Concrete Grid Co.
Shopping center - Black Rose
www.cgrid.com
London - Watford cgrid@cgrid.com

VALUES

Position of centre of gravity with respect to global coordinate system	
horizontal position of cetre of gravity with respect to origin of coordinate system	$\mathrm{x}_{\mathrm{T}}=0,0 \mathrm{~mm}$
vertical position of centre of gravity with respect to origin of coordinate system	$\mathrm{y}_{\mathrm{T}}=3,9 \mathrm{~mm}$
Shear centre position with respect to global coordinate system	
horizontal position of shear centre with respect to origin of coordinate system	$\mathrm{x}_{\mathrm{A}}=0,0 \mathrm{~mm}$
vertical position of shear centre with respect to origin of coordinate system	$y_{A}=-2,2 \mathrm{~mm}$
Cross-sectional characteristics	
cross-sectional area	$A=3875,0 \mathrm{~mm}^{2}$
overall cross-section area (including gussets, shims and holes)	$A_{\text {total }}=20500,0 \mathrm{~mm}^{2}$
cross-section perimeter	$\mathrm{P}=1550,0 \mathrm{~mm}$
cross-section perimeter	$\mathrm{P}_{\text {out }}=1010,0 \mathrm{~mm}$
distance of centroid from left edge of min. cross-section envelope	$\mathrm{y}_{\mathrm{cg}}=200,0 \mathrm{~mm}$
distance of centroid from bottom edge of min. cross-section envelope	$\mathrm{z}_{\mathrm{cg}}=66,4 \mathrm{~mm}$
moment of inertia w.r.t. horizontal centroidal axis	$\mathrm{I}_{\mathrm{y}}=7,288 \mathrm{E}+06 \mathrm{~mm}{ }^{4}$
moment of inertia w.r.t. vertical centroidal axis	$\mathrm{I}_{\mathrm{z}}=37,00 \mathrm{E}+06 \mathrm{~mm}^{4}$
mixed moment of inertia w.r.t. centroidal axes	$\mathrm{D}_{\mathrm{yz}}=0,000 \mathrm{E}+00 \mathrm{~mm}{ }^{4}$
inclination of principal centroidal axes	$\phi=0,0^{\circ}$
radius of gyration normal to horizontal centroidal axis	$\mathrm{i}_{\mathrm{y}}=43,4 \mathrm{~mm}$
radius of gyration normal to vertical centroidal axis	$\mathrm{i}_{\mathrm{z}}=97,7 \mathrm{~mm}$
polar moment of inertia	$\mathrm{I}_{\mathrm{p}}=44,29 \mathrm{E}+06 \mathrm{~mm}^{4}$
polar moment of inertia	$\mathrm{i}_{\mathrm{p}}=106,9 \mathrm{~mm}$
Sectional parameters	
y-coordinate of shear center in centroidal coordinate system	$\mathrm{y}_{\mathrm{sc}}=0,0 \mathrm{~mm}$
z-coordinate of shear center in centroidal coordinate system	$\mathrm{z}_{\mathrm{sc}}=-6,1 \mathrm{~mm}$
rigidity moment in simple torsion	$\mathrm{l}_{\mathrm{k}}=11,58 \mathrm{E}+06 \mathrm{~mm}^{4}$
sectorial moment of inertia w.r.t. shear center	$\mathrm{I}_{\mathrm{w} . \mathrm{s}}=8,857 \mathrm{E}+09 \mathrm{~mm}^{6}$
sectorial moment of inertia w.r.t. centroid	$\mathrm{I}_{\mathrm{w} . \mathrm{C}}=5,813 \mathrm{E}+09 \mathrm{~mm}^{6}$

Calculated - characteristics, ellipse of inertia.

