 8,00 \ \text{kPa} \\ \text{Angle of friction struc.-soil:} & \delta = 15,00 \ ^{\circ} \\ \text{Soil:} & \text{cohesionless} \end{array}$

Saturated unit weight : $\gamma_{sat} = 19,00 \text{ kN/m}^3$

Load case, bridge load

Type of load case: construction state.

Geological profile and assigned soils

No.	Layer [m]	Assigned soil	Pattern
1	3,00	Soil No. 1	
2	3,00	Soil No. 2	
3	3,00	Soil No. 3	
4	-	Soil No. 4	

Foundation

Type of foundation: soil from geological profile

Terrain profile

Terrain behind construction has the slope 1: 5,00 (slope angle is 11,31 °). Embankment height is 1,00 m, embankment length is 5,00 m.

Water influence

Ground water table is located below the structure.

Resistance on front face of the structure

Resistance on front face of the structure is not considered.

Settings of the stage of construction

Design situation : permanent

The wall is free to move. Active earth pressure is therefore assumed.

Verification No. 1 (Stage of construction 1)

Forces acting on construction

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Design
	[kN/m]	z [m]	[kN/m]	x [m]	coefficient
Weight - wall	0,00	-3,33	305,21	2,51	1,000
Weight - earth wedge	0,00	-2,51	59,38	3,47	1,000
Active pressure	172,56	-2,43	195,45	3,96	1,000

Abutment check

Verification for slip has not been performed.

Check for overturning stability

Resisting moment \dot{M}_{res} = 1615,54 kNm/m Overturning moment \dot{M}_{ovr} = 388,16 kNm/m

Safety factor = 4,16 > 1,50

Wall for overturning is SATISFACTORY

Overall check - ABUTMENT is SATISFACTORY

Bearing capacity of foundation soil (Stage of construction 1)

Design load acting at the center of footing bottom

Design	load acting at the cel	iter or rooting botton	•			
No	Moment Norm. force		Shear Force	Eccentricity	Stress	
No.	[kNm/m]	[kN/m]	[kN/m]	[-]	[kPa]	
1	17,14	518,55	159,77	0,007	109,54	

Service load acting at the center of footing bottom

No	Moment	Norm. force	Shear Force	
No.	[kNm/m]	[kN/m]	[kN/m]	
1	17,14	518,55	159,77	

Verification of foundation soil

Eccentricity verification

Max. eccentricity of normal force e = 0,007 Maximum allowable eccentricity e_{alw} = 0,333

Eccentricity of the normal force is SATISFACTORY

Verification of bearing capacity

Max. stress at footing bottom σ = 109,54 kPa Bearing capacity of foundation soil R_d = 240,00 kPa

Safety factor = 2,19 > 1,00

Bearing capacity of foundation soil is SATISFACTORY

Overall verification - bearing capacity of found. soil is SATISFACTORY

Dimensioning No. 1 (Stage of construction 1)

Forces acting on construction

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Design
	[kN/m]	z [m]	[kN/m]	x [m]	coefficient
Weight - wall	0,00	-4,11	169,05	0,60	1,000
Active pressure	87,83	-1,76	23,54	0,80	1,000

Dimensioning of abutment stem - input data:

Construction joint is designed from steel-reinforced concrete; design width 1m.

Bar diameter = 25,0 mm Number of bars = 12

Reinforcement cover = 30,0 mm

Internal forces : M = 112,19 kNm/m; N = -192,58 kN/m; V = 87,83 kN/m Cross-section depth h = 0,80 m

Dimensioning of abutment stem - results:

Reinforcement ratio ρ = 0,74 % > 0,13 % = ρ_{min} Position of neutral axis x = 0,50 m Ultimate shear force V_{Rd} = 366,18 kN/m > 87,83 kN/m = V_{Ed} Ultimate compressive force V_{Rd} = 3152,34 kN/m > 192,58 kN/m = V_{Ed} Ultimate moment V_{Rd} = 1836,48 kNm/m > 112,19 kNm/m = V_{Ed}

Cross-section is SATISFACTORY.

Input data (Stage of construction 2)

 $a_2 = 0.20 \text{ m}$

Load case, bridge load

Location

Type of load case : service state. **Forces generated by bridge**Vertical force $F_s = 2000,00 \text{ kN}$ Horizontal force $F_v = 0,00 \text{ kN}$ Location $a_1 = 0,30 \text{ m}$ Depth v = 0,10 m **Forces due to transition slab**Vertical force $F_s = 120,00 \text{ kN}$ Horizontal force $F_v = -50,00 \text{ kN}$

Projeto: Shopping centro Black Rose

Geological profile and assigned soils

No.	Layer [m]	Assigned soil	Pattern
1	3,00	Soil No. 1	
2	3,00	Soil No. 2	
3	3,00	Soil No. 3	
4	-	Soil No. 4	

Foundation

Type of foundation : soil from geological profile

Terrain profile

Terrain behind construction has the slope 1: 5,00 (slope angle is 11,31 °). Embankment height is 1,00 m, embankment length is 5,00 m.

Water influence

Ground water table is located below the structure.

Resistance on front face of the structure

Resistance on front face of the structure is not considered.

Settings of the stage of construction

Design situation : permanent

The wall is free to move. Active earth pressure is therefore assumed.

Verification No. 1 (Stage of construction 2)

Forces acting on construction

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Design
	[kN/m]	z [m]	[kN/m]	x [m]	coefficient
Weight - wall	0,00	-3,81	332,81	2,58	1,000
Weight - earth wedge	0,00	-2,51	59,38	3,47	1,000
Active pressure	224,88	-2,66	249,09	3,92	1,000
Abutment wingwalls	0,00	-8,00	54,28	5,50	1,000
Bridge reactions	0,00	-8,50	400,00	2,30	1,000
Appr. plate react.	10,00	-9,90	24,00	3,60	1,000

Abutment check

Verification for slip has not been performed.

Check for overturning stability

Resisting moment $M_{res} = 3099,22 \text{ kNm/m}$ Overturning moment $M_{ovr} = 644,78 \text{ kNm/m}$

Safety factor = 4.81 > 1.50

Wall for overturning is SATISFACTORY

Overall check - ABUTMENT is SATISFACTORY

Bearing capacity of foundation soil (Stage of construction 2)

Design load acting at the center of footing bottom

No.	Moment Norm. force [kNm/m] [kN/m]		Shear Force [kN/m]	Eccentricity [–1	Stress [kPa]
1	33,47	1036,62	217,48	0,007	218,91

Service load acting at the center of footing bottom

No.	Moment	Norm. force	Shear Force	
NO.	[kNm/m]	[kN/m]	[kN/m]	
1	33,47	1036,62	217,48	

Verification of foundation soil

Eccentricity verification

Max. eccentricity of normal force e = 0,007Maximum allowable eccentricity $e_{alw} = 0,333$

Eccentricity of the normal force is SATISFACTORY

Verification of bearing capacity

Max. stress at footing bottom σ = 218,91 kPa Bearing capacity of foundation soil R_d = 240,00 kPa

Safety factor = 1,10 > 1,00

Bearing capacity of foundation soil is SATISFACTORY

Overall verification - bearing capacity of found. soil is SATISFACTORY

Dimensioning No. 1 (Stage of construction 2)

Forces acting on construction

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Design
	[kN/m]	z [m]	[kN/m]	x [m]	coefficient
Weight - wall	0,00	-4,62	196,65	0,71	1,000
Active pressure	128,68	-2,07	34,48	0,83	1,000
Abutment wingwalls	0,00	-6,60	54,28	3,50	1,000
Bridge reactions	0,00	-7,10	400,00	0,30	1,000
Appr. plate react.	10,00	-8,50	24,00	1,60	1,000

Dimensioning of abutment stem - input data:

Construction joint is designed from steel-reinforced concrete; design width 1m.

Bar diameter = 25,0 mm Number of bars = 12 Reinforcement cover = 30,0 mm

Internal forces : M = 118,41 kNm/m; N = -709,41 kN/m; V = 138,68 kN/m

Cross-section depth h = 0.80 m

Dimensioning of abutment stem - results:

Reinforcement ratio $\rho = 0.74 \% > 0.13 \% = \rho_{min}$

Position of neutral axis x = 0.67 m

Ultimate shear force $V_{Rd} = 443,70 \text{ kN/m} > 138,68 \text{ kN/m} = V_{Ed}$ Ultimate compressive force $N_{Rd} = 6692,26 \text{ kN/m} > 709,41 \text{ kN/m} = N_{Ed}$ Ultimate moment $M_{Rd} = 1116,99 \text{ kNm/m} > 118,41 \text{ kNm/m} = M_{Ed}$

Cross-section is SATISFACTORY.